/* * Copyright © 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include #include #include #include #include #include "anv_private.h" #include "genxml/gen_macros.h" #include "genxml/genX_pack.h" static inline int64_t clamp_int64(int64_t x, int64_t min, int64_t max) { if (x < min) return min; else if (x < max) return x; else return max; } #if GEN_GEN == 7 && !GEN_IS_HASWELL void gen7_cmd_buffer_emit_scissor(struct anv_cmd_buffer *cmd_buffer) { uint32_t count = cmd_buffer->state.dynamic.scissor.count; const VkRect2D *scissors = cmd_buffer->state.dynamic.scissor.scissors; struct anv_state scissor_state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, count * 8, 32); for (uint32_t i = 0; i < count; i++) { const VkRect2D *s = &scissors[i]; /* Since xmax and ymax are inclusive, we have to have xmax < xmin or * ymax < ymin for empty clips. In case clip x, y, width height are all * 0, the clamps below produce 0 for xmin, ymin, xmax, ymax, which isn't * what we want. Just special case empty clips and produce a canonical * empty clip. */ static const struct GEN7_SCISSOR_RECT empty_scissor = { .ScissorRectangleYMin = 1, .ScissorRectangleXMin = 1, .ScissorRectangleYMax = 0, .ScissorRectangleXMax = 0 }; const int max = 0xffff; struct GEN7_SCISSOR_RECT scissor = { /* Do this math using int64_t so overflow gets clamped correctly. */ .ScissorRectangleYMin = clamp_int64(s->offset.y, 0, max), .ScissorRectangleXMin = clamp_int64(s->offset.x, 0, max), .ScissorRectangleYMax = clamp_int64((uint64_t) s->offset.y + s->extent.height - 1, 0, max), .ScissorRectangleXMax = clamp_int64((uint64_t) s->offset.x + s->extent.width - 1, 0, max) }; if (s->extent.width <= 0 || s->extent.height <= 0) { GEN7_SCISSOR_RECT_pack(NULL, scissor_state.map + i * 8, &empty_scissor); } else { GEN7_SCISSOR_RECT_pack(NULL, scissor_state.map + i * 8, &scissor); } } anv_batch_emit(&cmd_buffer->batch, GEN7_3DSTATE_SCISSOR_STATE_POINTERS, ssp) { ssp.ScissorRectPointer = scissor_state.offset; } if (!cmd_buffer->device->info.has_llc) anv_state_clflush(scissor_state); } #endif static const uint32_t vk_to_gen_index_type[] = { [VK_INDEX_TYPE_UINT16] = INDEX_WORD, [VK_INDEX_TYPE_UINT32] = INDEX_DWORD, }; static const uint32_t restart_index_for_type[] = { [VK_INDEX_TYPE_UINT16] = UINT16_MAX, [VK_INDEX_TYPE_UINT32] = UINT32_MAX, }; void genX(CmdBindIndexBuffer)( VkCommandBuffer commandBuffer, VkBuffer _buffer, VkDeviceSize offset, VkIndexType indexType) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); ANV_FROM_HANDLE(anv_buffer, buffer, _buffer); cmd_buffer->state.dirty |= ANV_CMD_DIRTY_INDEX_BUFFER; if (GEN_IS_HASWELL) cmd_buffer->state.restart_index = restart_index_for_type[indexType]; cmd_buffer->state.gen7.index_buffer = buffer; cmd_buffer->state.gen7.index_type = vk_to_gen_index_type[indexType]; cmd_buffer->state.gen7.index_offset = offset; } static VkResult flush_compute_descriptor_set(struct anv_cmd_buffer *cmd_buffer) { struct anv_device *device = cmd_buffer->device; struct anv_pipeline *pipeline = cmd_buffer->state.compute_pipeline; struct anv_state surfaces = { 0, }, samplers = { 0, }; VkResult result; result = anv_cmd_buffer_emit_samplers(cmd_buffer, MESA_SHADER_COMPUTE, &samplers); if (result != VK_SUCCESS) return result; result = anv_cmd_buffer_emit_binding_table(cmd_buffer, MESA_SHADER_COMPUTE, &surfaces); if (result != VK_SUCCESS) return result; struct anv_state push_state = anv_cmd_buffer_cs_push_constants(cmd_buffer); const struct brw_cs_prog_data *cs_prog_data = get_cs_prog_data(pipeline); const struct brw_stage_prog_data *prog_data = &cs_prog_data->base; if (push_state.alloc_size) { anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_CURBE_LOAD), curbe) { curbe.CURBETotalDataLength = push_state.alloc_size; curbe.CURBEDataStartAddress = push_state.offset; } } const uint32_t slm_size = encode_slm_size(GEN_GEN, prog_data->total_shared); struct anv_state state = anv_state_pool_emit(&device->dynamic_state_pool, GENX(INTERFACE_DESCRIPTOR_DATA), 64, .KernelStartPointer = pipeline->cs_simd, .BindingTablePointer = surfaces.offset, .SamplerStatePointer = samplers.offset, .ConstantURBEntryReadLength = cs_prog_data->push.per_thread.regs, #if GEN_IS_HASWELL .CrossThreadConstantDataReadLength = cs_prog_data->push.cross_thread.regs, #else .ConstantURBEntryReadOffset = 0, #endif .BarrierEnable = cs_prog_data->uses_barrier, .SharedLocalMemorySize = slm_size, .NumberofThreadsinGPGPUThreadGroup = cs_prog_data->threads); const uint32_t size = GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t); anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), idl) { idl.InterfaceDescriptorTotalLength = size; idl.InterfaceDescriptorDataStartAddress = state.offset; } return VK_SUCCESS; } void genX(cmd_buffer_flush_compute_state)(struct anv_cmd_buffer *cmd_buffer) { struct anv_pipeline *pipeline = cmd_buffer->state.compute_pipeline; MAYBE_UNUSED VkResult result; assert(pipeline->active_stages == VK_SHADER_STAGE_COMPUTE_BIT); genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->urb.l3_config); genX(flush_pipeline_select_gpgpu)(cmd_buffer); if (cmd_buffer->state.compute_dirty & ANV_CMD_DIRTY_PIPELINE) anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch); if ((cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_COMPUTE_BIT) || (cmd_buffer->state.compute_dirty & ANV_CMD_DIRTY_PIPELINE)) { /* FIXME: figure out descriptors for gen7 */ result = flush_compute_descriptor_set(cmd_buffer); assert(result == VK_SUCCESS); cmd_buffer->state.descriptors_dirty &= ~VK_SHADER_STAGE_COMPUTE_BIT; } cmd_buffer->state.compute_dirty = 0; genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer); } void genX(cmd_buffer_flush_dynamic_state)(struct anv_cmd_buffer *cmd_buffer) { struct anv_pipeline *pipeline = cmd_buffer->state.pipeline; if (cmd_buffer->state.dirty & (ANV_CMD_DIRTY_PIPELINE | ANV_CMD_DIRTY_RENDER_TARGETS | ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH | ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS)) { const struct anv_image_view *iview = anv_cmd_buffer_get_depth_stencil_view(cmd_buffer); const struct anv_image *image = iview ? iview->image : NULL; const bool has_depth = image && (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT); const uint32_t depth_format = has_depth ? isl_surf_get_depth_format(&cmd_buffer->device->isl_dev, &image->depth_surface.isl) : D16_UNORM; uint32_t sf_dw[GENX(3DSTATE_SF_length)]; struct GENX(3DSTATE_SF) sf = { GENX(3DSTATE_SF_header), .DepthBufferSurfaceFormat = depth_format, .LineWidth = cmd_buffer->state.dynamic.line_width, .GlobalDepthOffsetConstant = cmd_buffer->state.dynamic.depth_bias.bias, .GlobalDepthOffsetScale = cmd_buffer->state.dynamic.depth_bias.slope, .GlobalDepthOffsetClamp = cmd_buffer->state.dynamic.depth_bias.clamp }; GENX(3DSTATE_SF_pack)(NULL, sf_dw, &sf); anv_batch_emit_merge(&cmd_buffer->batch, sf_dw, pipeline->gen7.sf); } if (cmd_buffer->state.dirty & (ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS | ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE)) { struct anv_dynamic_state *d = &cmd_buffer->state.dynamic; struct anv_state