/* * Copyright (c) 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "brw_context.h" #include "brw_defines.h" #include "brw_state.h" #include "intel_batchbuffer.h" /** * Chunk of L3 cache reserved for some specific purpose. */ enum brw_l3_partition { /** Shared local memory. */ L3P_SLM = 0, /** Unified return buffer. */ L3P_URB, /** Union of DC and RO. */ L3P_ALL, /** Data cluster RW partition. */ L3P_DC, /** Union of IS, C and T. */ L3P_RO, /** Instruction and state cache. */ L3P_IS, /** Constant cache. */ L3P_C, /** Texture cache. */ L3P_T, /** Number of supported L3 partitions. */ NUM_L3P }; /** * L3 configuration represented as the number of ways allocated for each * partition. \sa get_l3_way_size(). */ struct brw_l3_config { unsigned n[NUM_L3P]; }; /** * IVB/HSW validated L3 configurations. The first entry will be used as * default by gen7_restore_default_l3_config(), otherwise the ordering is * unimportant. */ static const struct brw_l3_config ivb_l3_configs[] = { /* SLM URB ALL DC RO IS C T */ {{ 0, 32, 0, 0, 32, 0, 0, 0 }}, {{ 0, 32, 0, 16, 16, 0, 0, 0 }}, {{ 0, 32, 0, 4, 0, 8, 4, 16 }}, {{ 0, 28, 0, 8, 0, 8, 4, 16 }}, {{ 0, 28, 0, 16, 0, 8, 4, 8 }}, {{ 0, 28, 0, 8, 0, 16, 4, 8 }}, {{ 0, 28, 0, 0, 0, 16, 4, 16 }}, {{ 0, 32, 0, 0, 0, 16, 0, 16 }}, {{ 0, 28, 0, 4, 32, 0, 0, 0 }}, {{ 16, 16, 0, 16, 16, 0, 0, 0 }}, {{ 16, 16, 0, 8, 0, 8, 8, 8 }}, {{ 16, 16, 0, 4, 0, 8, 4, 16 }}, {{ 16, 16, 0, 4, 0, 16, 4, 8 }}, {{ 16, 16, 0, 0, 32, 0, 0, 0 }}, {{ 0 }} }; /** * VLV validated L3 configurations. \sa ivb_l3_configs. */ static const struct brw_l3_config vlv_l3_configs[] = { /* SLM URB ALL DC RO IS C T */ {{ 0, 64, 0, 0, 32, 0, 0, 0 }}, {{ 0, 80, 0, 0, 16, 0, 0, 0 }}, {{ 0, 80, 0, 8, 8, 0, 0, 0 }}, {{ 0, 64, 0, 16, 16, 0, 0, 0 }}, {{ 0, 60, 0, 4, 32, 0, 0, 0 }}, {{ 32, 32, 0, 16, 16, 0, 0, 0 }}, {{ 32, 40, 0, 8, 16, 0, 0, 0 }}, {{ 32, 40, 0, 16, 8, 0, 0, 0 }}, {{ 0 }} }; /** * BDW validated L3 configurations. \sa ivb_l3_configs. */ static const struct brw_l3_config bdw_l3_configs[] = { /* SLM URB ALL DC RO IS C T */ {{ 0, 48, 48, 0, 0, 0, 0, 0 }}, {{ 0, 48, 0, 16, 32, 0, 0, 0 }}, {{ 0, 32, 0, 16, 48, 0, 0, 0 }}, {{ 0, 32, 0, 0, 64, 0, 0, 0 }}, {{ 0, 32, 64, 0, 0, 0, 0, 0 }}, {{ 24, 16, 48, 0, 0, 0, 0, 0 }}, {{ 24, 16, 0, 16, 32, 0, 0, 0 }}, {{ 24, 16, 0, 32, 16, 0, 0, 0 }}, {{ 0 }} }; /** * CHV/SKL validated L3 configurations. \sa ivb_l3_configs. */ static const struct brw_l3_config chv_l3_configs[] = { /* SLM URB ALL DC RO IS C T */ {{ 0, 48, 48, 0, 0, 0, 0, 0 }}, {{ 0, 48, 0, 16, 32, 0, 0, 0 }}, {{ 0, 32, 0, 16, 48, 0, 0, 0 }}, {{ 0, 32, 0, 0, 64, 0, 0, 0 }}, {{ 0, 32, 64, 0, 0, 0, 0, 0 }}, {{ 32, 16, 48, 0, 0, 0, 0, 0 }}, {{ 32, 16, 0, 16, 32, 0, 0, 0 }}, {{ 32, 16, 0, 32, 16, 0, 0, 0 }}, {{ 0 }} }; /** * Return a zero-terminated array of validated L3 configurations for the * specified device. */ static const struct brw_l3_config * get_l3_configs(const struct brw_device_info *devinfo) { switch (devinfo->gen) { case 7: return (devinfo->is_baytrail ? vlv_l3_configs : ivb_l3_configs); case 8: return (devinfo->is_cherryview ? chv_l3_configs : bdw_l3_configs); case 9: return chv_l3_configs; default: unreachable("Not implemented"); } } /** * Return the size of an L3 way in KB. */ static unsigned get_l3_way_size(const struct brw_device_info *devinfo) { if (devinfo->is_baytrail) return 2; else if (devinfo->is_cherryview || devinfo->gt == 1) return 4; else return 8 * devinfo->num_slices; } /** * L3 configuration represented as a vector of weights giving the desired * relative size of each partition. The scale is