/* * Copyright (C) 2010 Brian Paul All Rights Reserved. * Copyright (C) 2010 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Author: Kristian Høgsberg */ #include "glheader.h" #include "context.h" #include "blend.h" #include "enable.h" #include "enums.h" #include "extensions.h" #include "get.h" #include "macros.h" #include "mtypes.h" #include "state.h" #include "texcompress.h" #include "framebuffer.h" #include "samplerobj.h" #include "stencil.h" /* This is a table driven implemetation of the glGet*v() functions. * The basic idea is that most getters just look up an int somewhere * in struct gl_context and then convert it to a bool or float according to * which of glGetIntegerv() glGetBooleanv() etc is being called. * Instead of generating code to do this, we can just record the enum * value and the offset into struct gl_context in an array of structs. Then * in glGet*(), we lookup the struct for the enum in question, and use * the offset to get the int we need. * * Sometimes we need to look up a float, a boolean, a bit in a * bitfield, a matrix or other types instead, so we need to track the * type of the value in struct gl_context. And sometimes the value isn't in * struct gl_context but in the drawbuffer, the array object, current texture * unit, or maybe it's a computed value. So we need to also track * where or how to find the value. Finally, we sometimes need to * check that one of a number of extensions are enabled, the GL * version or flush or call _mesa_update_state(). This is done by * attaching optional extra information to the value description * struct, it's sort of like an array of opcodes that describe extra * checks or actions. * * Putting all this together we end up with struct value_desc below, * and with a couple of macros to help, the table of struct value_desc * is about as concise as the specification in the old python script. */ #define FLOAT_TO_BOOLEAN(X) ( (X) ? GL_TRUE : GL_FALSE ) #define FLOAT_TO_FIXED(F) ( ((F) * 65536.0f > INT_MAX) ? INT_MAX : \ ((F) * 65536.0f < INT_MIN) ? INT_MIN : \ (GLint) ((F) * 65536.0f) ) #define INT_TO_BOOLEAN(I) ( (I) ? GL_TRUE : GL_FALSE ) #define INT_TO_FIXED(I) ( ((I) > SHRT_MAX) ? INT_MAX : \ ((I) < SHRT_MIN) ? INT_MIN : \ (GLint) ((I) * 65536) ) #define INT64_TO_BOOLEAN(I) ( (I) ? GL_TRUE : GL_FALSE ) #define INT64_TO_INT(I) ( (GLint)((I > INT_MAX) ? INT_MAX : ((I < INT_MIN) ? INT_MIN : (I))) ) #define BOOLEAN_TO_INT(B) ( (GLint) (B) ) #define BOOLEAN_TO_INT64(B) ( (GLint64) (B) ) #define BOOLEAN_TO_FLOAT(B) ( (B) ? 1.0F : 0.0F ) #define BOOLEAN_TO_FIXED(B) ( (GLint) ((B) ? 1 : 0) << 16 ) #define ENUM_TO_INT64(E) ( (GLint64) (E) ) #define ENUM_TO_FIXED(E) (E) enum value_type { TYPE_INVALID, TYPE_INT, TYPE_INT_2, TYPE_INT_3, TYPE_INT_4, TYPE_INT_N, TYPE_INT64, TYPE_ENUM, TYPE_ENUM_2, TYPE_BOOLEAN, TYPE_BIT_0, TYPE_BIT_1, TYPE_BIT_2, TYPE_BIT_3, TYPE_BIT_4, TYPE_BIT_5, TYPE_BIT_6, TYPE_BIT_7, TYPE_FLOAT, TYPE_FLOAT_2, TYPE_FLOAT_3, TYPE_FLOAT_4, TYPE_FLOATN, TYPE_FLOATN_2, TYPE_FLOATN_3, TYPE_FLOATN_4, TYPE_DOUBLEN, TYPE_DOUBLEN_2, TYPE_MATRIX, TYPE_MATRIX_T, TYPE_CONST }; enum value_location { LOC_BUFFER, LOC_CONTEXT, LOC_ARRAY, LOC_TEXUNIT, LOC_CUSTOM }; enum value_extra { EXTRA_END = 0x8000, EXTRA_VERSION_30, EXTRA_VERSION_31, EXTRA_VERSION_32, EXTRA_VERSION_40, EXTRA_API_GL, EXTRA_API_GL_CORE, EXTRA_API_ES2, EXTRA_API_ES3, EXTRA_NEW_BUFFERS, EXTRA_NEW_FRAG_CLAMP, EXTRA_VALID_DRAW_BUFFER, EXTRA_VALID_TEXTURE_UNIT, EXTRA_VALID_CLIP_DISTANCE, EXTRA_FLUSH_CURRENT, EXTRA_GLSL_130, EXTRA_EXT_UBO_GS4, EXTRA_EXT_ATOMICS_GS4, EXTRA_EXT_SHADER_IMAGE_GS4, }; #define NO_EXTRA NULL #define NO_OFFSET 0 struct value_desc { GLenum pname; GLubyte location; /**< enum value_location */ GLubyte type; /**< enum value_type */ int offset; const int *extra; }; union value { GLfloat value_float; GLfloat value_float_4[4]; GLdouble value_double_2[2]; GLmatrix *value_matrix; GLint value_int; GLint value_int_4[4]; GLint64 value_int64; GLenum value_enum; /* Sigh, see GL_COMPRESSED_TEXTURE_FORMATS_ARB handling */ struct { GLint n, ints[100]; } value_int_n; GLboolean value_bool; }; #define BUFFER_FIELD(field, type) \ LOC_BUFFER, type, offsetof(struct gl_framebuffer, field) #define CONTEXT_FIELD(field, type) \ LOC_CONTEXT, type, offsetof(struct gl_context, field) #define ARRAY_FIELD(field, type) \ LOC_ARRAY, type, offsetof(struct gl_array_object, field) #undef CONST /* already defined through windows.h */ #define CONST(value) \ LOC_CONTEXT, TYPE_CONST, value #define BUFFER_INT(field) BUFFER_FIELD(field, TYPE_INT) #define BUFFER_ENUM(field) BUFFER_FIELD(field, TYPE_ENUM) #define BUFFER_BOOL(field) BUFFER_FIELD(field, TYPE_BOOLEAN) #define CONTEXT_INT(field) CONTEXT_FIELD(field, TYPE_INT) #define CONTEXT_INT2(field) CONTEXT_FIELD(field, TYPE_INT_2) #define CONTEXT_INT64(field) CONTEXT_FIELD(field, TYPE_INT64) #define CONTEXT_ENUM(field) CONTEXT_FIELD(field, TYPE_ENUM) #define CONTEXT_ENUM2(field) CONTEXT_FIELD(field, TYPE_ENUM_2) #define CONTEXT_BOOL(field) CONTEXT_FIELD(field, TYPE_BOOLEAN) #define CONTEXT_BIT0(field) CONTEXT_FIELD(field, TYPE_BIT_0) #define CONTEXT_BIT1(field) CONTEXT_FIELD(field, TYPE_BIT_1) #define CONTEXT_BIT2(field) CONTEXT_FIELD(field, TYPE_BIT_2) #define CONTEXT_BIT3(field) CONTEXT_FIELD(field, TYPE_BIT_3) #define CONTEXT_BIT4(field) CONTEXT_FIELD(field, TYPE_BIT_4) #define CONTEXT_BIT5(field) CONTEXT_FIELD(field, TYPE_BIT_5) #define CONTEXT_BIT6(field) CONTEXT_FIELD(field, TYPE_BIT_6) #define CONTEXT_BIT7(field) CONTEXT_FIELD(field, TYPE_BIT_7) #define CONTEXT_FLOAT(field) CONTEXT_FIELD(field, TYPE_FLOAT) #define CONTEXT_FLOAT2(field) CONTEXT_FIELD(field, TYPE_FLOAT_2) #define CONTEXT_FLOAT3(field) CONTEXT_FIELD(field, TYPE_FLOAT_3) #define CONTEXT_FLOAT4(field) CONTEXT_FIELD(field, TYPE_FLOAT_4) #define CONTEXT_MATRIX(field) CONTEXT_FIELD(field, TYPE_MATRIX) #define CONTEXT_MATRIX_T(field) CONTEXT_FIELD(field, TYPE_MATRIX_T) #define ARRAY_INT(field) ARRAY_FIELD(field, TYPE_INT) #define ARRAY_ENUM(field) ARRAY_FIELD(field, TYPE_ENUM) #define ARRAY_BOOL(field) ARRAY_FIELD(field, TYPE_BOOLEAN) #define EXT(f) \ offsetof(struct gl_extensions, f) #define EXTRA_EXT(e) \ static const int extra_##e[] = { \ EXT(e), EXTRA_END \ } #define EXTRA_EXT2(e1, e2) \ static const int extra_##e1##_##e2[] = { \ EXT(e1), EXT(e2), EXTRA_END \ } /* The 'extra' mechanism is a way to specify extra checks (such as * extensions or specific gl versions) or actions (flush current, new * buffers) that we need to do before looking up an enum. We need to * declare them all up front so we can refer to them in the value_desc * structs below. * * Each EXTRA_ will be executed. For EXTRA_* enums of extensions and API * versions, listing multiple ones in an array means an error will be thrown * only if none of them are available. If you need to check for "AND" * behavior, you would need to make a custom EXTRA_ enum. */ static const int extra_new_buffers[] = { EXTRA_NEW_BUFFERS, EXTRA_END }; static const int extra_new_frag_clamp[] = { EXTRA_NEW_FRAG_CLAMP, EXTRA_END }; static const int extra_valid_draw_buffer[] = { EXTRA_VALID_DRAW_BUFFER, EXTRA_END }; static const int extra_valid_texture_unit[] = { EXTRA_VALID_TEXTURE_UNIT, EXTRA_END }; static const int extra_valid_clip_distance[] = { EXTRA_VALID_CLIP_DISTANCE, EXTRA_END }; static const int extra_flush_current_valid_texture_unit[] = { EXTRA_FLUSH_CURRENT, EXTRA_VALID_TEXTURE_UNIT, EXTRA_END }; static const int extra_flush_current[] = { EXTRA_FLUSH_CURRENT, EXTRA_END }; static const int extra_EXT_texture_integer[] = { EXT(EXT_texture_integer), EXTRA_END }; static const int extra_EXT_texture_integer_and_new_buffers[] = { EXT(EXT_texture_integer), EXTRA_NEW_BUFFERS, EXTRA_END }; static const int extra_GLSL_130_es3[] = { EXTRA_GLSL_130, EXTRA_API_ES3, EXTRA_END }; static const int extra_texture_buffer_object[] = { EXTRA_API_GL_CORE, EXTRA_VERSION_31, EXT(ARB_texture_buffer_object), EXTRA_END }; static const int extra_ARB_transform_feedback2_api_es3[] = { EXT(ARB_transform_feedback2), EXTRA_API_ES3, EXTRA_END }; static const int extra_ARB_uniform_buffer_object_and_geometry_shader[] = { EXTRA_EXT_UBO_GS4, EXTRA_END }; static const int extra_ARB_ES2_compatibility_api_es2[] = { EXT(ARB_ES2_compatibility), EXTRA_API_ES2, EXTRA_END }; static const int extra_ARB_ES3_compatibility_api_es3[] = { EXT(ARB_ES3_compatibility), EXTRA_API_ES3, EXTRA_END }; static const int extra_EXT_framebuffer_sRGB_and_new_buffers[] = { EXT(EXT_framebuffer_sRGB), EXTRA_NEW_BUFFERS, EXTRA_END }; static const int extra_EXT_packed_float[] = { EXT(EXT_packed_float), EXTRA_NEW_BUFFERS, EXTRA_END }; static const int extra_EXT_texture_array_es3[] = { EXT(EXT_texture_array), EXTRA_API_ES3, EXTRA_END }; static const int extra_ARB_shader_atomic_counters_and_geometry_shader[] = { EXTRA_EXT_ATOMICS_GS4, EXTRA_END }; static const int extra_ARB_shader_image_load_store_and_geometry_shader[] = { EXTRA_EXT_SHADER_IMAGE_GS4, EXTRA_END }; EXTRA_EXT(ARB_texture_cube_map); EXTRA_EXT(EXT_texture_array); EXTRA_EXT(NV_fog_distance); EXTRA_EXT(EXT_texture_filter_anisotropic); EXTRA_EXT(NV_point_sprite); EXTRA_EXT(NV_texture_rectangle); EXTRA_EXT(EXT_stencil_two_side); EXTRA_EXT(EXT_depth_bounds_test); EXTRA_EXT(ARB_depth_clamp); EXTRA_EXT(ATI_fragment_shader); EXTRA_EXT(EXT_framebuffer_blit); EXTRA_EXT(EXT_provoking_vertex); EXTRA_EXT(ARB_fragment_shader); EXTRA_EXT(ARB_fragment_program); EXTRA_EXT2(ARB_framebuffer_object, EXT_framebuffer_multisample); EXTRA_EXT(ARB_seamless_cube_map); EXTRA_EXT(ARB_sync); EXTRA_EXT(ARB_vertex_shader); EXTRA_EXT(EXT_transform_feedback); EXTRA_EXT(ARB_transform_feedback3); EXTRA_EXT(EXT_pixel_buffer_object); EXTRA_EXT(ARB_vertex_program); EXTRA_EXT2(NV_point_sprite, ARB_point_sprite); EXTRA_EXT2(ARB_vertex_program, ARB_fragment_program); EXTRA_EXT(ARB_geometry_shader4); EXTRA_EXT(ARB_color_buffer_float); EXTRA_EXT(EXT_framebuffer_sRGB); EXTRA_EXT(OES_EGL_image_external); EXTRA_EXT(ARB_blend_func_extended); EXTRA_EXT(ARB_uniform_buffer_object); EXTRA_EXT(ARB_timer_query); EXTRA_EXT(ARB_map_buffer_alignment); EXTRA_EXT(ARB_texture_cube_map_array); EXTRA_EXT(ARB_texture_buffer_range); EXTRA_EXT(ARB_texture_multisample); EXTRA_EXT(ARB_texture_gather); EXTRA_EXT(ARB_shader_atomic_counters); EXTRA_EXT(ARB_draw_indirect); EXTRA_EXT(ARB_shader_image_load_store); static const int extra_ARB_color_buffer_float_or_glcore[] = { EXT(ARB_color_buffer_float), EXTRA_API_GL_CORE, EXTRA_END }; static const int extra_NV_primitive_restart[] = { EXT(NV_primitive_restart), EXTRA_END }; static const int extra_version_30[] = { EXTRA_VERSION_30, EXTRA_END }; static const int extra_version_31[] = { EXTRA_VERSION_31, EXTRA_END }; static const int extra_version_32[] = { EXTRA_VERSION_32, EXTRA_END }; static const int extra_version_40[] = { EXTRA_VERSION_40, EXTRA_END }; static const int extra_gl30_es3[] = { EXTRA_VERSION_30, EXTRA_API_ES3, EXTRA_END, }; static const int extra_gl32_es3[] = { EXTRA_VERSION_32, EXTRA_API_ES3, EXTRA_END, }; static const int extra_gl32_ARB_geometry_shader4[] = { EXTRA_VERSION_32, EXT(ARB_geometry_shader4), EXTRA_END }; static const int extra_gl40_ARB_sample_shading[] = { EXTRA_VERSION_40, EXT(ARB_sample_shading), EXTRA_END }; static const int extra_ARB_vertex_program_api_es2[] = { EXT(ARB_vertex_program), EXTRA_API_ES2, EXTRA_END }; /* The ReadBuffer get token is valid under either full GL or under * GLES2 if the NV_read_buffer extension is available. */ static const int extra_NV_read_buffer_api_gl[] = { EXTRA_API_ES2, EXTRA_API_GL, EXTRA_END }; static const int extra_core_ARB_color_buffer_float_and_new_buffers[] = { EXTRA_API_GL_CORE, EXT(ARB_color_buffer_float), EXTRA_NEW_BUFFERS, EXTRA_END }; /* This is the big table describing all the enums we accept in * glGet*v(). The table is partitioned into six parts: enums * understood by all GL APIs (OpenGL, GLES and GLES2), enums shared * between OpenGL and GLES, enums exclusive to GLES, etc for the * remaining combinations. To look up the enums valid in a given API * we will use a hash table specific to that API. These tables are in * turn generated at build time and included through get_hash.h. */ #include "get_hash.h" /* All we need now is a way to look up the value struct from the enum. * The code generated by gcc for the old generated big switch * statement is a big, balanced, open coded if/else tree, essentially * an unrolled binary search. It would be natural to sort the new * enum table and use bsearch(), but we will use a read-only hash * table instead. bsearch() has a nice guaranteed worst case * performance, but we're also guaranteed to hit that worst case * (log2(n) iterations) for about half the enums. Instead, using an * open addressing hash table, we can find the enum on the first try * for 80% of the enums, 1 collision for 10% and never more than 5 * collisions for any enum (typical numbers). And the code is very * simple, even though it feels a little magic. */ #ifdef GET_DEBUG static void print_table_stats(int api) { int i, j, collisions[11], count, hash, mask; const struct value_desc *d; const char *api_names[] = { [API_OPENGL_COMPAT] = "GL", [API_OPENGL_CORE] = "GL_CORE", [API_OPENGLES] = "GLES", [API_OPENGLES2] = "GLES2", }; const char *api_name; api_name = api < Elements(api_names) ? api_names[api] : "N/A"; count = 0; mask = Elements(table(api)) - 1; memset(collisions, 0, sizeof collisions); for (i = 0; i < Elements(table(api)); i++) { if (!table(api)[i]) continue; count++; d = &values[table(api)[i]]; hash = (d->pname * prime_factor); j = 0; while (1) { if (values[table(api)[hash & mask]].pname == d->pname) break; hash += prime_step; j++; } if (j < 10) collisions[j]++; else collisions[10]++; } printf("number of enums for %s: %d (total %ld)\n", api_name, count, Elements(values)); for (i = 0; i < Elements(collisions) - 1; i++) if (collisions[i] > 0) printf(" %d enums with %d %scollisions\n", collisions[i], i, i == 10 ? "or more " : ""); } #endif /** * Initialize the enum hash for a given API * * This is called from one_time_init() to insert the enum values that * are valid for the API in question into the enum hash table. * * \param the current context, for determining the API in question */ void _mesa_init_get_hash(struct gl_context *ctx) { #ifdef GET_DEBUG print_table_stats(ctx->API); #else (void) ctx; #endif } /** * Handle irregular enums * * Some values don't conform to the "well-known type at context * pointer + offset" pattern, so we have this function to catch all * the corner cases. Typically, it's a computed value or a one-off * pointer to a custom struct or something. * * In this case we can't return a pointer to the value, so we'll have * to use the temporary variable 'v' declared back in the calling * glGet*v() function to store the result. * * \param ctx the current context * \param d the struct value_desc that describes the enum * \param v pointer to the tmp declared in the calling glGet*v() function */ static void find_custom_value(struct gl_context *ctx, const struct value_desc *d, union value *v) { struct gl_buffer_object **buffer_obj; struct gl_vertex_attrib_array *array; GLuint unit, *p; switch (d->pname) { case GL_MAJOR_VERSION: v->value_int = ctx->Version / 10; break; case GL_MINOR_VERSION: v->value_int = ctx->Version % 10; break; case GL_TEXTURE_1D: case GL_TEXTURE_2D: case GL_TEXTURE_3D: case GL_TEXTURE_CUBE_MAP_ARB: case GL_TEXTURE_RECTANGLE_NV: case GL_TEXTURE_EXTERNAL_OES: v->value_bool = _mesa_IsEnabled(d->pname); break; case GL_LINE_STIPPLE_PATTERN: /* This is the only GLushort, special case it here by promoting * to an int rather than introducing a new type. */ v->value_int = ctx->Line.StipplePattern; break; case GL_CURRENT_RASTER_TEXTURE_COORDS: unit = ctx->Texture.CurrentUnit; v->value_float_4[0] = ctx->Current.RasterTexCoords[unit][0]; v->value_float_4[1] = ctx->Current.RasterTexCoords[unit][1]; v->value_float_4[2] = ctx->Current.RasterTexCoords[unit][2]; v->value_float_4[3] = ctx->Current.RasterTexCoords[unit][3]; break; case GL_CURRENT_TEXTURE_COORDS: unit = ctx->Texture.CurrentUnit; v->value_float_4[0] = ctx->Current.Attrib[VERT_ATTRIB_TEX0 + unit][0]; v->value_float_4[1] = ctx->Current.Attrib[VERT_ATTRIB_TEX0 + unit][1]; v->value_float_4[2] = ctx->Current.Attrib[VERT_ATTRIB_TEX0 + unit][2]; v->value_float_4[3] = ctx->Current.Attrib[VERT_ATTRIB_TEX0 + unit][3]; break; case GL_COLOR_WRITEMASK: v->value_int_4[0] = ctx->Color.ColorMask[0][RCOMP] ? 1 : 0; v->value_int_4[1] = ctx->Color.ColorMask[0][GCOMP] ? 1 : 0; v->value_int_4[2] = ctx->Color.ColorMask[0][BCOMP] ? 1 : 0; v->value_int_4[3] = ctx->Color.ColorMask[0][ACOMP] ? 1 : 0; break; case GL_EDGE_FLAG: v->value_bool = ctx->Current.Attrib[VERT_ATTRIB_EDGEFLAG][0] == 1.0; break; case GL_READ_BUFFER: v->value_enum = ctx->ReadBuffer->ColorReadBuffer; break; case GL_MAP2_GRID_DOMAIN: v->value_float_4[0] = ctx->Eval.MapGrid2u1; v->value_float_4[1] = ctx->Eval.MapGrid2u2; v->value_float_4[2] = ctx->Eval.MapGrid2v1; v->value_float_4[3] = ctx->Eval.MapGrid2v2; break; case GL_TEXTURE_STACK_DEPTH: unit = ctx->Texture.CurrentUnit; v->value_int = ctx->TextureMatrixStack[unit].Depth + 1; break; case GL_TEXTURE_MATRIX: unit = ctx->Texture.CurrentUnit; v->value_matrix = ctx->TextureMatrixStack[unit].Top; break; case GL_TEXTURE_COORD_ARRAY: case GL_TEXTURE_COORD_ARRAY_SIZE: case GL_TEXTURE_COORD_ARRAY_TYPE: case GL_TEXTURE_COORD_ARRAY_STRIDE: array = &ctx->Array.ArrayObj->VertexAttrib[VERT_ATTRIB_TEX(ctx->Array.ActiveTexture)]; v->value_int = *(GLuint *) ((char *) array + d->offset); break; case GL_ACTIVE_TEXTURE_ARB: v->value_int = GL_TEXTURE0_ARB + ctx->Texture.CurrentUnit; break; case GL_CLIENT_ACTIVE_TEXTURE_ARB: v->value_int = GL_TEXTURE0_ARB + ctx->Array.ActiveTexture; break; case GL_MODELVIEW_STACK_DEPTH: case GL_PROJECTION_STACK_DEPTH: v->value_int = *(GLint *) ((char *) ctx + d->offset) + 1; break; case GL_MAX_TEXTURE_SIZE: case GL_MAX_3D_TEXTURE_SIZE: case GL_MAX_CUBE_MAP_TEXTURE_SIZE_ARB: p = (GLuint *) ((char *) ctx + d->offset); v->value_int = 1 << (*p - 1); break; case GL_SCISSOR_BOX: v->value_int_4[0] = ctx->Scissor.ScissorArray[0].X; v->value_int_4[1] = ctx->Scissor.ScissorArray[0].Y; v->value_int_4[2] = ctx->Scissor.ScissorArray[0].Width; v->value_int_4[3] = ctx->Scissor.ScissorArray[0].Height; break; case GL_SCISSOR_TEST: v->value_bool = ctx->Scissor.EnableFlags & 1; break; case GL_LIST_INDEX: v->value_int = ctx->ListState.CurrentList ? ctx->ListState.CurrentList->Name : 0; break; case GL_LIST_MODE: if (!ctx->CompileFlag) v->value_enum = 0; else if (ctx->ExecuteFlag) v->value_enum = GL_COMPILE_AND_EXECUTE; else v->value_enum = GL_COMPILE; break; case GL_VIEWPORT: v->value_int_4[0] = ctx->Viewport.X; v->value_int_4[1] = ctx->Viewport.Y; v->value_int_4[2] = ctx->Viewport.Width; v->value_int_4[3] = ctx->Viewport.Height; break; case GL_DEPTH_RANGE: v->value_double_2[0] = ctx->Viewport.Near; v->value_double_2[1] = ctx->Viewport.Far; break; case GL_ACTIVE_STENCIL_FACE_EXT: v->value_enum = ctx->Stencil.ActiveFace ? GL_BACK : GL_FRONT; break; case GL_STENCIL_FAIL: v->value_enum = ctx->Stencil.FailFunc[ctx->Stencil.ActiveFace]; break; case