/* * Copyright 2010 Christoph Bumiller * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include "pipe/p_defines.h" #include "tgsi/tgsi_ureg.h" #include "nvc0/nvc0_context.h" #include "codegen/nv50_ir_driver.h" #include "nvc0/nve4_compute.h" /* NOTE: Using a[0x270] in FP may cause an error even if we're using less than * 124 scalar varying values. */ static uint32_t nvc0_shader_input_address(unsigned sn, unsigned si) { switch (sn) { case TGSI_SEMANTIC_TESSOUTER: return 0x000 + si * 0x4; case TGSI_SEMANTIC_TESSINNER: return 0x010 + si * 0x4; case TGSI_SEMANTIC_PATCH: return 0x020 + si * 0x10; case TGSI_SEMANTIC_PRIMID: return 0x060; case TGSI_SEMANTIC_LAYER: return 0x064; case TGSI_SEMANTIC_VIEWPORT_INDEX:return 0x068; case TGSI_SEMANTIC_PSIZE: return 0x06c; case TGSI_SEMANTIC_POSITION: return 0x070; case TGSI_SEMANTIC_GENERIC: return 0x080 + si * 0x10; case TGSI_SEMANTIC_FOG: return 0x2e8; case TGSI_SEMANTIC_COLOR: return 0x280 + si * 0x10; case TGSI_SEMANTIC_BCOLOR: return 0x2a0 + si * 0x10; case TGSI_SEMANTIC_CLIPDIST: return 0x2c0 + si * 0x10; case TGSI_SEMANTIC_CLIPVERTEX: return 0x270; case TGSI_SEMANTIC_PCOORD: return 0x2e0; case TGSI_SEMANTIC_TESSCOORD: return 0x2f0; case TGSI_SEMANTIC_INSTANCEID: return 0x2f8; case TGSI_SEMANTIC_VERTEXID: return 0x2fc; case TGSI_SEMANTIC_TEXCOORD: return 0x300 + si * 0x10; default: assert(!"invalid TGSI input semantic"); return ~0; } } static uint32_t nvc0_shader_output_address(unsigned sn, unsigned si) { switch (sn) { case TGSI_SEMANTIC_TESSOUTER: return 0x000 + si * 0x4; case TGSI_SEMANTIC_TESSINNER: return 0x010 + si * 0x4; case TGSI_SEMANTIC_PATCH: return 0x020 + si * 0x10; case TGSI_SEMANTIC_PRIMID: return 0x060; case TGSI_SEMANTIC_LAYER: return 0x064; case TGSI_SEMANTIC_VIEWPORT_INDEX:return 0x068; case TGSI_SEMANTIC_PSIZE: return 0x06c; case TGSI_SEMANTIC_POSITION: return 0x070; case TGSI_SEMANTIC_GENERIC: return 0x080 + si * 0x10; case TGSI_SEMANTIC_FOG: return 0x2e8; case TGSI_SEMANTIC_COLOR: return 0x280 + si * 0x10; case TGSI_SEMANTIC_BCOLOR: return 0x2a0 + si * 0x10; case TGSI_SEMANTIC_CLIPDIST: return 0x2c0 + si * 0x10; case TGSI_SEMANTIC_CLIPVERTEX: return 0x270; case TGSI_SEMANTIC_TEXCOORD: return 0x300 + si * 0x10; case TGSI_SEMANTIC_EDGEFLAG: return ~0; default: assert(!"invalid TGSI output semantic"); return ~0; } } static int nvc0_vp_assign_input_slots(struct nv50_ir_prog_info *info) { unsigned i, c, n; for (n = 0, i = 0; i < info->numInputs; ++i) { switch (info->in[i].sn) { case TGSI_SEMANTIC_INSTANCEID: /* for SM4 only, in TGSI they're SVs */ case TGSI_SEMANTIC_VERTEXID: info->in[i].mask = 0x1; info->in[i].slot[0] = nvc0_shader_input_address(info->in[i].sn, 0) / 4; continue; default: break; } for (c = 0; c < 4; ++c) info->in[i].slot[c] = (0x80 + n * 0x10 + c * 0x4) / 4; ++n; } return 0; } static int nvc0_sp_assign_input_slots(struct nv50_ir_prog_info *info) { unsigned offset; unsigned i, c; for (i = 0; i < info->numInputs; ++i) { offset = nvc0_shader_input_address(info->in[i].sn, info->in[i].si); for (c = 0; c < 4; ++c) info->in[i].slot[c] = (offset + c * 0x4) / 4; } return 0; } static int nvc0_fp_assign_output_slots(struct nv50_ir_prog_info *info) { unsigned count = info->prop.fp.numColourResults * 4; unsigned i, c; for (i = 0; i < info->numOutputs; ++i) if (info->out[i].sn == TGSI_SEMANTIC_COLOR) for (c = 0; c < 4; ++c) info->out[i].slot[c] = info->out[i].si * 4 + c; if (info->io.sampleMask < PIPE_MAX_SHADER_OUTPUTS) info->out[info->io.sampleMask].slot[0] = count++; else if (info->target >= 0xe0) count++; /* on Kepler, depth is always last colour reg + 2 */ if (info->io.fragDepth < PIPE_MAX_SHADER_OUTPUTS) info->out[info->io.fragDepth].slot[2] = count; return 0; } static int nvc0_sp_assign_output_slots(struct nv50_ir_prog_info *info) { unsigned offset; unsigned i, c; for (i = 0; i < info->numOutputs; ++i) { offset = nvc0_shader_output_address(info->out[i].sn, info->out[i].si); for (c = 0; c < 4; ++c) info->out[i].slot[c] = (offset + c * 0x4) / 4; } return 0; } static int nvc0_program_assign_varying_slots(struct nv50_ir_prog_info *info) { int ret; if (info->type == PIPE_SHADER_VERTEX) ret = nvc0_vp_assign_input_slots(info); else ret = nvc0_sp_assign_input_slots(info); if (ret) return ret; if (info->type == PIPE_SHADER_FRAGMENT) ret = nvc0_fp_assign_output_slots(info); else ret = nvc0_sp_assign_output_slots(info); return ret; } static inline void nvc0_vtgp_hdr_update_oread(struct nvc0_program *vp, uint8_t slot) { uint8_t min = (vp->hdr[4] >> 12) & 0xff; uint8_t max = (vp->hdr[4] >> 24); min = MIN2(min, slot); max = MAX2(max, slot); vp->hdr[4] = (max << 24) | (min << 12); } /* Common part of header generation for VP, TCP, TEP and GP. */ static int nvc0_vtgp_gen_header(struct nvc0_program *vp, struct nv50_ir_prog_info *info) { unsigned i, c, a; for (i = 0; i < info->numInputs; ++i) { if (info->in[i].patch) continue; for (c = 0; c < 4; ++c) { a = info->in[i].slot[c]; if (info->in[i].mask & (1 << c)) vp->hdr[5 + a / 32] |= 1 << (a % 32); } } for (i = 0; i < info->numOutputs; ++i) { if (info->out[i].patch) continue; for (c = 0; c < 4; ++c) { if (!(info->out[i].mask & (1 << c))) continue; assert(info->out[i].slot[c] >= 0x40 / 4); a = info->out[i].slot[c] - 0x40 / 4; vp->hdr[13 + a / 32] |= 1 << (a % 32); if (info->out[i].oread) nvc0_vtgp_hdr_update_oread(vp, info->out[i].slot[c]); } } for (i = 0; i < info->numSysVals; ++i) { switch (info->sv[i].sn) { case TGSI_SEMANTIC_PRIMID: vp->hdr[5] |= 1 << 24; break; case TGSI_SEMANTIC_INSTANCEID: vp->hdr[10] |= 1 << 30; break; case TGSI_SEMANTIC_VERTEXID: vp->hdr[10] |= 1 << 31; break; case TGSI_SEMANTIC_TESSCOORD: /* We don't have the mask, nor the slots populated. While this could * be achieved, the vast majority of the time if either of the coords * are read, then both will be read. */ nvc0_vtgp_hdr_update_oread(vp, 0x2f0 / 4); nvc0_vtgp_hdr_update_oread(vp, 0x2f4 / 4); break; default: break; } } vp->vp.clip_enable = (1 << (info->io.clipDistances + info->io.cullDistances)) - 1; for (i = 0; i < info->io.cullDistances; ++i) vp->vp.clip_mode |= 1 << ((info->io.clipDistances + i) * 4); if (info->io.genUserClip < 0) vp->vp.num_ucps = PIPE_MAX_CLIP_PLANES + 1; /* prevent rebuilding */ return 0; } static int nvc0_vp_gen_header(struct nvc0_program *vp, struct nv50_ir_prog_info *info) { vp->hdr[0] = 0x20061 | (1 << 10); vp->hdr[4] = 0xff000; return nvc0_vtgp_gen_header(vp, info); } static void nvc0_tp_get_tess_mode(struct nvc0_program *tp, struct nv50_ir_prog_info *info) { if (info->prop.tp.outputPrim == PIPE_PRIM_MAX) { tp->tp.tess_mode = ~0; return; } switch (info->prop.tp.domain) { case PIPE_PRIM_LINES: tp->tp.tess_mode = NVC0_3D_TESS_MODE_PRIM_ISOLINES; break; case PIPE_PRIM_TRIANGLES: tp->tp.tess_mode = NVC0_3D_TESS_MODE_PRIM_TRIANGLES; break; case PIPE_PRIM_QUADS: tp->tp.tess_mode = NVC0_3D_TESS_MODE_PRIM_QUADS; break; default: tp->tp.tess_mode = ~0; return; } if (info->prop.tp.winding > 0) tp->tp.tess_mode |= NVC0_3D_TESS_MODE_CW; if (info->prop.tp.outputPrim != PIPE_PRIM_POINTS) tp->tp.tess_mode |= NVC0_3D_TESS_MODE_CONNECTED; switch (info->prop.tp.partitioning) { case PIPE_TESS_SPACING_EQUAL: tp->tp.tess_mode |= NVC0_3D_TESS_MODE_SPACING_EQUAL; break; case PIPE_TESS_SPACING_FRACTIONAL_ODD: tp->tp.tess_mode |= NVC0_3D_TESS_MODE_SPACING_FRACTIONAL_ODD; break; case PIPE_TESS_SPACING_FRACTIONAL_EVEN: tp->tp.tess_mode |= NVC0_3D_TESS_MODE_SPACING_FRACTIONAL_EVEN; break; default: assert(!"invalid tessellator partitioning"); break; } } static int nvc0_tcp_gen_header(struct nvc0_program *tcp, struct nv50_ir_prog_info *info) { unsigned opcs = 6; /* output patch constants (at least the TessFactors) */ tcp->tp.input_patch_size = info->prop.tp.inputPatchSize; if (info->numPatchConstants) opcs = 8 + info->numPatchConstants * 4; tcp->hdr[0] = 0x20061 | (2 << 10); tcp->hdr[1] = opcs << 24; tcp->hdr[2] = info->prop.tp.outputPatchSize << 24; tcp->hdr[4] = 0xff000; /* initial min/max parallel output read address */ nvc0_vtgp_gen_header(tcp, info); nvc0_tp_get_tess_mode(tcp, info); return 0; } static int nvc0_tep_gen_header(struct nvc0_program *tep, struct nv50_ir_prog_info *info) { tep->tp.input_patch_size = ~0; tep->hdr[0] = 0x20061 | (3 << 10); tep->hdr[4] = 0xff000; nvc0_vtgp_gen_header(tep, info); nvc0_tp_get_tess_mode(tep, info); tep->hdr[18] |= 0x3 << 12; /* ? */ return 0; } static int nvc0_gp_gen_header(struct nvc0_program *gp, struct nv50_ir_prog_info *info) { gp->hdr[0] = 0x20061 | (4 << 10); gp->hdr[2] = MIN2(info->prop.gp.instanceCount, 32) << 24; switch (info->prop.gp.outputPrim) { case PIPE_PRIM_POINTS: gp->hdr[3] = 0x01000000; gp->hdr[0] |= 0xf0000000; break; case PIPE_PRIM_LINE_STRIP: gp->hdr[3] = 0x06000000; gp->hdr[0] |= 0x10000000; break; case PIPE_PRIM_TRIANGLE_STRIP: gp->hdr[3] = 0x07000000; gp->hdr[0] |= 0x10000000; break; default: assert(0); break; } gp->hdr[4] = MIN2(info->prop.gp.maxVertices, 1024); return nvc0_vtgp_gen_header(gp, info); } #define NVC0_INTERP_FLAT (1 << 0) #define NVC0_INTERP_PERSPECTIVE (2 << 0) #define NVC0_INTERP_LINEAR (3 << 0) #define NVC0_INTERP_CENTROID (1 << 2) static uint8_t nvc0_hdr_interp_mode(const struct nv50_ir_varying *var) { if (var->linear) return NVC0_INTERP_LINEAR; if (var->flat) return NVC0_INTERP_FLAT; return NVC0_INTERP_PERSPECTIVE; } static int nvc0_fp_gen_header(struct nvc0_program *fp, struct nv50_ir_prog_info *info) { unsigned i, c, a, m; /* just 00062 on Kepler */ fp->hdr[0] = 0x20062 | (5 << 10); fp->hdr[5] = 0x80000000; /* getting a trap if FRAG_COORD_UMASK.w = 0 */ if (info->prop.fp.usesDiscard) fp->hdr[0] |= 0x8000; if (info->prop.fp.numColourResults > 1) fp->hdr[0] |= 0x4000; if (info->io.sampleMask < PIPE_MAX_SHADER_OUTPUTS) fp->hdr[19] |= 0x1; if (info->prop.fp.writesDepth) { fp->hdr[19] |= 0x2; fp->flags[0] = 0x11; /* deactivate ZCULL */ } for (i = 0; i < info->numInputs; ++i) { m = nvc0_hdr_interp_mode(&info->in[i]); if (info->in[i].sn == TGSI_SEMANTIC_COLOR) { fp->fp.colors |= 1 << info->in[i].si; if (info->in[i].sc) fp->fp.color_interp[info->in[i].si] = m | (info->in[i].mask << 4); } for (c = 0; c < 4; ++c) { if (!(info->in[i].mask & (1 << c))) continue; a = info->in[i].slot[c]; if (info->in[i].slot[0] >= (0x060 / 4) && info->in[i].slot[0] <= (0x07c / 4)) { fp->hdr[5] |= 1 << (24 + (a - 0x060 / 4)); } else if (info->in[i].slot[0] >= (0x2c0 / 4) && info->in[i].slot[0] <= (0x2fc / 4)) { fp->hdr[14] |= (1 << (a - 0x280 / 4)) & 0x07ff0000; } else { if (info->in[i].slot[c] < (0x040 / 4) || info->in[i].slot[c] > (0x380 / 4)) continue; a *= 2; if (info->in[i].slot[0] >= (0x300 / 4)) a -= 32; fp->hdr[4 + a / 32] |= m << (a % 32); } } } for (i = 0; i < info->numOutputs; ++i) { if (info->out[i].sn == TGSI_SEMANTIC_COLOR) fp->hdr[18] |= 0xf << info->out[i].slot[0]; } fp->fp.early_z = info->prop.fp.earlyFragTests; return 0; } static struct nvc0_transform_feedback_state * nvc0_program_create_tfb_state(const struct nv50_ir_prog_info *info, const struct pipe_stream_output_info *pso) { struct nvc0_transform_feedback_state *tfb; unsigned b, i, c; tfb = MALLOC_STRUCT(nvc0_transform_feedback_state); if (!tfb) return NULL; for (b = 0; b < 4; ++b) { tfb->stride[b] = pso->stride[b] * 4; tfb->varying_count[b] = 0; } memset(tfb->varying_index, 0xff, sizeof(tfb->varying_index)); /* = skip */ for (i = 0; i < pso->num_outputs; ++i) { unsigned s = pso->output[i].start_component; unsigned p = pso->output[i].dst_offset; b = pso->output[i].output_buffer; for (c = 0; c < pso->output[i].num_components; ++c) tfb->varying_index[b][p++] = info->out[pso->output[i].register_index].slot[s + c]; tfb->varying_count[b] = MAX2(tfb->varying_count[b], p); tfb->stream[b] = pso->output[i].stream; } for (b = 0; b < 4; ++b) // zero unused indices (looks nicer) for (c = tfb->varying_count[b]; c & 3; ++c) tfb->varying_index[b][c] = 0; return tfb; } #ifdef DEBUG static void nvc0_program_dump(struct nvc0_program *prog) { unsigned pos; if (prog->type != PIPE_SHADER_COMPUTE) { for (pos = 0; pos < ARRAY_SIZE(prog->hdr); ++pos) debug_printf("HDR[%02"PRIxPTR"] = 0x%08x\n", pos * sizeof(prog->hdr[0]), prog->hdr[pos]); } debug_printf("shader binary code (0x%x bytes):", prog->code_size); for (pos = 0; pos < prog->code_size / 4; ++pos) { if ((pos % 8) == 0) debug_printf("\n"); debug_printf("%08x ", prog->code[pos]); } debug_printf("\n"); } #endif bool nvc0_program_translate(struct nvc0_program *prog, uint16_t chipset, struct pipe_debug_callback *debug) { struct nv50_ir_prog_info *info; int ret; info = CALLOC_STRUCT(nv50_ir_prog_info); if (!info) return false; info->type = prog->type; info->target = chipset; info->bin.sourceRep = NV50_PROGRAM_IR_TGSI; info->bin.source = (void *)prog->pipe.tokens; info->io.genUserClip = prog->vp.num_ucps; info->io.auxCBSlot = 15; info->io.ucpBase = NVC0_CB_AUX_UCP_INFO; info->io.drawInfoBase = NVC0_CB_AUX_DRAW_INFO; if (prog->type == PIPE_SHADER_COMPUTE) { if (chipset >= NVISA_GK104_CHIPSET) { info->io.auxCBSlot = 7; info->io.texBindBase = NVC0_CB_AUX_TEX_INFO(0); info->prop.cp.gridInfoBase = NVC0_CB_AUX_GRID_INFO; info->io.uboInfoBase = NVC0_CB_AUX_UBO_INFO(0); } info->io.msInfoCBSlot = 0; info->io.msInfoBase = NVC0_CB_AUX_MS_INFO; info->io.bufInfoBase = NVC0_CB_AUX_BUF_INFO(0); info->io.suInfoBase = 0; /* TODO */ } else { if (chipset >= NVISA_GK104_CHIPSET) { info->io.texBindBase = NVC0_CB_AUX_TEX_INFO(0); } info->io.sampleInfoBase = NVC0_CB_AUX_SAMPLE_INFO; info->io.bufInfoBase = NVC0_CB_AUX_BUF_INFO(0); info->io.msInfoCBSlot = 15; info->io.msInfoBase = 0; /* TODO */ info->io.suInfoBase = 0; /* TODO */ } info->assignSlots = nvc0_program_assign_varying_slots; #ifdef DEBUG info->optLevel = debug_get_num_option("NV50_PROG_OPTIMIZE", 3); info->dbgFlags = debug_get_num_option("NV50_PROG_DEBUG", 0); #else info->optLevel = 3; #endif ret = nv50_ir_generate_code(info); if (ret) { NOUVEAU_ERR("shader translation failed: %i\n", ret); goto out; } if (prog->type != PIPE_SHADER_COMPUTE) FREE(info->bin.syms); prog->code = info->bin.code; prog->code_size = info->bin.codeSize; prog->immd_data = info->immd.buf; prog->immd_size = info->immd.bufSize; prog->relocs = info->bin.relocData; prog->interps = info->bin.interpData; prog->num_gprs = MAX2(4, (info->bin.maxGPR + 1)); prog->num_barriers = info->numBarriers; prog->vp.need_vertex_id = info->io.vertexId < PIPE_MAX_SHADER_INPUTS; prog->vp.need_draw_parameters = info->prop.vp.usesDrawParameters; if (info->io.edgeFlagOut < PIPE_MAX_ATTRIBS) info->out[info->io.edgeFlagOut].mask = 0; /* for headergen */ prog->vp.edgeflag = info->io.edgeFlagIn; switch (prog->type) { case PIPE_SHADER_VERTEX: ret = nvc0_vp_gen_header(prog, info); break; case PIPE_SHADER_TESS_CTRL: ret = nvc0_tcp_gen_header(prog, info); break; case PIPE_SHADER_TESS_EVAL: ret = nvc0_tep_gen_header(prog, info); break; case PIPE_SHADER_GEOMETRY: ret = nvc0_gp_gen_header(prog, info); break; case PIPE_SHADER_FRAGMENT: ret = nvc0_fp_gen_header(prog, info); break; case PIPE_SHADER_COMPUTE: prog->cp.syms = info->bin.syms; prog->cp.num_syms = info->bin.numSyms; break; default: ret = -1; NOUVEAU_ERR("unknown program type: %u\n", prog->type); break; } if (ret) goto out; if (info->bin.tlsSpace) { assert(info->bin.tlsSpace < (1 << 24)); prog->hdr[0] |= 1 << 26; prog->hdr[1] |= align(info->bin.tlsSpace, 0x10); /* l[] size */ prog->need_tls = true; } /* TODO: factor 2 only needed where