arbitrary, only the ratios * between weights will have an influence on the selection of the closest L3 * configuration. */ struct brw_l3_weights { float w[NUM_L3P]; }; /** * L1-normalize a vector of L3 partition weights. */ static struct brw_l3_weights norm_l3_weights(struct brw_l3_weights w) { float sz = 0; for (unsigned i = 0; i < NUM_L3P; i++) sz += w.w[i]; for (unsigned i = 0; i < NUM_L3P; i++) w.w[i] /= sz; return w; } /** * Get the relative partition weights of the specified L3 configuration. */ static struct brw_l3_weights get_config_l3_weights(const struct brw_l3_config *cfg) { if (cfg) { struct brw_l3_weights w; for (unsigned i = 0; i < NUM_L3P; i++) w.w[i] = cfg->n[i]; return norm_l3_weights(w); } else { const struct brw_l3_weights w = { { 0 } }; return w; } } /** * Distance between two L3 configurations represented as vectors of weights. * Usually just the L1 metric except when the two configurations are * considered incompatible in which case the distance will be infinite. Note * that the compatibility condition is asymmetric -- They will be considered * incompatible whenever the reference configuration \p w0 requires SLM, DC, * or URB but \p w1 doesn't provide it. */ static float diff_l3_weights(struct brw_l3_weights w0, struct brw_l3_weights w1) { if ((w0.w[L3P_SLM] && !w1.w[L3P_SLM]) || (w0.w[L3P_DC] && !w1.w[L3P_DC] && !w1.w[L3P_ALL]) || (w0.w[L3P_URB] && !w1.w[L3P_URB])) { return HUGE_VALF; } else { float dw = 0; for (unsigned i = 0; i < NUM_L3P; i++) dw += fabs(w0.w[i] - w1.w[i]); return dw; } } /** * Return the closest validated L3 configuration for the specified device and * weight vector. */ static const struct brw_l3_config * get_l3_config(const struct brw_device_info *devinfo, struct brw_l3_weights w0) { const struct brw_l3_config *const cfgs = get_l3_configs(devinfo); const struct brw_l3_config *cfg_best = NULL; float dw_best = HUGE_VALF; for (const struct brw_l3_config *cfg = cfgs; cfg->n[L3P_URB]; cfg++) { const float dw = diff_l3_weights(w0, get_config_l3_weights(cfg)); if (dw < dw_best) { cfg_best = cfg; dw_best = dw; } } return cfg_best; } /** * Return a reasonable default L3 configuration for the specified device based * on whether SLM and DC are required. In the non-SLM non-DC case the result * is intended to approximately resemble the hardware defaults. */ static struct brw_l3_weights get_default_l3_weights(const struct brw_device_info *devinfo, bool needs_dc, bool needs_slm) { struct brw_l3_weights w = {{ 0 }}; w.w[L3P_SLM] = needs_slm; w.w[L3P_URB] = 1.0; if (devinfo->gen >= 8) { w.w[L3P_ALL] = 1.0; } else { w.w[L3P_DC] = needs_dc ? 0.1 : 0; w.w[L3P_RO] = devinfo->is_baytrail ? 0.5 : 1.0; } return norm_l3_weights(w); } /** * Calculate the desired L3 partitioning based on the current state of the * pipeline. For now this simply returns the conservative defaults calculated * by get_default_l3_weights(), but we could probably do better by gathering * more statistics from the pipeline state (e.g. guess of expected URB usage * and bound surfaces), or by using feed-back from performance counters. */ static struct brw_l3_weights get_pipeline_state_l3_weights(const struct brw_context *brw) { const struct brw_stage_state *stage_states[] = { [MESA_SHADER_VERTEX] = &brw->vs.base, [MESA_SHADER_TESS_CTRL] = &brw->tcs.base, [MESA_SHADER_TESS_EVAL] = &brw->tes.base, [MESA_SHADER_GEOMETRY] = &brw->gs.base, [MESA_SHADER_FRAGMENT] = &brw->wm.base, [MESA_SHADER_COMPUTE] = &brw->cs.base }; bool needs_dc = false, needs_slm = false; for (unsigned i = 0; i < ARRAY_SIZE(stage_states); i++) { const