GL_STENCIL_FUNC: v->value_enum = ctx->Stencil.Function[ctx->Stencil.ActiveFace]; break; case GL_STENCIL_PASS_DEPTH_FAIL: v->value_enum = ctx->Stencil.ZFailFunc[ctx->Stencil.ActiveFace]; break; case GL_STENCIL_PASS_DEPTH_PASS: v->value_enum = ctx->Stencil.ZPassFunc[ctx->Stencil.ActiveFace]; break; case GL_STENCIL_REF: v->value_int = _mesa_get_stencil_ref(ctx, ctx->Stencil.ActiveFace); break; case GL_STENCIL_BACK_REF: v->value_int = _mesa_get_stencil_ref(ctx, 1); break; case GL_STENCIL_VALUE_MASK: v->value_int = ctx->Stencil.ValueMask[ctx->Stencil.ActiveFace]; break; case GL_STENCIL_WRITEMASK: v->value_int = ctx->Stencil.WriteMask[ctx->Stencil.ActiveFace]; break; case GL_NUM_EXTENSIONS: v->value_int = _mesa_get_extension_count(ctx); break; case GL_IMPLEMENTATION_COLOR_READ_TYPE_OES: v->value_int = _mesa_get_color_read_type(ctx); break; case GL_IMPLEMENTATION_COLOR_READ_FORMAT_OES: v->value_int = _mesa_get_color_read_format(ctx); break; case GL_CURRENT_MATRIX_STACK_DEPTH_ARB: v->value_int = ctx->CurrentStack->Depth + 1; break; case GL_CURRENT_MATRIX_ARB: case GL_TRANSPOSE_CURRENT_MATRIX_ARB: v->value_matrix = ctx->CurrentStack->Top; break; case GL_NUM_COMPRESSED_TEXTURE_FORMATS_ARB: v->value_int = _mesa_get_compressed_formats(ctx, NULL); break; case GL_COMPRESSED_TEXTURE_FORMATS_ARB: v->value_int_n.n = _mesa_get_compressed_formats(ctx, v->value_int_n.ints); ASSERT(v->value_int_n.n <= (int) ARRAY_SIZE(v->value_int_n.ints)); break; case GL_MAX_VARYING_FLOATS_ARB: v->value_int = ctx->Const.MaxVarying * 4; break; /* Various object names */ case GL_TEXTURE_BINDING_1D: case GL_TEXTURE_BINDING_2D: case GL_TEXTURE_BINDING_3D: case GL_TEXTURE_BINDING_1D_ARRAY_EXT: case GL_TEXTURE_BINDING_2D_ARRAY_EXT: case GL_TEXTURE_BINDING_CUBE_MAP_ARB: case GL_TEXTURE_BINDING_RECTANGLE_NV: case GL_TEXTURE_BINDING_EXTERNAL_OES: case GL_TEXTURE_BINDING_CUBE_MAP_ARRAY: case GL_TEXTURE_BINDING_2D_MULTISAMPLE: case GL_TEXTURE_BINDING_2D_MULTISAMPLE_ARRAY: unit = ctx->Texture.CurrentUnit; v->value_int = ctx->Texture.Unit[unit].CurrentTex[d->offset]->Name; break; /* GL_EXT_packed_float */ case GL_RGBA_SIGNED_COMPONENTS_EXT: { /* Note: we only check the 0th color attachment. */ const struct gl_renderbuffer *rb = ctx->DrawBuffer->_ColorDrawBuffers[0]; if (rb && _mesa_is_format_signed(rb->Format)) { /* Issue 17 of GL_EXT_packed_float: If a component (such as * alpha) has zero bits, the component should not be considered * signed and so the bit for the respective component should be * zeroed. */ GLint r_bits = _mesa_get_format_bits(rb->Format, GL_RED_BITS); GLint g_bits = _mesa_get_format_bits(rb->Format, GL_GREEN_BITS); GLint b_bits = _mesa_get_format_bits(rb->Format, GL_BLUE_BITS); GLint a_bits = _mesa_get_format_bits(rb->Format, GL_ALPHA_BITS); GLint l_bits = _mesa_get_format_bits(rb->Format, GL_TEXTURE_LUMINANCE_SIZE); GLint i_bits = _mesa_get_format_bits(rb->Format, GL_TEXTURE_INTENSITY_SIZE); v->value_int_4[0] = r_bits + l_bits + i_bits > 0; v->value_int_4[1] = g_bits + l_bits + i_bits > 0; v->value_int_4[2] = b_bits + l_bits + i_bits > 0; v->value_int_4[3] = a_bits + i_bits > 0; } else { v->value_int_4[0] = v->value_int_4[1] = v->value_int_4[2] = v->value_int_4[3] = 0; } } break; /* GL_ARB_vertex_buffer_object */ case GL_VERTEX_ARRAY_BUFFER_BINDING_ARB: case GL_NORMAL_ARRAY_BUFFER_BINDING_ARB: case GL_COLOR_ARRAY_BUFFER_BINDING_ARB: case GL_INDEX_ARRAY_BUFFER_BINDING_ARB: case GL_EDGE_FLAG_ARRAY_BUFFER_BINDING_ARB: case GL_SECONDARY_COLOR_ARRAY_BUFFER_BINDING_ARB: case GL_FOG_COORDINATE_ARRAY_BUFFER_BINDING_ARB: buffer_obj = (struct gl_buffer_object **) ((char *) ctx->Array.ArrayObj + d->offset); v->value_int = (*buffer_obj)->Name; break; case GL_ARRAY_BUFFER_BINDING_ARB: v->value_int = ctx->Array.ArrayBufferObj->Name; break; case GL_TEXTURE_COORD_ARRAY_BUFFER_BINDING_ARB: v->value_int = ctx->Array.ArrayObj->VertexBinding[VERT_ATTRIB_TEX(ctx->Array.ActiveTexture)].BufferObj->Name; break; case GL_ELEMENT_ARRAY_BUFFER_BINDING_ARB: v->value_int = ctx->Array.ArrayObj->ElementArrayBufferObj->Name; break; /* ARB_copy_buffer */ case GL_COPY_READ_BUFFER: v->value_int = ctx->CopyReadBuffer->Name; break; case GL_COPY_WRITE_BUFFER: v->value_int = ctx->CopyWriteBuffer->Name; break; case GL_PIXEL_PACK_BUFFER_BINDING_EXT: v->value_int = ctx->Pack.BufferObj->Name; break; case GL_PIXEL_UNPACK_BUFFER_BINDING_EXT: v->value_int = ctx->Unpack.BufferObj->Name; break; case GL_TRANSFORM_FEEDBACK_BUFFER_BINDING: v->value_int = ctx->TransformFeedback.CurrentBuffer->Name; break; case GL_TRANSFORM_FEEDBACK_BUFFER_PAUSED: v->value_int = ctx->TransformFeedback.CurrentObject->Paused; break; case GL_TRANSFORM_FEEDBACK_BUFFER_ACTIVE: v->value_int = ctx->TransformFeedback.CurrentObject->Active; break; case GL_TRANSFORM_FEEDBACK_BINDING: v->value_int = ctx->TransformFeedback.CurrentObject->Name; break; case GL_CURRENT_PROGRAM: v->value_int = ctx->Shader.ActiveProgram ? ctx->Shader.ActiveProgram->Name : 0; break; case GL_READ_FRAMEBUFFER_BINDING_EXT: v->value_int = ctx->ReadBuffer->Name; break; case GL_RENDERBUFFER_BINDING_EXT: v->value_int = ctx->CurrentRenderbuffer ? ctx->CurrentRenderbuffer->Name : 0; break; case GL_POINT_SIZE_ARRAY_BUFFER_BINDING_OES: v->value_int = ctx->Array.ArrayObj->VertexBinding[VERT_ATTRIB_POINT_SIZE].BufferObj->Name; break; case GL_FOG_COLOR: if (_mesa_get_clamp_fragment_color(ctx)) COPY_4FV(v->value_float_4, ctx->Fog.Color); else COPY_4FV(v->value_float_4, ctx->Fog.ColorUnclamped); break; case GL_COLOR_CLEAR_VALUE: if (_mesa_get_clamp_fragment_color(ctx)) { v->value_float_4[0] = CLAMP(ctx->Color.ClearColor.f[0], 0.0F, 1.0F); v->value_float_4[1] = CLAMP(ctx->Color.ClearColor.f[1], 0.0F, 1.0F); v->value_float_4[2] = CLAMP(ctx->Color.ClearColor.f[2], 0.0F, 1.0F); v->value_float_4[3] = CLAMP(ctx->Color.ClearColor.f[3], 0.0F, 1.0F); } else COPY_4FV(v->value_float_4, ctx->Color.ClearColor.f); break; case GL_BLEND_COLOR_EXT: if (_mesa_get_clamp_fragment_color(ctx)) COPY_4FV(v->value_float_4, ctx->Color.BlendColor); else COPY_4FV(v->value_float_4, ctx->Color.BlendColorUnclamped); break; case GL_ALPHA_TEST_REF: if (_mesa_get_clamp_fragment_color(ctx)) v->value_float = ctx->Color.AlphaRef; else v->value_float = ctx->Color.AlphaRefUnclamped; break; case GL_MAX_VERTEX_UNIFORM_VECTORS: v->value_int = ctx->Const.Program[MESA_SHADER_VERTEX].MaxUniformComponents / 4; break; case GL_MAX_FRAGMENT_UNIFORM_VECTORS: v->value_int = ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxUniformComponents / 4; break; /* GL_ARB_texture_buffer_object */ case GL_TEXTURE_BUFFER_ARB: v->value_int = ctx->Texture.BufferObject->Name; break; case GL_TEXTURE_BINDING_BUFFER_ARB: unit = ctx->Texture.CurrentUnit; v->value_int = ctx->Texture.Unit[unit].CurrentTex[TEXTURE_BUFFER_INDEX]->Name; break; case GL_TEXTURE_BUFFER_DATA_STORE_BINDING_ARB: { struct gl_buffer_object *buf = ctx->Texture.Unit[ctx->Texture.CurrentUnit] .CurrentTex[TEXTURE_BUFFER_INDEX]->BufferObject; v->value_int = buf ? buf->Name : 0; } break; case GL_TEXTURE_BUFFER_FORMAT_ARB: v->value_int = ctx->Texture.Unit[ctx->Texture.CurrentUnit] .CurrentTex[TEXTURE_BUFFER_INDEX]->BufferObjectFormat; break; /* GL_ARB_sampler_objects */ case GL_SAMPLER_BINDING: { struct gl_sampler_object *samp = ctx->Texture.Unit[ctx->Texture.CurrentUnit].Sampler; /* * The sampler object may have been deleted on another context, * so we try to lookup the sampler object before returning its Name. */ if (samp && _mesa_lookup_samplerobj(ctx, samp->Name)) { v->value_int = samp->Name; } else { v->value_int = 0; } } break; /* GL_ARB_uniform_buffer_object */ case GL_UNIFORM_BUFFER_BINDING: v->value_int = ctx->UniformBuffer->Name; break; /* GL_ARB_timer_query */ case GL_TIMESTAMP: if (ctx->Driver.GetTimestamp) { v->value_int64 = ctx->Driver.GetTimestamp(ctx); } else { _mesa_problem(ctx, "driver doesn't implement GetTimestamp"); } break; /* GL_ARB_shader_atomic_counters */ case GL_ATOMIC_COUNTER_BUFFER_BINDING: v->value_int = ctx->AtomicBuffer->Name; break; /* GL_ARB_draw_indirect */ case GL_DRAW_INDIRECT_BUFFER_BINDING: v->value_int = ctx->DrawIndirectBuffer->Name; break; } } /** * Check extra constraints on a struct value_desc descriptor * * If a struct value_desc has a non-NULL extra pointer, it means that * there are a number of extra constraints to check or actions to * perform. The extras is just an integer array where each integer * encode different constraints or actions. * * \param ctx current context * \param func name of calling glGet*v() function for error reporting * \param d the struct value_desc that has the extra constraints * * \return GL_FALSE if all of the constraints were not satisfied, * otherwise GL_TRUE. */ static GLboolean check_extra(struct gl_context *ctx, const char *func, const struct value_desc *d) { const GLuint version = ctx->Version; GLboolean api_check = GL_FALSE; GLboolean api_found = GL_FALSE; const int *e; for (e = d->extra; *e != EXTRA_END; e++) { switch (*e) { case EXTRA_VERSION_30: api_check = GL_TRUE; if (version >= 30) api_found = GL_TRUE; break; case EXTRA_VERSION_31: api_check = GL_TRUE; if (version >= 31) api_found = GL_TRUE; break; case EXTRA_VERSION_32: api_check = GL_TRUE; if (version >= 32) api_found = GL_TRUE; break; case EXTRA_NEW_FRAG_CLAMP: if (ctx->NewState & (_NEW_BUFFERS | _NEW_FRAG_CLAMP)) _mesa_update_state(ctx); break; case EXTRA_API_ES2: api_check = GL_TRUE; if (ctx->API == API_OPENGLES2) api_found = GL_TRUE; break; case EXTRA_API_ES3: api_check = GL_TRUE; if (_mesa_is_gles3(ctx)) api_found = GL_TRUE; break; case EXTRA_API_GL: api_check = GL_TRUE; if (_mesa_is_desktop_gl(ctx)) api_found = GL_TRUE; break; case EXTRA_API_GL_CORE: api_check = GL_TRUE; if (ctx->API == API_OPENGL_CORE) api_found = GL_TRUE; break; case EXTRA_NEW_BUFFERS: if (ctx->NewState & _NEW_BUFFERS) _mesa_update_state(ctx); break; case EXTRA_FLUSH_CURRENT: FLUSH_CURRENT(ctx, 0); break; case EXTRA_VALID_DRAW_BUFFER: if (d->pname - GL_DRAW_BUFFER0_ARB >= ctx->Const.MaxDrawBuffers) { _mesa_error(ctx, GL_INVALID_OPERATION, "%s(draw buffer %u)", func, d->pname - GL_DRAW_BUFFER0_ARB); return GL_FALSE; } break; case EXTRA_VALID_TEXTURE_UNIT: if (ctx->Texture.CurrentUnit >= ctx->Const.MaxTextureCoordUnits) { _mesa_error(ctx, GL_INVALID_OPERATION, "%s(texture %u)", func, ctx->Texture.CurrentUnit); return GL_FALSE; } break; case EXTRA_VALID_CLIP_DISTANCE: if (d->pname - GL_CLIP_DISTANCE0 >= ctx->Const.MaxClipPlanes) { _mesa_error(ctx, GL_INVALID_ENUM, "%s(clip distance %u)", func, d->pname - GL_CLIP_DISTANCE0); return GL_FALSE; } break; case EXTRA_GLSL_130: api_check = GL_TRUE; if (ctx->Const.GLSLVersion >= 130) api_found = GL_TRUE; break; case EXTRA_EXT_UBO_GS4: api_check = GL_TRUE; api_found = (ctx->Extensions.ARB_uniform_buffer_object && _mesa_has_geometry_shaders(ctx)); break; case EXTRA_EXT_ATOMICS_GS4: api_check = GL_TRUE; api_found = (ctx->Extensions.ARB_shader_atomic_counters && _mesa_has_geometry_shaders(ctx)); break; case EXTRA_EXT_SHADER_IMAGE_GS4: api_check = GL_TRUE; api_found = (ctx->Extensions.ARB_shader_image_load_store && _mesa_has_geometry_shaders(ctx)); break; case EXTRA_END: break; default: /* *e is a offset into the extension struct */ api_check = GL_TRUE; if (*(GLboolean *) ((char *) &ctx->Extensions + *e)) api_found = GL_TRUE; break; } } if (api_check && !api_found) { _mesa_error(ctx, GL_INVALID_ENUM, "%s(pname=%s)", func, _mesa_lookup_enum_by_nr(d->pname)); return GL_FALSE; } return GL_TRUE; } static const struct value_desc error_value = { 0, 0, TYPE_INVALID, NO_OFFSET, NO_EXTRA }; /** * Find the struct value_desc corresponding to the enum 'pname'. * * We hash the enum value to get an index into the 'table' array, * which holds the index in the 'values' array of struct value_desc. * Once we've found the entry, we do the extra checks, if any, then * look up the value and return a pointer to it. * * If the value has to be computed (for example, it's the result of a * function call or we need to add 1 to it), we use the tmp 'v' to * store the result. * * \param func name of glGet*v() func for error reporting * \param pname the enum value we're looking up * \param p is were we return the pointer to the value * \param v a tmp union value variable in the calling glGet*v() function * * \return the struct value_desc corresponding to the enum or a struct * value_desc of TYPE_INVALID if not found. This lets the calling * glGet*v() function jump right into a switch statement and * handle errors there instead of having to check for NULL. */ static const struct value_desc * find_value(const char *func, GLenum pname, void **p, union value *v) { GET_CURRENT_CONTEXT(ctx); struct gl_texture_unit *unit; int mask, hash; const struct value_desc *d; int api; api = ctx->API; /* We index into the table_set[] list of