/************************************************************************** * * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ #include #include "main/glheader.h" #include "main/context.h" #include "main/condrender.h" #include "main/samplerobj.h" #include "main/state.h" #include "main/enums.h" #include "tnl/tnl.h" #include "vbo/vbo_context.h" #include "swrast/swrast.h" #include "swrast_setup/swrast_setup.h" #include "brw_draw.h" #include "brw_defines.h" #include "brw_context.h" #include "brw_state.h" #include "intel_batchbuffer.h" #include "intel_fbo.h" #include "intel_mipmap_tree.h" #include "intel_regions.h" #define FILE_DEBUG_FLAG DEBUG_PRIMS static GLuint prim_to_hw_prim[GL_POLYGON+1] = { _3DPRIM_POINTLIST, _3DPRIM_LINELIST, _3DPRIM_LINELOOP, _3DPRIM_LINESTRIP, _3DPRIM_TRILIST, _3DPRIM_TRISTRIP, _3DPRIM_TRIFAN, _3DPRIM_QUADLIST, _3DPRIM_QUADSTRIP, _3DPRIM_POLYGON }; static const GLenum reduced_prim[GL_POLYGON+1] = { GL_POINTS, GL_LINES, GL_LINES, GL_LINES, GL_TRIANGLES, GL_TRIANGLES, GL_TRIANGLES, GL_TRIANGLES, GL_TRIANGLES, GL_TRIANGLES }; /* When the primitive changes, set a state bit and re-validate. Not * the nicest and would rather deal with this by having all the * programs be immune to the active primitive (ie. cope with all * possibilities). That may not be realistic however. */ static void brw_set_prim(struct brw_context *brw, const struct _mesa_prim *prim) { struct gl_context *ctx = &brw->intel.ctx; uint32_t hw_prim = prim_to_hw_prim[prim->mode]; DBG("PRIM: %s\n", _mesa_lookup_enum_by_nr(prim->mode)); /* Slight optimization to avoid the GS program when not needed: */ if (prim->mode == GL_QUAD_STRIP && ctx->Light.ShadeModel != GL_FLAT && ctx->Polygon.FrontMode == GL_FILL && ctx->Polygon.BackMode == GL_FILL) hw_prim = _3DPRIM_TRISTRIP; if (prim->mode == GL_QUADS && prim->count == 4 && ctx->Light.ShadeModel != GL_FLAT && ctx->Polygon.FrontMode == GL_FILL && ctx->Polygon.BackMode == GL_FILL) { hw_prim = _3DPRIM_TRIFAN; } if (hw_prim != brw->primitive) { brw->primitive = hw_prim; brw->state.dirty.brw |= BRW_NEW_PRIMITIVE; if (reduced_prim[prim->mode] != brw->intel.reduced_primitive) { brw->intel.reduced_primitive = reduced_prim[prim->mode]; brw->state.dirty.brw |= BRW_NEW_REDUCED_PRIMITIVE; } } } static void gen6_set_prim(struct brw_context *brw, const struct _mesa_prim *prim) { uint32_t hw_prim; DBG("PRIM: %s\n", _mesa_lookup_enum_by_nr(prim->mode)); if (brw->hiz.op) { assert(prim->mode == GL_TRIANGLES); hw_prim = _3DPRIM_RECTLIST; } else { hw_prim = prim_to_hw_prim[prim->mode]; } if (hw_prim != brw->primitive) { brw->primitive = hw_prim; brw->state.dirty.brw |= BRW_NEW_PRIMITIVE; } } static GLuint trim(GLenum prim, GLuint length) { if (prim == GL_QUAD_STRIP) return length > 3 ? (length - length % 2) : 0; else if (prim == GL_QUADS) return length - length % 4; else return length; } static void brw_emit_prim(struct brw_context *brw, const struct _mesa_prim *prim, uint32_t hw_prim) { struct intel_context *intel = &brw->intel; int verts_per_instance; int vertex_access_type; int start_vertex_location; int base_vertex_location; DBG("PRIM: %s %d %d\n", _mesa_lookup_enum_by_nr(prim->mode), prim->start, prim->count); start_vertex_location = prim->start; base_vertex_location = prim->basevertex; if (prim->indexed) { vertex_access_type = GEN4_3DPRIM_VERTEXBUFFER_ACCESS_RANDOM; start_vertex_location += brw->ib.start_vertex_offset; base_vertex_location += brw->vb.start_vertex_bias; } else { vertex_access_type = GEN4_3DPRIM_VERTEXBUFFER_ACCESS_SEQUENTIAL; start_vertex_location += brw->vb.start_vertex_bias; } verts_per_instance = trim(prim->mode, prim->count); /* If nothing to emit, just return. */ if (verts_per_instance == 0) return; /* If