cc_state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, GENX(COLOR_CALC_STATE_length) * 4, 64); struct GENX(COLOR_CALC_STATE) cc = { .BlendConstantColorRed = cmd_buffer->state.dynamic.blend_constants[0], .BlendConstantColorGreen = cmd_buffer->state.dynamic.blend_constants[1], .BlendConstantColorBlue = cmd_buffer->state.dynamic.blend_constants[2], .BlendConstantColorAlpha = cmd_buffer->state.dynamic.blend_constants[3], .StencilReferenceValue = d->stencil_reference.front & 0xff, .BackfaceStencilReferenceValue = d->stencil_reference.back & 0xff, }; GENX(COLOR_CALC_STATE_pack)(NULL, cc_state.map, &cc); if (!cmd_buffer->device->info.has_llc) anv_state_clflush(cc_state); anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CC_STATE_POINTERS), ccp) { ccp.ColorCalcStatePointer = cc_state.offset; } } if (cmd_buffer->state.dirty & (ANV_CMD_DIRTY_PIPELINE | ANV_CMD_DIRTY_RENDER_TARGETS | ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK | ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK)) { uint32_t depth_stencil_dw[GENX(DEPTH_STENCIL_STATE_length)]; struct anv_dynamic_state *d = &cmd_buffer->state.dynamic; struct GENX(DEPTH_STENCIL_STATE) depth_stencil = { .StencilTestMask = d->stencil_compare_mask.front & 0xff, .StencilWriteMask = d->stencil_write_mask.front & 0xff, .BackfaceStencilTestMask = d->stencil_compare_mask.back & 0xff, .BackfaceStencilWriteMask = d->stencil_write_mask.back & 0xff, }; GENX(DEPTH_STENCIL_STATE_pack)(NULL, depth_stencil_dw, &depth_stencil); struct anv_state ds_state = anv_cmd_buffer_merge_dynamic(cmd_buffer, depth_stencil_dw, pipeline->gen7.depth_stencil_state, GENX(DEPTH_STENCIL_STATE_length), 64); anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_DEPTH_STENCIL_STATE_POINTERS), dsp) { dsp.PointertoDEPTH_STENCIL_STATE = ds_state.offset; } } if (cmd_buffer->state.gen7.index_buffer && cmd_buffer->state.dirty & (ANV_CMD_DIRTY_PIPELINE | ANV_CMD_DIRTY_INDEX_BUFFER)) { struct anv_buffer *buffer = cmd_buffer->state.gen7.index_buffer; uint32_t offset = cmd_buffer->state.gen7.index_offset; #if GEN_IS_HASWELL anv_batch_emit(&cmd_buffer->batch, GEN75_3DSTATE_VF, vf) { vf.IndexedDrawCutIndexEnable = pipeline->primitive_restart; vf.CutIndex = cmd_buffer->state.restart_index; } #endif anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_INDEX_BUFFER), ib) { #if !GEN_IS_HASWELL ib.CutIndexEnable = pipeline->primitive_restart; #endif ib.IndexFormat = cmd_buffer->state.gen7.index_type; ib.MemoryObjectControlState = GENX(MOCS); ib.BufferStartingAddress = (struct anv_address) { buffer->bo, buffer->offset + offset }; ib.BufferEndingAddress = (struct anv_address) { buffer->bo, buffer->offset + buffer->size }; } } cmd_buffer->state.dirty = 0; } void genX(CmdSetEvent)( VkCommandBuffer commandBuffer, VkEvent event, VkPipelineStageFlags stageMask) { stub(); } void genX(CmdResetEvent)( VkCommandBuffer commandBuffer, VkEvent event, VkPipelineStageFlags stageMask) { stub(); } void genX(CmdWaitEvents)( VkCommandBuffer commandBuffer, uint32_t eventCount, const VkEvent* pEvents, VkPipelineStageFlags srcStageMask, VkPipelineStageFlags destStageMask, uint32_t memoryBarrierCount, const VkMemoryBarrier* pMemoryBarriers, uint32_t bufferMemoryBarrierCount, const VkBufferMemoryBarrier* pBufferMemoryBarriers, uint32_t imageMemoryBarrierCount, const VkImageMemoryBarrier* pImageMemoryBarriers) { stub(); genX(CmdPipelineBarrier)(commandBuffer, srcStageMask, destStageMask, false, /* byRegion */ memoryBarrierCount, pMemoryBarriers, bufferMemoryBarrierCount, pBufferMemoryBarriers, imageMemoryBarrierCount, pImageMemoryBarriers); }