per-API hash tables using the API's * value in the gl_api enum. Since GLES 3 doesn't have an API_OPENGL* enum * value since it's compatible with GLES2 its entry in table_set[] is at the * end. */ STATIC_ASSERT(Elements(table_set) == API_OPENGL_LAST + 2); if (_mesa_is_gles3(ctx)) { api = API_OPENGL_LAST + 1; } mask = Elements(table(api)) - 1; hash = (pname * prime_factor); while (1) { int idx = table(api)[hash & mask]; /* If the enum isn't valid, the hash walk ends with index 0, * pointing to the first entry of values[] which doesn't hold * any valid enum. */ if (unlikely(idx == 0)) { _mesa_error(ctx, GL_INVALID_ENUM, "%s(pname=%s)", func, _mesa_lookup_enum_by_nr(pname)); return &error_value; } d = &values[idx]; if (likely(d->pname == pname)) break; hash += prime_step; } if (unlikely(d->extra && !check_extra(ctx, func, d))) return &error_value; switch (d->location) { case LOC_BUFFER: *p = ((char *) ctx->DrawBuffer + d->offset); return d; case LOC_CONTEXT: *p = ((char *) ctx + d->offset); return d; case LOC_ARRAY: *p = ((char *) ctx->Array.ArrayObj + d->offset); return d; case LOC_TEXUNIT: unit = &ctx->Texture.Unit[ctx->Texture.CurrentUnit]; *p = ((char *) unit + d->offset); return d; case LOC_CUSTOM: find_custom_value(ctx, d, v); *p = v; return d; default: assert(0); break; } /* silence warning */ return &error_value; } static const int transpose[] = { 0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15 }; void GLAPIENTRY _mesa_GetBooleanv(GLenum pname, GLboolean *params) { const struct value_desc *d; union value v; GLmatrix *m; int shift, i; void *p; d = find_value("glGetBooleanv", pname, &p, &v); switch (d->type) { case TYPE_INVALID: break; case TYPE_CONST: params[0] = INT_TO_BOOLEAN(d->offset); break; case TYPE_FLOAT_4: case TYPE_FLOATN_4: params[3] = FLOAT_TO_BOOLEAN(((GLfloat *) p)[3]); case TYPE_FLOAT_3: case TYPE_FLOATN_3: params[2] = FLOAT_TO_BOOLEAN(((GLfloat *) p)[2]); case TYPE_FLOAT_2: case TYPE_FLOATN_2: params[1] = FLOAT_TO_BOOLEAN(((GLfloat *) p)[1]); case TYPE_FLOAT: case TYPE_FLOATN: params[0] = FLOAT_TO_BOOLEAN(((GLfloat *) p)[0]); break; case TYPE_DOUBLEN: params[0] = FLOAT_TO_BOOLEAN(((GLdouble *) p)[0]); break; case TYPE_INT_4: params[3] = INT_TO_BOOLEAN(((GLint *) p)[3]); case TYPE_INT_3: params[2] = INT_TO_BOOLEAN(((GLint *) p)[2]); case TYPE_INT_2: case TYPE_ENUM_2: params[1] = INT_TO_BOOLEAN(((GLint *) p)[1]); case TYPE_INT: case TYPE_ENUM: params[0] = INT_TO_BOOLEAN(((GLint *) p)[0]); break; case TYPE_INT_N: for (i = 0; i < v.value_int_n.n; i++) params[i] = INT_TO_BOOLEAN(v.value_int_n.ints[i]); break; case TYPE_INT64: params[0] = INT64_TO_BOOLEAN(((GLint64 *) p)[0]); break; case TYPE_BOOLEAN: params[0] = ((GLboolean*) p)[0]; break; case TYPE_MATRIX: m = *(GLmatrix **) p; for (i = 0; i < 16; i++) params[i] = FLOAT_TO_BOOLEAN(m->m[i]); break; case TYPE_MATRIX_T: m = *(GLmatrix **) p; for (i = 0; i < 16; i++) params[i] = FLOAT_TO_BOOLEAN(m->m[transpose[i]]); break; case TYPE_BIT_0: case TYPE_BIT_1: case TYPE_BIT_2: case TYPE_BIT_3: case TYPE_BIT_4: case TYPE_BIT_5: case TYPE_BIT_6: case TYPE_BIT_7: shift = d->type - TYPE_BIT_0; params[0] = (*(GLbitfield *) p >> shift) & 1; break; } } void GLAPIENTRY _mesa_GetFloatv(GLenum pname, GLfloat *params) { const struct value_desc *d; union value v; GLmatrix *m; int shift, i; void *p; d = find_value("glGetFloatv", pname, &p, &v); switch (d->type) { case TYPE_INVALID: break; case TYPE_CONST: params[0] = (GLfloat) d->offset; break; case TYPE_FLOAT_4: case TYPE_FLOATN_4: params[3] = ((GLfloat *) p)[3]; case TYPE_FLOAT_3: case TYPE_FLOATN_3: params[2] = ((GLfloat *) p)[2]; case TYPE_FLOAT_2: case TYPE_FLOATN_2: params[1] = ((GLfloat *) p)[1]; case TYPE_FLOAT: case TYPE_FLOATN: params[0] = ((GLfloat *) p)[0]; break; case TYPE_DOUBLEN: params[0] = (GLfloat) (((GLdouble *) p)[0]); break; case TYPE_INT_4: params[3] = (GLfloat) (((GLint *) p)[3]); case TYPE_INT_3: params[2] = (GLfloat) (((GLint *) p)[2]); case TYPE_INT_2: case TYPE_ENUM_2: params[1] = (GLfloat) (((GLint *) p)[1]); case TYPE_INT: case TYPE_ENUM: params[0] = (GLfloat) (((GLint *) p)[0]); break; case TYPE_INT_N: for (i = 0; i < v.value_int_n.n; i++) params[i] = INT_TO_FLOAT(v.value_int_n.ints[i]); break; case TYPE_INT64: params[0] = (GLfloat) (((GLint64 *) p)[0]); break; case TYPE_BOOLEAN: params[0] = BOOLEAN_TO_FLOAT(*(GLboolean*) p); break; case TYPE_MATRIX: m = *(GLmatrix **) p; for (i = 0; i < 16; i++) params[i] = m->m[i]; break; case TYPE_MATRIX_T: m = *(GLmatrix **) p; for (i = 0; i < 16; i++) params[i] = m->m[transpose[i]]; break; case TYPE_BIT_0: case TYPE_BIT_1: case TYPE_BIT_2: case TYPE_BIT_3: case TYPE_BIT_4: case TYPE_BIT_5: case TYPE_BIT_6: case TYPE_BIT_7: shift = d->type - TYPE_BIT_0; params[0] = BOOLEAN_TO_FLOAT((*(GLbitfield *) p >> shift) & 1); break; } } void GLAPIENTRY _mesa_GetIntegerv(GLenum pname, GLint *params) { const struct value_desc *d; union value v; GLmatrix *m; int shift, i; void *p; d = find_value("glGetIntegerv", pname, &p, &v); switch (d->type) { case TYPE_INVALID: break; case TYPE_CONST: params[0] = d->offset; break; case TYPE_FLOAT_4: params[3] = IROUND(((GLfloat *) p)[3]); case TYPE_FLOAT_3: params[2] = IROUND(((GLfloat *) p)[2]); case TYPE_FLOAT_2: params[1] = IROUND(((GLfloat *) p)[1]); case TYPE_FLOAT: params[0] = IROUND(((GLfloat *) p)[0]); break; case TYPE_FLOATN_4: params[3] = FLOAT_TO_INT(((GLfloat *) p)[3]); case TYPE_FLOATN_3: params[2] = FLOAT_TO_INT(((GLfloat *) p)[2]); case TYPE_FLOATN_2: params[1] = FLOAT_TO_INT(((GLfloat *) p)[1]); case TYPE_FLOATN: params[0] = FLOAT_TO_INT(((GLfloat *) p)[0]); break; case TYPE_DOUBLEN: params[0] = FLOAT_TO_INT(((GLdouble *) p)[0]); break; case TYPE_INT_4: params[3] = ((GLint *) p)[3]; case TYPE_INT_3: params[2] = ((GLint *) p)[2]; case TYPE_INT_2: case TYPE_ENUM_2: params[1] = ((GLint *) p)[1]; case TYPE_INT: case TYPE_ENUM: params[0] = ((GLint *) p)[0]; break; case TYPE_INT_N: for (i = 0; i < v.value_int_n.n; i++) params[i] = v.value_int_n.ints[i]; break; case TYPE_INT64: params[0] = INT64_TO_INT(((GLint64 *) p)[0]); break; case TYPE_BOOLEAN: params[0] = BOOLEAN_TO_INT(*(GLboolean*) p); break; case TYPE_MATRIX: m = *(GLmatrix **) p; for (i = 0; i < 16; i++) params[i] = FLOAT_TO_INT(m->m[i]); break; case TYPE_MATRIX_T: m = *(GLmatrix **) p; for (i = 0; i < 16; i++) params[i] = FLOAT_TO_INT(m->m[transpose[i]]); break; case TYPE_BIT_0: case TYPE_BIT_1: case TYPE_BIT_2: case TYPE_BIT_3: case TYPE_BIT_4: case TYPE_BIT_5: case TYPE_BIT_6: case TYPE_BIT_7: shift = d->type - TYPE_BIT_0; params[0] = (*(GLbitfield *) p >> shift) & 1; break; } } void GLAPIENTRY _mesa_GetInteger64v(GLenum pname, GLint64 *params) { const struct value_desc *d; union value v; GLmatrix *m; int shift, i; void *p; d = find_value("glGetInteger64v", pname, &p, &v); switch (d->type) { case TYPE_INVALID: break; case TYPE_CONST: params[0] = d->offset; break; case TYPE_FLOAT_4: params[3] = IROUND64(((GLfloat *) p)[3]); case TYPE_FLOAT_3: params[2] = IROUND64(((GLfloat *) p)[2]); case TYPE_FLOAT_2: params[1] = IROUND64(((GLfloat *) p)[1]); case TYPE_FLOAT: params[0] = IROUND64(((GLfloat *) p)[0]); break; case TYPE_FLOATN_4: params[3] = FLOAT_TO_INT64(((GLfloat *) p)[3]); case TYPE_FLOATN_3: params[2] = FLOAT_TO_INT64(((GLfloat *) p)[2]); case TYPE_FLOATN_2: params[1] = FLOAT_TO_INT64(((GLfloat *) p)[1]); case TYPE_FLOATN: params[0] = FLOAT_TO_INT64(((GLfloat *) p)[0]); break; case TYPE_DOUBLEN: params[0] = FLOAT_TO_INT64(((GLdouble *) p)[0]); break; case TYPE_INT_4: params[3] = ((GLint *) p)[3]; case TYPE_INT_3: params[2] = ((GLint *) p)[2]; case TYPE_INT_2: case TYPE_ENUM_2: params[1] = ((GLint *) p)[1]; case TYPE_INT: case TYPE_ENUM: params[0] = ((GLint *) p)[0]; break; case TYPE_INT_N: for (i = 0; i < v.value_int_n.n; i++) params[i] = INT_TO_BOOLEAN(v.value_int_n.ints[i]); break; case TYPE_INT64: params[0] = ((GLint64 *) p)[0]; break; case TYPE_BOOLEAN: params[0] = ((GLboolean*) p)[0]; break; case TYPE_MATRIX: m = *(GLmatrix **) p; for (i = 0; i < 16; i++) params[i] = FLOAT_TO_INT64(m->m[i]); break; case TYPE_MATRIX_T: m = *(GLmatrix **) p; for (i = 0; i < 16; i++) params[i] = FLOAT_TO_INT64(m->m[transpose[i]]); break; case TYPE_BIT_0: case TYPE_BIT_1: case TYPE_BIT_2: case TYPE_BIT_3: case TYPE_BIT_4: case TYPE_BIT_5: case TYPE_BIT_6: case TYPE_BIT_7: shift = d->type - TYPE_BIT_0; params[0] = (*(GLbitfield *) p >> shift) & 1; break; } } void GLAPIENTRY _mesa_GetDoublev(GLenum pname, GLdouble *params) { const struct value_desc *d; union value v; GLmatrix *m; int shift, i; void *p; d = find_value("glGetDoublev", pname, &p, &v); switch (d->type) { case TYPE_INVALID: break; case TYPE_CONST: params[0] = d->offset; break; case TYPE_FLOAT_4: case TYPE_FLOATN_4: params[3] = ((GLfloat *) p)[3]; case TYPE_FLOAT_3: case TYPE_FLOATN_3: params[2] = ((GLfloat *) p)[2]; case TYPE_FLOAT_2: case TYPE_FLOATN_2: params[1] = ((GLfloat *) p)[1]; case TYPE_FLOAT: case TYPE_FLOATN: params[0] = ((GLfloat *) p)[0]; break; case TYPE_DOUBLEN: params[0] = ((GLdouble *) p)[0]; break; case TYPE_INT_4: params[3] = ((GLint *) p)[3]; case TYPE_INT_3: params[2] = ((GLint *) p)[2]; case TYPE_INT_2: case TYPE_ENUM_2: params[1] = ((GLint *) p)[1]; case TYPE_INT: case TYPE_ENUM: params[0] = ((GLint *) p)[0]; break; case TYPE_INT_N: for (i = 0; i < v.value_int_n.n; i++) params[i] = v.value_int_n.ints[i]; break; case TYPE_INT64: params[0] = (GLdouble) (((GLint64 *) p)[0]); break; case TYPE_BOOLEAN: params[0] = *(GLboolean*) p; break; case TYPE_MATRIX: m = *(GLmatrix **) p; for (i = 0; i < 16; i++) params[i] = m->m[i]; break; case TYPE_MATRIX_T: m = *(GLmatrix **) p; for (i = 0; i < 16; i++) params[i] = m->m[transpose[i]]; break; case TYPE_BIT_0: case TYPE_BIT_1: case TYPE_BIT_2: case TYPE_BIT_3: case TYPE_BIT_4: case TYPE_BIT_5: case TYPE_BIT_6: case TYPE_BIT_7: shift = d->type - TYPE_BIT_0; params[0] = (*(GLbitfield *) p >> shift) & 1; break; } } static enum value_type find_value_indexed(const char *func, GLenum pname, GLuint index, union value *v) { GET_CURRENT_CONTEXT(ctx); switch (pname) { case GL_BLEND: if (index >= ctx->Const.MaxDrawBuffers) goto invalid_value; if (!ctx->Extensions.EXT_draw_buffers2) goto invalid_enum; v->value_int = (ctx->Color.BlendEnabled >> index) & 1; return TYPE_INT; case GL_BLEND_SRC: /* fall-through */ case GL_BLEND_SRC_RGB: if (index >= ctx->Const.MaxDrawBuffers) goto invalid_value; if (!ctx->Extensions.ARB_draw_buffers_blend) goto invalid_enum; v->value_int = ctx->Color.Blend[index].SrcRGB; return TYPE_INT; case GL_BLEND_SRC_ALPHA: if (index >= ctx->Const.MaxDrawBuffers) goto invalid_value; if (!ctx->Extensions.ARB_draw_buffers_blend) goto invalid_enum; v->value_int = ctx->Color.Blend[index].SrcA; return TYPE_INT; case GL_BLEND_DST: /* fall-through */ case GL_BLEND_DST_RGB: if (index >= ctx->Const.MaxDrawBuffers) goto invalid_value; if (!ctx->Extensions.ARB_draw_buffers_blend) goto invalid_enum; v->value_int = ctx->Color.Blend[index].DstRGB; return TYPE_INT; case GL_BLEND_DST_ALPHA: if (index >= ctx->Const.MaxDrawBuffers) goto invalid_value; if (!ctx->Extensions.ARB_draw_buffers_blend) goto invalid_enum; v->value_int = ctx->Color.Blend[index].DstA; return TYPE_INT; case GL_BLEND_EQUATION_RGB: if (index >= ctx->Const.MaxDrawBuffers) goto invalid_value; if (!ctx->Extensions.ARB_draw_buffers_blend) goto invalid_enum; v->value_int = ctx->Color.Blend[index].EquationRGB; return TYPE_INT; case GL_BLEND_EQUATION_ALPHA: if (index >= ctx->Const.MaxDrawBuffers) goto invalid_value; if (!ctx->Extensions.ARB_draw_buffers_blend) goto invalid_enum; v->value_int = ctx->Color.Blend[index].EquationA; return TYPE_INT; case GL_COLOR_WRITEMASK: if (index >= ctx->Const.MaxDrawBuffers) goto invalid_value; if (!ctx->Extensions.EXT_draw_buffers2) goto invalid_enum; v->value_int_4[0] = ctx->Color.ColorMask[index][RCOMP] ? 1 : 0; v->value_int_4[1] = ctx->Color.ColorMask[index][GCOMP] ? 1 : 0; v->value_int_4[2] = ctx->Color.ColorMask[index][BCOMP] ? 1 : 0; v->value_int_4[3] = ctx->Color.ColorMask[index][ACOMP] ? 