joinat/precont is used, * and we only have to count non-uniform branches */ /* if ((info->maxCFDepth * 2) > 16) { prog->hdr[2] |= (((info->maxCFDepth * 2) + 47) / 48) * 0x200; prog->need_tls = true; } */ if (info->io.globalAccess) prog->hdr[0] |= 1 << 26; if (info->io.globalAccess & 0x2) prog->hdr[0] |= 1 << 16; if (info->io.fp64) prog->hdr[0] |= 1 << 27; if (prog->pipe.stream_output.num_outputs) prog->tfb = nvc0_program_create_tfb_state(info, &prog->pipe.stream_output); pipe_debug_message(debug, SHADER_INFO, "type: %d, local: %d, gpr: %d, inst: %d, bytes: %d", prog->type, info->bin.tlsSpace, prog->num_gprs, info->bin.instructions, info->bin.codeSize); out: FREE(info); return !ret; } bool nvc0_program_upload_code(struct nvc0_context *nvc0, struct nvc0_program *prog) { struct nvc0_screen *screen = nvc0->screen; const bool is_cp = prog->type == PIPE_SHADER_COMPUTE; int ret; uint32_t size = prog->code_size + (is_cp ? 0 : NVC0_SHADER_HEADER_SIZE); uint32_t lib_pos = screen->lib_code->start; uint32_t code_pos; /* c[] bindings need to be aligned to 0x100, but we could use relocations * to save space. */ if (prog->immd_size) { prog->immd_base = size; size = align(size, 0x40); size += prog->immd_size + 0xc0; /* add 0xc0 for align 0x40 -> 0x100 */ } /* On Fermi, SP_START_ID must be aligned to 0x40. * On Kepler, the first instruction must be aligned to 0x80 because * latency information is expected only at certain positions. */ if (screen->base.class_3d >= NVE4_3D_CLASS) size = size + (is_cp ? 0x40 : 0x70); size = align(size, 0x40); ret = nouveau_heap_alloc(screen->text_heap, size, prog, &prog->mem); if (ret) { struct nouveau_heap *heap = screen->text_heap; /* Note that the code library, which is allocated before anything else, * does not have a priv pointer. We can stop once we hit it. */ while (heap->next && heap->next->priv) { struct nvc0_program *evict = heap->next->priv; nouveau_heap_free(&evict->mem); } debug_printf("WARNING: out of code space, evicting all shaders.\n"); ret = nouveau_heap_alloc(heap, size, prog, &prog->mem); if (ret) { NOUVEAU_ERR("shader too large (0x%x) to fit in code space ?\n", size); return false; } IMMED_NVC0(nvc0->base.pushbuf, NVC0_3D(SERIALIZE), 0); } prog->code_base = prog->mem->start; prog->immd_base = align(prog->mem->start + prog->immd_base, 0x100); assert((prog->immd_size == 0) || (prog->immd_base + prog->immd_size <= prog->mem->start + prog->mem->size)); if (!is_cp) { if (screen->base.class_3d >= NVE4_3D_CLASS) { switch (prog->mem->start & 0xff) { case 0x40: prog->code_base += 0x70; break; case 0x80: prog->code_base += 0x30; break; case 0xc0: prog->code_base += 0x70; break; default: prog->code_base += 0x30; assert((prog->mem->start & 0xff) == 0x00); break; } } code_pos = prog->code_base + NVC0_SHADER_HEADER_SIZE; } else { if (screen->base.class_3d >= NVE4_3D_CLASS) { if (prog->mem->start & 0x40) prog->code_base += 0x40; assert((prog->code_base & 0x7f) == 0x00); } code_pos = prog->code_base; } if (prog->relocs) nv50_ir_relocate_code(prog->relocs, prog->code, code_pos, lib_pos, 