struct gl_shader_program *prog = brw->ctx._Shader->CurrentProgram[stage_states[i]->stage]; const struct brw_stage_prog_data *prog_data = stage_states[i]->prog_data; needs_dc |= (prog && prog->NumAtomicBuffers) || (prog_data && (prog_data->total_scratch || prog_data->nr_image_params)); needs_slm |= prog_data && prog_data->total_shared; } return get_default_l3_weights(brw->intelScreen->devinfo, needs_dc, needs_slm); } /** * Program the hardware to use the specified L3 configuration. */ static void setup_l3_config(struct brw_context *brw, const struct brw_l3_config *cfg) { const bool has_dc = cfg->n[L3P_DC] || cfg->n[L3P_ALL]; const bool has_is = cfg->n[L3P_IS] || cfg->n[L3P_RO] || cfg->n[L3P_ALL]; const bool has_c = cfg->n[L3P_C] || cfg->n[L3P_RO] || cfg->n[L3P_ALL]; const bool has_t = cfg->n[L3P_T] || cfg->n[L3P_RO] || cfg->n[L3P_ALL]; const bool has_slm = cfg->n[L3P_SLM]; /* According to the hardware docs, the L3 partitioning can only be changed * while the pipeline is completely drained and the caches are flushed, * which involves a first PIPE_CONTROL flush which stalls the pipeline... */ brw_emit_pipe_control_flush(brw, PIPE_CONTROL_DATA_CACHE_FLUSH | PIPE_CONTROL_NO_WRITE | PIPE_CONTROL_CS_STALL); /* ...followed by a second pipelined PIPE_CONTROL that initiates * invalidation of the relevant caches. Note that because RO invalidation * happens at the top of the pipeline (i.e. right away as the PIPE_CONTROL * command is processed by the CS) we cannot combine it with the previous * stalling flush as the hardware documentation suggests, because that * would cause the CS to stall on previous rendering *after* RO * invalidation and wouldn't prevent the RO caches from being polluted by * concurrent rendering before the stall completes. This intentionally * doesn't implement the SKL+ hardware workaround suggesting to enable CS * stall on PIPE_CONTROLs with the texture cache invalidation bit set for * GPGPU workloads because the previous and subsequent PIPE_CONTROLs * already guarantee that there is no concurrent GPGPU kernel execution * (see SKL HSD 2132585). */ brw_emit_pipe_control_flush(brw, PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE | PIPE_CONTROL_CONST_CACHE_INVALIDATE | PIPE_CONTROL_INSTRUCTION_INVALIDATE | PIPE_CONTROL_STATE_CACHE_INVALIDATE | PIPE_CONTROL_NO_WRITE); /* Now send a third stalling flush to make sure that invalidation is * complete when the L3 configuration registers are modified. */ brw_emit_pipe_control_flush(brw, PIPE_CONTROL_DATA_CACHE_FLUSH | PIPE_CONTROL_NO_WRITE | PIPE_CONTROL_CS_STALL); if (brw->gen >= 8) { assert(!cfg->n[L3P_IS] && !cfg->n[L3P_C] && !cfg->n[L3P_T]); BEGIN_BATCH(3); OUT_BATCH(MI_LOAD_REGISTER_IMM | (3 - 2)); /* Set up the L3 partitioning. */ OUT_BATCH(GEN8_L3CNTLREG); OUT_BATCH((has_slm ? GEN8_L3CNTLREG_SLM_ENABLE : 0) | SET_FIELD(cfg->n[L3P_URB], GEN8_L3CNTLREG_URB_ALLOC) | SET_FIELD(cfg->n[L3P_RO], GEN8_L3CNTLREG_RO_ALLOC) | SET_FIELD(cfg->n[L3P_DC], GEN8_L3CNTLREG_DC_ALLOC) | SET_FIELD(cfg->n[L3P_ALL], GEN8_L3CNTLREG_ALL_ALLOC)); ADVANCE_BATCH(); } else { assert(!cfg->n[L3P_ALL]); /* When enabled SLM only uses a portion of the L3 on half of the banks, * the matching space on the remaining banks has to be allocated to a * client (URB for all validated configurations) set to the * lower-bandwidth 2-bank address hashing mode. */ const bool urb_low_bw = has_slm && !brw->is_baytrail; assert(!urb_low_bw || cfg->n[L3P_URB] == cfg->n[L3P_SLM]); /* Minimum number of ways that can be allocated to the URB. */ const unsigned n0_urb = (brw->is_baytrail ? 