/* * Copyright © 2010 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Eric Anholt * */ #include "brw_fs.h" #include "glsl/glsl_types.h" #include "glsl/ir_optimization.h" #include "glsl/ir_print_visitor.h" static void assign_reg(int *reg_hw_locations, fs_reg *reg, int reg_width) { if (reg->file == GRF) { assert(reg->reg_offset >= 0); reg->reg = reg_hw_locations[reg->reg] + reg->reg_offset * reg_width; reg->reg_offset = 0; } } void fs_visitor::assign_regs_trivial() { int hw_reg_mapping[this->virtual_grf_next + 1]; int i; int reg_width = c->dispatch_width / 8; /* Note that compressed instructions require alignment to 2 registers. */ hw_reg_mapping[0] = ALIGN(this->first_non_payload_grf, reg_width); for (i = 1; i <= this->virtual_grf_next; i++) { hw_reg_mapping[i] = (hw_reg_mapping[i - 1] + this->virtual_grf_sizes[i - 1] * reg_width); } this->grf_used = hw_reg_mapping[this->virtual_grf_next]; foreach_list(node, &this->instructions) { fs_inst *inst = (fs_inst *)node; assign_reg(hw_reg_mapping, &inst->dst, reg_width); assign_reg(hw_reg_mapping, &inst->src[0], reg_width); assign_reg(hw_reg_mapping, &inst->src[1], reg_width); } if (this->grf_used >= BRW_MAX_GRF) { fail("Ran out of regs on trivial allocator (%d/%d)\n", this->grf_used, BRW_MAX_GRF); } } static void brw_alloc_reg_set_for_classes(struct brw_context *brw, int *class_sizes, int class_count, int reg_width, int base_reg_count) { struct intel_context *intel = &brw->intel; /* Compute the total number of registers across all classes. */ int ra_reg_count = 0; for (int i = 0; i < class_count; i++) { ra_reg_count += base_reg_count - (class_sizes[i] - 1); } ralloc_free(brw->wm.ra_reg_to_grf); brw->wm.ra_reg_to_grf = ralloc_array(brw, uint8_t, ra_reg_count); ralloc_free(brw->wm.regs); brw->wm.regs = ra_alloc_reg_set(ra_reg_count); ralloc_free(brw->wm.classes); brw->wm.classes = ralloc_array(brw, int, class_count + 1); brw->wm.aligned_pairs_class = -1; /* Now, add the registers to their classes, and add the conflicts * between them and the base GRF registers (and also each other). */ int reg = 0; int pairs_base_reg = 0; int pairs_reg_count = 0; for (int i = 0; i < class_count; i++) { int class_reg_count = base_reg_count - (class_sizes[i] - 1); brw->wm.classes[i] = ra_alloc_reg_class(brw->wm.regs); /* Save this off for the aligned pair class at the end. */ if (class_sizes[i] == 2) { pairs_base_reg = reg; pairs_reg_count = class_reg_count; } for (int j = 0; j < class_reg_count; j++) { ra_class_add_reg(brw->wm.regs, brw->wm.classes[i], reg); brw->wm.ra_reg_to_grf[reg] = j; for (int base_reg = j; base_reg < j + class_sizes[i]; base_reg++) { ra_add_transitive_reg_conflict(brw->wm.regs, base_reg, reg); } reg++; } } assert(reg == ra_reg_count); /* Add a special class for aligned pairs, which we'll put delta_x/y * in on gen5 so that we can do PLN. */ if (brw->has_pln && reg_width == 1 && intel->gen < 6) { brw->wm.aligned_pairs_class = ra_alloc_reg_class(brw->wm.regs); for (int i = 0; i < pairs_reg_count; i++) { if ((brw->wm.ra_reg_to_grf[pairs_base_reg + i] & 1) == 0) { ra_class_add_reg(brw->wm.regs, brw->wm.aligned_pairs_class, pairs_base_reg + i); } } class_count++; } ra_set_finalize(brw->wm.regs); } bool fs_visitor::assign_regs() { /* Most of this allocation was written for a reg_width of 1 * (dispatch_width == 8). In extending to 16-wide, the code was * left in place and it was converted to have the hardware * registers it's allocating be contiguous physical pairs of regs * for reg_width == 2. */ int reg_width = c->dispatch_width / 8; int hw_reg_mapping[this->virtual_grf_next]; int first_assigned_grf = ALIGN(this->first_non_payload_grf, reg_width); int base_reg_count = (BRW_MAX_GRF - first_assigned_grf) / reg_width; int class_sizes[base_reg_count]; int class_count = 0; calculate_live_intervals(); /* Set up the register classes. * * The base registers store a scalar value. For texture samples, * we get virtual GRFs composed of 4 contiguous hw register. For * structures and arrays, we store them as contiguous larger things * than that, though we should be able to do better most of the * time. */ class_sizes[class_count++] = 1; if (brw->has_pln && intel->gen < 6) { /* Always set up the (unaligned) pairs for gen5, so we can find * them for making the aligned pair class. */ class_sizes[class_count++] = 2; } for (int r = 0; r < this->virtual_grf_next; r++) { int i; for (i = 0; i < class_count; i++) { if (class_sizes[i] == this->virtual_grf_sizes[r]) break; } if (i == class_count) { if (this->virtual_grf_sizes[r] >= base_reg_count) { fail("Object too large to register allocate.\n"); } class_sizes[class_count++] = this->virtual_grf_sizes[r]; } } brw_alloc_reg_set_for_classes(brw, class_sizes, class_count, reg_width, base_reg_count); struct ra_graph *g = ra_alloc_interference_graph(brw->wm.regs, this->virtual_grf_next); for (int i = 0; i < this->virtual_grf_next; i++) { for (int c = 0; c < class_count; c++) { if (class_sizes[c] == this->virtual_grf_sizes[i]) { /* Special case: on pre-GEN6 hardware that supports PLN, the * second operand of a PLN instruction needs to be an * even-numbered register, so we have a special register class * wm_aligned_pairs_class to handle this case. pre-GEN6 always * uses this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] as the * second operand of a PLN instruction (since it doesn't support * any other interpolation modes). So all we need to do is find * that register and set it to the appropriate class. */ if (brw->wm.aligned_pairs_class >= 0 && this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC].reg == i) { ra_set_node_class(g, i, brw->wm.aligned_pairs_class); } else { ra_set_node_class(g, i, brw->wm.classes[c]); } break; } } for (int j = 0; j < i; j++) { if (virtual_grf_interferes(i, j)) { ra_add_node_interference(g, i, j); } } } if (!ra_allocate_no_spills(g)) { /* Failed to allocate registers. Spill a reg, and the caller will * loop back into here to try again. */ int reg = choose_spill_reg(g); if (reg == -1) { fail("no register to spill\n"); } else if (intel->gen >= 7) { fail("no spilling support on gen7 yet\n"); } else if (c->dispatch_width == 16) { fail("no spilling support on 16-wide yet\n"); } else { spill_reg(reg); } ralloc_free(g); return false; } /* Get the chosen virtual registers for each node, and map virtual * regs in the register classes back down to real hardware reg * numbers. */ this->grf_used = first_assigned_grf; for (int i = 0; i < this->virtual_grf_next; i++) { int reg = ra_get_node_reg(g, i); hw_reg_mapping[i] = (first_assigned_grf + brw->wm.ra_reg_to_grf[reg] * reg_width); this->grf_used = MAX2(this->grf_used, hw_reg_mapping[i] + this->virtual_grf_sizes[i] * reg_width); } foreach_list(node, &this->instructions) { fs_inst *inst = (fs_inst *)node; assign_reg(hw_reg_mapping, &inst->dst, reg_width); assign_reg(hw_reg_mapping, &inst->src[0], reg_width); assign_reg(hw_reg_mapping, &inst->src[1], reg_width); } ralloc_free(g); return true; } void fs_visitor::emit_unspill(fs_inst *inst, fs_reg dst, uint32_t spill_offset) { int size = virtual_grf_sizes[dst.reg]; dst.reg_offset = 0; for (int chan = 0; chan < size; chan++) { fs_inst *unspill_inst = new(mem_ctx) fs_inst(FS_OPCODE_UNSPILL, dst); dst.reg_offset++; unspill_inst->offset = spill_offset + chan * REG_SIZE; unspill_inst->ir = inst->ir; unspill_inst->annotation = inst->annotation; /* Choose a MRF that won't conflict with an MRF that's live across the * spill. Nothing else will make it up to MRF 14/15. */ unspill_inst->base_mrf = 14; unspill_inst->mlen = 1; /* header contains offset */ inst->insert_before(unspill_inst); } } int fs_visitor::choose_spill_reg(struct ra_graph *g) { float loop_scale = 1.0; float spill_costs[this->virtual_grf_next]; bool no_spill[this->virtual_grf_next]; for (int i = 0; i < this->virtual_grf_next; i++) { spill_costs[i] = 0.0; no_spill[i] = false; } /* Calculate costs for spilling nodes. Call it a cost of 1 per * spill/unspill we'll have to do, and guess that the insides of * loops run 10 times. */ foreach_list(node, &this->instructions) { fs_inst *inst = (fs_inst *)node; for (unsigned int i = 0; i < 3; i++) { if (inst->src[i].file == GRF) { int size = virtual_grf_sizes[inst->src[i].reg]; spill_costs[inst->src[i].reg] += size * loop_scale; } } if (inst->dst.file == GRF) { int size = virtual_grf_sizes[inst->dst.reg]; spill_costs[inst->dst.reg] += size * loop_scale; } switch (inst->opcode) { case BRW_OPCODE_DO: loop_scale *= 10; break; case BRW_OPCODE_WHILE: loop_scale /= 10; break; case FS_OPCODE_SPILL: if (inst->src[0].file == GRF) no_spill[inst->src[0].reg] = true; break; case FS_OPCODE_UNSPILL: if (inst->dst.file == GRF) no_spill[inst->dst.reg] = true; break; default: break; } } for (int i = 0; i < this->virtual_grf_next; i++) { if (!no_spill[i]) ra_set_node_spill_cost(g, i, spill_costs[i]); } return ra_get_best_spill_node(g); } void fs_visitor::spill_reg(int spill_reg) { int size = virtual_grf_sizes[spill_reg]; unsigned int spill_offset = c->last_scratch; assert(ALIGN(spill_offset, 16) == spill_offset); /* oword read/write req. */ c->last_scratch += size * REG_SIZE; /* Generate spill/unspill instructions for the objects being * spilled. Right now, we spill or unspill the whole thing to a * virtual grf of the same size. For most instructions, though, we * could just spill/unspill the GRF being accessed. */ foreach_list(node, &this->instructions) { fs_inst *inst = (fs_inst *)node; for (unsigned int i = 0; i < 3; i++) { if (inst->src[i].file == GRF && inst->src[i].reg == spill_reg) { inst->src[i].reg = virtual_grf_alloc(size); emit_unspill(inst, inst->src[i], spill_offset); } } if (inst->dst.file == GRF && inst->dst.reg == spill_reg) { inst->dst.reg = virtual_grf_alloc(size); /* Since we spill/unspill the whole thing even if we access * just a component, we may need to unspill before the * instruction we're spilling for. */ if (size != 1 || inst->predicated) { emit_unspill(inst, inst->dst, spill_offset); } fs_reg spill_src = inst->dst; spill_src.reg_offset = 0; spill_src.abs = false; spill_src.negate = false; spill_src.smear = -1; for (int chan = 0; chan < size; chan++) { fs_inst *spill_inst = new(mem_ctx) fs_inst(FS_OPCODE_SPILL, reg_null_f, spill_src); spill_src.reg_offset++; spill_inst->offset = spill_offset + chan * REG_SIZE; spill_inst->ir = inst->ir; spill_inst->annotation = inst->annotation; spill_inst->base_mrf = 14; spill_inst->mlen = 2; /* header, value */ inst->insert_after(spill_inst); } } } this->live_intervals_valid = false; }