we're set to always flush, do it before and after the primitive emit. * We want to catch both missed flushes that hurt instruction/state cache * and missed flushes of the render cache as it heads to other parts of * the besides the draw code. */ if (intel->always_flush_cache) { intel_batchbuffer_emit_mi_flush(intel); } BEGIN_BATCH(6); OUT_BATCH(CMD_3D_PRIM << 16 | (6 - 2) | hw_prim << GEN4_3DPRIM_TOPOLOGY_TYPE_SHIFT | vertex_access_type); OUT_BATCH(verts_per_instance); OUT_BATCH(start_vertex_location); OUT_BATCH(1); // instance count OUT_BATCH(0); // start instance location OUT_BATCH(base_vertex_location); ADVANCE_BATCH(); intel->batch.need_workaround_flush = true; if (intel->always_flush_cache) { intel_batchbuffer_emit_mi_flush(intel); } } static void gen7_emit_prim(struct brw_context *brw, const struct _mesa_prim *prim, uint32_t hw_prim) { struct intel_context *intel = &brw->intel; int verts_per_instance; int vertex_access_type; int start_vertex_location; int base_vertex_location; DBG("PRIM: %s %d %d\n", _mesa_lookup_enum_by_nr(prim->mode), prim->start, prim->count); start_vertex_location = prim->start; base_vertex_location = prim->basevertex; if (prim->indexed) { vertex_access_type = GEN7_3DPRIM_VERTEXBUFFER_ACCESS_RANDOM; start_vertex_location += brw->ib.start_vertex_offset; base_vertex_location += brw->vb.start_vertex_bias; } else { vertex_access_type = GEN7_3DPRIM_VERTEXBUFFER_ACCESS_SEQUENTIAL; start_vertex_location += brw->vb.start_vertex_bias; } verts_per_instance = trim(prim->mode, prim->count); /* If nothing to emit, just return. */ if (verts_per_instance == 0) return; /* If we're set to always flush, do it before and after the primitive emit. * We want to catch both missed flushes that hurt instruction/state cache * and missed flushes of the render cache as it heads to other parts of * the besides the draw code. */ if (intel->always_flush_cache) { intel_batchbuffer_emit_mi_flush(intel); } BEGIN_BATCH(7); OUT_BATCH(CMD_3D_PRIM << 16 | (7 - 2)); OUT_BATCH(hw_prim | vertex_access_type); OUT_BATCH(verts_per_instance); OUT_BATCH(start_vertex_location); OUT_BATCH(1); // instance count OUT_BATCH(0); // start instance location OUT_BATCH(base_vertex_location); ADVANCE_BATCH(); if (intel->always_flush_cache) { intel_batchbuffer_emit_mi_flush(intel); } } static void brw_merge_inputs( struct brw_context *brw, const struct gl_client_array *arrays[]) { struct brw_vertex_info old = brw->vb.info; GLuint i; for (i = 0; i < brw->vb.nr_buffers; i++) { drm_intel_bo_unreference(brw->vb.buffers[i].bo); brw->vb.buffers[i].bo = NULL; } brw->vb.nr_buffers = 0; memset(&brw->vb.info, 0, sizeof(brw->vb.info)); for (i = 0; i < VERT_ATTRIB_MAX; i++) { brw->vb.inputs[i].buffer = -1; brw->vb.inputs[i].glarray = arrays[i]; brw->vb.inputs[i].attrib = (gl_vert_attrib) i; if (arrays[i]->StrideB != 0) brw->vb.info.sizes[i/16] |= (brw->vb.inputs[i].glarray->Size - 1) << ((i%16) * 2); } /* Raise statechanges if input sizes have changed. */ if (memcmp(brw->vb.info.sizes, old.sizes, sizeof(old.sizes)) != 0) brw->state.dirty.brw |= BRW_NEW_INPUT_DIMENSIONS; } /* * \brief Resolve buffers before drawing. * * Resolve the depth buffer's HiZ buffer and resolve the depth buffer of each * enabled depth texture. * * (In the future, this will also perform MSAA resolves). */ static void brw_predraw_resolve_buffers(struct brw_context *brw) { struct gl_context *ctx = &brw->intel.ctx; struct intel_context *intel = &brw->intel; struct intel_renderbuffer *depth_irb; struct intel_texture_object *tex_obj; bool did_resolve = false; /* Avoid recursive HiZ op. */ if (brw->hiz.op) { return; } /* Resolve the depth buffer's HiZ buffer. */ depth_irb = intel_get_renderbuffer(ctx->DrawBuffer, BUFFER_DEPTH); if (depth_irb && depth_irb->mt) { did_resolve |= intel_renderbuffer_resolve_hiz(intel, depth_irb); } /* Resolve depth buffer of each enabled depth texture. */ for (int i = 0; i < BRW_MAX_TEX_UNIT; i++) { if (!ctx->Texture.Unit[i]._ReallyEnabled) continue; tex_obj = intel_texture_object(ctx->Texture.Unit[i]._Current); if (!tex_obj || !tex_obj->mt) continue; did_resolve |= intel_miptree_all_slices_resolve_depth(intel, tex_obj->mt); } if (did_resolve) { /* Call vbo_bind_array() to synchronize the vbo module's vertex * attributes to the gl_context's. * * Details * ------- * The vbo module tracks vertex attributes separately from the * gl_context. Specifically, the vbo module maintins vertex attributes * in vbo_exec_context::array::inputs, which is synchronized with * gl_context::Array::ArrayObj::VertexAttrib by vbo_bind_array(). * vbo_draw_arrays() calls vbo_bind_array() to perform the * synchronization before calling the real draw call, * vbo_context::draw_arrays. * * At this point (after performing a resolve meta-op but before calling * vbo_bind_array), the gl_context's vertex attributes have been * restored to their original state (that is, their state before the * meta-op began), but the vbo module's vertex attribute are those used * in the last meta-op. Therefore we must manually synchronize the two with * vbo_bind_array() before continuing with the original draw command. */ _mesa_update_state(ctx); vbo_bind_arrays(ctx); _mesa_update_state(ctx); } } /** * \brief Call this after drawing to mark which buffers need resolving * * If the depth buffer was written to and if it has an accompanying HiZ * buffer, then mark that it needs a depth resolve. * * (In the future, this will also mark needed MSAA resolves). */ static void brw_postdraw_set_buffers_need_resolve(struct brw_context *brw) { struct gl_context *ctx = &brw->intel.ctx; struct gl_framebuffer *fb = ctx->DrawBuffer; struct intel_renderbuffer *depth_irb = intel_get_renderbuffer(fb, BUFFER_DEPTH); if (depth_irb && ctx->Depth.Mask && !brw->hiz.op) { intel_renderbuffer_set_needs_depth_resolve(depth_irb); } } /* May fail if out of video memory for texture or vbo upload, or on * fallback conditions. */ static bool brw_try_draw_prims( struct gl_context *ctx, const struct gl_client_array *arrays[], const struct _mesa_prim *prim, GLuint nr_prims, const struct _mesa_index_buffer *ib, GLuint min_index, GLuint max_index ) { struct intel_context *intel = intel_context(ctx); struct brw_context *brw = brw_context(ctx); bool retval = true; GLuint i; bool fail_next = false; if (ctx->NewState) _mesa_update_state( ctx ); /* We have to validate the textures *before* checking for fallbacks; * otherwise, the software fallback won't be able to rely on the * texture state, the firstLevel and lastLevel fields won't be * set in the intel texture object (they'll both be 0), and the * software fallback will segfault if it attempts to access any * texture level other than level 0. */ brw_validate_textures( brw ); /* Resolves must occur after updating state and finalizing textures but * before setting up any hardware state for this draw call. */ brw_predraw_resolve_buffers(brw); /* Bind all inputs, derive varying and size information: */ brw_merge_inputs( brw, arrays ); brw->ib.ib = ib; brw->state.dirty.brw |= BRW_NEW_INDICES; brw->vb.min_index = min_index; brw->vb.max_index = max_index; brw->state.dirty.brw |= BRW_NEW_VERTICES; /* Have to validate state quite late. Will rebuild tnl_program, * which depends on varying information. * * Note this is where brw->vs->prog_data.inputs_read is calculated, * so can't access it earlier. */ intel_prepare_render(intel); for (i = 0; i < nr_prims; i++) { int