32 : 0); assert(cfg->n[L3P_URB] >= n0_urb); BEGIN_BATCH(7); OUT_BATCH(MI_LOAD_REGISTER_IMM | (7 - 2)); /* Demote any clients with no ways assigned to LLC. */ OUT_BATCH(GEN7_L3SQCREG1); OUT_BATCH((brw->is_haswell ? HSW_L3SQCREG1_SQGHPCI_DEFAULT : brw->is_baytrail ? VLV_L3SQCREG1_SQGHPCI_DEFAULT : IVB_L3SQCREG1_SQGHPCI_DEFAULT) | (has_dc ? 0 : GEN7_L3SQCREG1_CONV_DC_UC) | (has_is ? 0 : GEN7_L3SQCREG1_CONV_IS_UC) | (has_c ? 0 : GEN7_L3SQCREG1_CONV_C_UC) | (has_t ? 0 : GEN7_L3SQCREG1_CONV_T_UC)); /* Set up the L3 partitioning. */ OUT_BATCH(GEN7_L3CNTLREG2); OUT_BATCH((has_slm ? GEN7_L3CNTLREG2_SLM_ENABLE : 0) | SET_FIELD(cfg->n[L3P_URB] - n0_urb, GEN7_L3CNTLREG2_URB_ALLOC) | (urb_low_bw ? GEN7_L3CNTLREG2_URB_LOW_BW : 0) | SET_FIELD(cfg->n[L3P_ALL], GEN7_L3CNTLREG2_ALL_ALLOC) | SET_FIELD(cfg->n[L3P_RO], GEN7_L3CNTLREG2_RO_ALLOC) | SET_FIELD(cfg->n[L3P_DC], GEN7_L3CNTLREG2_DC_ALLOC)); OUT_BATCH(GEN7_L3CNTLREG3); OUT_BATCH(SET_FIELD(cfg->n[L3P_IS], GEN7_L3CNTLREG3_IS_ALLOC) | SET_FIELD(cfg->n[L3P_C], GEN7_L3CNTLREG3_C_ALLOC) | SET_FIELD(cfg->n[L3P_T], GEN7_L3CNTLREG3_T_ALLOC)); ADVANCE_BATCH(); if (brw->is_haswell && brw->intelScreen->cmd_parser_version >= 4) { /* Enable L3 atomics on HSW if we have a DC partition, otherwise keep * them disabled to avoid crashing the system hard. */ BEGIN_BATCH(5); OUT_BATCH(MI_LOAD_REGISTER_IMM | (5 - 2)); OUT_BATCH(HSW_SCRATCH1); OUT_BATCH(has_dc ? 0 : HSW_SCRATCH1_L3_ATOMIC_DISABLE); OUT_BATCH(HSW_ROW_CHICKEN3); OUT_BATCH(REG_MASK(HSW_ROW_CHICKEN3_L3_ATOMIC_DISABLE) | (has_dc ? 0 : HSW_ROW_CHICKEN3_L3_ATOMIC_DISABLE)); ADVANCE_BATCH(); } } } /** * Return the unit brw_context::urb::size is expressed in, in KB. \sa * brw_device_info::urb::size. */ static unsigned get_urb_size_scale(const struct brw_device_info *devinfo) { return (devinfo->gen >= 8 ? devinfo->num_slices : 1); } /** * Update the URB size in the context state for the specified L3 * configuration. */ static void update_urb_size(struct brw_context *brw, const struct brw_l3_config *cfg) { const struct brw_device_info *devinfo = brw->intelScreen->devinfo; /* From the SKL "L3 Allocation and Programming" documentation: * * "URB is limited to 1008KB due to programming restrictions. This is not * a restriction of the L3 implementation, but of the FF and other clients. * Therefore, in a GT4 implementation it is possible for the programmed * allocation of the L3 data array to provide 3*384KB=1152KB for URB, but * only 1008KB of this will be used." */ const unsigned max = (devinfo->gen == 9 ? 1008 : ~0); const unsigned sz = MIN2(max, cfg->n[L3P_URB] * get_l3_way_size(devinfo)) / get_urb_size_scale(devinfo); if (brw->urb.size != sz) { brw->urb.size = sz; brw->ctx.NewDriverState |= BRW_NEW_URB_SIZE; } } /** * Print out the specified L3 configuration. */ static void dump_l3_config(const struct brw_l3_config *cfg) { fprintf(stderr, "SLM=%d URB=%d ALL=%d DC=%d RO=%d IS=%d C=%d T=%d\n", cfg->n[L3P_SLM], cfg->n[L3P_URB], cfg->n[L3P_ALL], cfg->n[L3P_DC], cfg->n[L3P_RO], cfg->n[L3P_IS], cfg->n[L3P_C], cfg->n[L3P_T]); } static void emit_l3_state(struct brw_context *brw) { const struct brw_l3_weights w = get_pipeline_state_l3_weights(brw); const float dw = diff_l3_weights(w, get_config_l3_weights(brw->l3.config)); /* The distance between any two compatible weight vectors cannot exceed two * due to the triangle inequality. */ const float large_dw_threshold = 2.0; /* Somewhat arbitrary, simply makes sure that there will be no repeated * transitions to the same L3 configuration, could probably do better here. */ const float small_dw_threshold = 0.5; /* If