0); if (prog->interps) { nv50_ir_change_interp(prog->interps, prog->code, prog->fp.force_persample_interp, prog->fp.flatshade); for (int i = 0; i < 2; i++) { unsigned mask = prog->fp.color_interp[i] >> 4; unsigned interp = prog->fp.color_interp[i] & 3; if (!mask) continue; prog->hdr[14] &= ~(0xff << (8 * i)); if (prog->fp.flatshade) interp = NVC0_INTERP_FLAT; for (int c = 0; c < 4; c++) if (mask & (1 << c)) prog->hdr[14] |= interp << (2 * (4 * i + c)); } } #ifdef DEBUG if (debug_get_bool_option("NV50_PROG_DEBUG", false)) nvc0_program_dump(prog); #endif if (!is_cp) nvc0->base.push_data(&nvc0->base, screen->text, prog->code_base, NV_VRAM_DOMAIN(&screen->base), NVC0_SHADER_HEADER_SIZE, prog->hdr); nvc0->base.push_data(&nvc0->base, screen->text, code_pos, NV_VRAM_DOMAIN(&screen->base), prog->code_size, prog->code); if (prog->immd_size) nvc0->base.push_data(&nvc0->base, screen->text, prog->immd_base, NV_VRAM_DOMAIN(&screen->base), prog->immd_size, prog->immd_data); BEGIN_NVC0(nvc0->base.pushbuf, NVC0_3D(MEM_BARRIER), 1); PUSH_DATA (nvc0->base.pushbuf, 0x1011); return true; } /* Upload code for builtin functions like integer division emulation. */ void nvc0_program_library_upload(struct nvc0_context *nvc0) { struct nvc0_screen *screen = nvc0->screen; int ret; uint32_t size; const uint32_t *code; if (screen->lib_code) return; nv50_ir_get_target_library(screen->base.device->chipset, &code, &size); if (!size) return; ret = nouveau_heap_alloc(screen->text_heap, align(size, 0x100), NULL, &screen->lib_code); if (ret) return; nvc0->base.push_data(&nvc0->base, screen->text, screen->lib_code->start, NV_VRAM_DOMAIN(&screen->base), size, code); /* no need for a memory barrier, will be emitted with first program */ } void nvc0_program_destroy(struct nvc0_context *nvc0, struct nvc0_program *prog) { const struct pipe_shader_state pipe = prog->pipe; const ubyte type = prog->type; if (prog->mem) nouveau_heap_free(&prog->mem); FREE(prog->code); /* may be 0 for hardcoded shaders */ FREE(prog->immd_data); FREE(prog->relocs); FREE(prog->interps); if (prog->type == PIPE_SHADER_COMPUTE && prog->cp.syms) FREE(prog->cp.syms); if (prog->tfb) { if (nvc0->state.tfb == prog->tfb) nvc0->state.tfb = NULL; FREE(prog->tfb); } memset(prog, 0, sizeof(*prog)); prog->pipe = pipe; prog->type = type; } uint32_t nvc0_program_symbol_offset(const struct nvc0_program *prog, uint32_t label) { const struct nv50_ir_prog_symbol *syms = (const struct nv50_ir_prog_symbol *)prog->cp.syms; unsigned base = 0; unsigned i; if (prog->type != PIPE_SHADER_COMPUTE) base = NVC0_SHADER_HEADER_SIZE; for (i = 0; i < prog->cp.num_syms; ++i) if (syms[i].label == label) return prog->code_base + base + syms[i].offset; return prog->code_base; /* no symbols or symbol not found */ } void nvc0_program_init_tcp_empty(struct nvc0_context *nvc0) { struct ureg_program *ureg; ureg = ureg_create(TGSI_PROCESSOR_TESS_CTRL); if (!ureg) return; ureg_property(ureg, TGSI_PROPERTY_TCS_VERTICES_OUT, 1); ureg_END(ureg); nvc0->tcp_empty = ureg_create_shader_and_destroy(ureg, &nvc0->base.pipe); }