estimated_max_prim_size; estimated_max_prim_size = 512; /* batchbuffer commands */ estimated_max_prim_size += (BRW_MAX_TEX_UNIT * (sizeof(struct brw_sampler_state) + sizeof(struct gen5_sampler_default_color))); estimated_max_prim_size += 1024; /* gen6 VS push constants */ estimated_max_prim_size += 1024; /* gen6 WM push constants */ estimated_max_prim_size += 512; /* misc. pad */ /* Flush the batch if it's approaching full, so that we don't wrap while * we've got validated state that needs to be in the same batch as the * primitives. */ intel_batchbuffer_require_space(intel, estimated_max_prim_size, false); intel_batchbuffer_save_state(intel); if (intel->gen < 6) brw_set_prim(brw, &prim[i]); else gen6_set_prim(brw, &prim[i]); retry: /* Note that before the loop, brw->state.dirty.brw was set to != 0, and * that the state updated in the loop outside of this block is that in * *_set_prim or intel_batchbuffer_flush(), which only impacts * brw->state.dirty.brw. */ if (brw->state.dirty.brw) { intel->no_batch_wrap = true; brw_upload_state(brw); if (unlikely(brw->intel.Fallback)) { intel->no_batch_wrap = false; retval = false; goto out; } } if (intel->gen >= 7) gen7_emit_prim(brw, &prim[i], brw->primitive); else brw_emit_prim(brw, &prim[i], brw->primitive); intel->no_batch_wrap = false; if (dri_bufmgr_check_aperture_space(&intel->batch.bo, 1)) { if (!fail_next) { intel_batchbuffer_reset_to_saved(intel); intel_batchbuffer_flush(intel); fail_next = true; goto retry; } else { if (intel_batchbuffer_flush(intel) == -ENOSPC) { static bool warned = false; if (!warned) { fprintf(stderr, "i965: Single primitive emit exceeded" "available aperture space\n"); warned = true; } retval = false; } } } } if (intel->always_flush_batch) intel_batchbuffer_flush(intel); out: brw_state_cache_check_size(brw); brw_postdraw_set_buffers_need_resolve(brw); return retval; } void brw_draw_prims( struct gl_context *ctx, const struct gl_client_array *arrays[], const struct _mesa_prim *prim, GLuint nr_prims, const struct _mesa_index_buffer *ib, GLboolean index_bounds_valid, GLuint min_index, GLuint max_index, struct gl_transform_feedback_object *tfb_vertcount ) { bool retval; if (!_mesa_check_conditional_render(ctx)) return; if (!vbo_all_varyings_in_vbos(arrays)) { if (!index_bounds_valid) vbo_get_minmax_index(ctx, prim, ib, &min_index, &max_index); /* Decide if we want to rebase. If so we end up recursing once * only into this function. */ if (min_index != 0 && !vbo_any_varyings_in_vbos(arrays)) { vbo_rebase_prims(ctx, arrays, prim, nr_prims, ib, min_index, max_index, brw_draw_prims ); return; } } /* Make a first attempt at drawing: */ retval = brw_try_draw_prims(ctx, arrays, prim, nr_prims, ib, min_index, max_index); /* Otherwise, we really are out of memory. Pass the drawing * command to the software tnl module and which will in turn call * swrast to do the drawing. */ if (!retval) { _swsetup_Wakeup(ctx); _tnl_wakeup(ctx); _tnl_draw_prims(ctx, arrays, prim, nr_prims, ib, min_index, max_index); } } void brw_draw_init( struct brw_context *brw ) { struct gl_context *ctx = &brw->intel.ctx; struct vbo_context *vbo = vbo_context(ctx); int i; /* Register our drawing function: */ vbo->draw_prims = brw_draw_prims; for (i = 0; i < VERT_ATTRIB_MAX; i++) brw->vb.inputs[i].buffer = -1; brw->vb.nr_buffers = 0; brw->vb.nr_enabled = 0; } void brw_draw_destroy( struct brw_context *brw ) { int i; for (i = 0; i < brw->vb.nr_buffers; i++) { drm_intel_bo_unreference(brw->vb.buffers[i].bo); brw->vb.buffers[i].bo = NULL; } brw->vb.nr_buffers = 0; for (i = 0; i < brw->vb.nr_enabled; i++) { brw->vb.enabled[i]->buffer = -1; } brw->vb.nr_enabled = 0; drm_intel_bo_unreference(brw->ib.bo); brw->ib.bo = NULL; }