we're emitting a new batch the caches should already be clean and the * transition should be relatively cheap, so it shouldn't hurt much to use * the smaller threshold. Otherwise use the larger threshold so that we * only reprogram the L3 mid-batch if the most recently programmed * configuration is incompatible with the current pipeline state. */ const float dw_threshold = (brw->ctx.NewDriverState & BRW_NEW_BATCH ? small_dw_threshold : large_dw_threshold); if (dw > dw_threshold && brw->can_do_pipelined_register_writes) { const struct brw_l3_config *const cfg = get_l3_config(brw->intelScreen->devinfo, w); setup_l3_config(brw, cfg); update_urb_size(brw, cfg); brw->l3.config = cfg; if (unlikely(INTEL_DEBUG & DEBUG_L3)) { fprintf(stderr, "L3 config transition (%f > %f): ", dw, dw_threshold); dump_l3_config(cfg); } } } const struct brw_tracked_state gen7_l3_state = { .dirty = { .mesa = 0, .brw = BRW_NEW_BATCH | BRW_NEW_CS_PROG_DATA | BRW_NEW_FS_PROG_DATA | BRW_NEW_GS_PROG_DATA | BRW_NEW_VS_PROG_DATA, }, .emit = emit_l3_state }; /** * Hack to restore the default L3 configuration. * * This will be called at the end of every batch in order to reset the L3 * configuration to the default values for the time being until the kernel is * fixed. Until kernel commit 6702cf16e0ba8b0129f5aa1b6609d4e9c70bc13b * (included in v4.1) we would set the MI_RESTORE_INHIBIT bit when submitting * batch buffers for the default context used by the DDX, which meant that any * context state changed by the GL would leak into the DDX, the assumption * being that the DDX would initialize any state it cares about manually. The * DDX is however not careful enough to program an L3 configuration * explicitly, and it makes assumptions about it (URB size) which won't hold * and cause it to misrender if we let our L3 set-up to leak into the DDX. * * Since v4.1 of the Linux kernel the default context is saved and restored * normally, so it's far less likely for our L3 programming to interfere with * other contexts -- In fact restoring the default L3 configuration at the end * of the batch will be redundant most of the time. A kind of state leak is * still possible though if the context making assumptions about L3 state is * created immediately after our context was active (e.g. without the DDX * default context being scheduled in between) because at present the DRM * doesn't fully initialize the contents of newly created contexts and instead * sets the MI_RESTORE_INHIBIT flag causing it to inherit the state from the * last active context. * * It's possible to realize such a scenario if, say, an X server (or a GL * application using an outdated non-L3-aware Mesa version) is started while * another GL application is running and happens to have modified the L3 * configuration, or if no X server is running at all and a GL application * using a non-L3-aware Mesa version is started after another GL application * ran and modified the L3 configuration -- The latter situation can actually * be reproduced easily on IVB in our CI system. */ void gen7_restore_default_l3_config(struct brw_context *brw) { const struct brw_device_info *devinfo = brw->intelScreen->devinfo; /* For efficiency assume that the first entry of the array matches the * default configuration. */ const struct brw_l3_config *const cfg = get_l3_configs(devinfo); assert(cfg == get_l3_config(devinfo, get_default_l3_weights(devinfo, false, false))); if (cfg != brw->l3.config && brw->can_do_pipelined_register_writes) { setup_l3_config(brw, cfg); update_urb_size(brw, cfg); brw->l3.config = cfg; } }