1 : 0; return TYPE_INT_4; case GL_TRANSFORM_FEEDBACK_BUFFER_START: if (index >= ctx->Const.MaxTransformFeedbackBuffers) goto invalid_value; if (!ctx->Extensions.EXT_transform_feedback) goto invalid_enum; v->value_int64 = ctx->TransformFeedback.CurrentObject->Offset[index]; return TYPE_INT64; case GL_TRANSFORM_FEEDBACK_BUFFER_SIZE: if (index >= ctx->Const.MaxTransformFeedbackBuffers) goto invalid_value; if (!ctx->Extensions.EXT_transform_feedback) goto invalid_enum; v->value_int64 = ctx->TransformFeedback.CurrentObject->RequestedSize[index]; return TYPE_INT64; case GL_TRANSFORM_FEEDBACK_BUFFER_BINDING: if (index >= ctx->Const.MaxTransformFeedbackBuffers) goto invalid_value; if (!ctx->Extensions.EXT_transform_feedback) goto invalid_enum; v->value_int = ctx->TransformFeedback.CurrentObject->BufferNames[index]; return TYPE_INT; case GL_UNIFORM_BUFFER_BINDING: if (index >= ctx->Const.MaxUniformBufferBindings) goto invalid_value; if (!ctx->Extensions.ARB_uniform_buffer_object) goto invalid_enum; v->value_int = ctx->UniformBufferBindings[index].BufferObject->Name; return TYPE_INT; case GL_UNIFORM_BUFFER_START: if (index >= ctx->Const.MaxUniformBufferBindings) goto invalid_value; if (!ctx->Extensions.ARB_uniform_buffer_object) goto invalid_enum; v->value_int = ctx->UniformBufferBindings[index].Offset; return TYPE_INT; case GL_UNIFORM_BUFFER_SIZE: if (index >= ctx->Const.MaxUniformBufferBindings) goto invalid_value; if (!ctx->Extensions.ARB_uniform_buffer_object) goto invalid_enum; v->value_int = ctx->UniformBufferBindings[index].Size; return TYPE_INT; /* ARB_texture_multisample / GL3.2 */ case GL_SAMPLE_MASK_VALUE: if (index != 0) goto invalid_value; if (!ctx->Extensions.ARB_texture_multisample) goto invalid_enum; v->value_int = ctx->Multisample.SampleMaskValue; return TYPE_INT; case GL_ATOMIC_COUNTER_BUFFER_BINDING: if (!ctx->Extensions.ARB_shader_atomic_counters) goto invalid_enum; if (index >= ctx->Const.MaxAtomicBufferBindings) goto invalid_value; v->value_int = ctx->AtomicBufferBindings[index].BufferObject->Name; return TYPE_INT; case GL_ATOMIC_COUNTER_BUFFER_START: if (!ctx->Extensions.ARB_shader_atomic_counters) goto invalid_enum; if (index >= ctx->Const.MaxAtomicBufferBindings) goto invalid_value; v->value_int64 = ctx->AtomicBufferBindings[index].Offset; return TYPE_INT64; case GL_ATOMIC_COUNTER_BUFFER_SIZE: if (!ctx->Extensions.ARB_shader_atomic_counters) goto invalid_enum; if (index >= ctx->Const.MaxAtomicBufferBindings) goto invalid_value; v->value_int64 = ctx->AtomicBufferBindings[index].Size; return TYPE_INT64; case GL_VERTEX_BINDING_DIVISOR: if (!_mesa_is_desktop_gl(ctx) || !ctx->Extensions.ARB_instanced_arrays) goto invalid_enum; if (index >= ctx->Const.Program[MESA_SHADER_VERTEX].MaxAttribs) goto invalid_value; v->value_int = ctx->Array.ArrayObj->VertexBinding[VERT_ATTRIB_GENERIC(index)].InstanceDivisor; return TYPE_INT; case GL_VERTEX_BINDING_OFFSET: if (!_mesa_is_desktop_gl(ctx)) goto invalid_enum; if (index >= ctx->Const.Program[MESA_SHADER_VERTEX].MaxAttribs) goto invalid_value; v->value_int = ctx->Array.ArrayObj->VertexBinding[VERT_ATTRIB_GENERIC(index)].Offset; return TYPE_INT; case GL_VERTEX_BINDING_STRIDE: if (!_mesa_is_desktop_gl(ctx)) goto invalid_enum; if (index >= ctx->Const.Program[MESA_SHADER_VERTEX].MaxAttribs) goto invalid_value; v->value_int = ctx->Array.ArrayObj->VertexBinding[VERT_ATTRIB_GENERIC(index)].Stride; /* ARB_shader_image_load_store */ case GL_IMAGE_BINDING_NAME: { struct gl_texture_object *t; if (!ctx->Extensions.ARB_shader_image_load_store) goto invalid_enum; if (index >= ctx->Const.MaxImageUnits) goto invalid_value; t = ctx->ImageUnits[index].TexObj; v->value_int = (t ? t->Name : 0); return TYPE_INT; } case GL_IMAGE_BINDING_LEVEL: if (!ctx->Extensions.ARB_shader_image_load_store) goto invalid_enum; if (index >= ctx->Const.MaxImageUnits) goto invalid_value; v->value_int = ctx->ImageUnits[index].Level; return TYPE_INT; case GL_IMAGE_BINDING_LAYERED: if (!ctx->Extensions.ARB_shader_image_load_store) goto invalid_enum; if (index >= ctx->Const.MaxImageUnits) goto invalid_value; v->value_int = ctx->ImageUnits[index].Layered; return TYPE_INT; case GL_IMAGE_BINDING_LAYER: if (!ctx->Extensions.ARB_shader_image_load_store) goto invalid_enum; if (index >= ctx->Const.MaxImageUnits) goto invalid_value; v->value_int = ctx->ImageUnits[index].Layer; return TYPE_INT; case GL_IMAGE_BINDING_ACCESS: if (!ctx->Extensions.ARB_shader_image_load_store) goto invalid_enum; if (index >= ctx->Const.MaxImageUnits) goto invalid_value; v->value_int = ctx->ImageUnits[index].Access; return TYPE_INT; case GL_IMAGE_BINDING_FORMAT: if (!ctx->Extensions.ARB_shader_image_load_store) goto invalid_enum; if (index >= ctx->Const.MaxImageUnits) goto invalid_value; v->value_int = ctx->ImageUnits[index].Format; return TYPE_INT; } invalid_enum: _mesa_error(ctx, GL_INVALID_ENUM, "%s(pname=%s)", func, _mesa_lookup_enum_by_nr(pname)); return TYPE_INVALID; invalid_value: _mesa_error(ctx, GL_INVALID_VALUE, "%s(pname=%s)", func, _mesa_lookup_enum_by_nr(pname)); return TYPE_INVALID; } void GLAPIENTRY _mesa_GetBooleani_v( GLenum pname, GLuint index, GLboolean *params ) { union value v; enum value_type type = find_value_indexed("glGetBooleani_v", pname, index, &v); switch (type) { case TYPE_INT: params[0] = INT_TO_BOOLEAN(v.value_int); break; case TYPE_INT_4: params[0] = INT_TO_BOOLEAN(v.value_int_4[0]); params[1] = INT_TO_BOOLEAN(v.value_int_4[1]); params[2] = INT_TO_BOOLEAN(v.value_int_4[2]); params[3] = INT_TO_BOOLEAN(v.value_int_4[3]); break; case TYPE_INT64: params[0] = INT64_TO_BOOLEAN(v.value_int); break; default: ; /* nothing - GL error was recorded */ } } void GLAPIENTRY _mesa_GetIntegeri_v( GLenum pname, GLuint index, GLint *params ) { union value v; enum value_type type = find_value_indexed("glGetIntegeri_v", pname, index, &v); switch (type) { case TYPE_INT: params[0] = v.value_int; break; case TYPE_INT_4: params[0] = v.value_int_4[0]; params[1] = v.value_int_4[1]; params[2] = v.value_int_4[2]; params[3] = v.value_int_4[3]; break; case TYPE_INT64: params[0] = INT64_TO_INT(v.value_int); break; default: ; /* nothing - GL error was recorded */ } } void GLAPIENTRY _mesa_GetInteger64i_v( GLenum pname, GLuint index, GLint64 *params ) { union value v; enum value_type type = find_value_indexed("glGetInteger64i_v", pname, index, &v); switch (type) { case TYPE_INT: params[0] = v.value_int; break; case TYPE_INT_4: params[0] = v.value_int_4[0]; params[1] = v.value_int_4[1]; params[2] = v.value_int_4[2]; params[3] = v.value_int_4[3]; break; case TYPE_INT64: params[0] = v.value_int; break; default: ; /* nothing - GL error was recorded */ } } void GLAPIENTRY _mesa_GetFixedv(GLenum pname, GLfixed *params) { const struct value_desc *d; union value v; GLmatrix *m; int shift, i; void *p; d = find_value("glGetDoublev", pname, &p, &v); switch (d->type) { case TYPE_INVALID: break; case TYPE_CONST: params[0] = INT_TO_FIXED(d->offset); break; case TYPE_FLOAT_4: case TYPE_FLOATN_4: params[3] = FLOAT_TO_FIXED(((GLfloat *) p)[3]); case TYPE_FLOAT_3: case TYPE_FLOATN_3: params[2] = FLOAT_TO_FIXED(((GLfloat *) p)[2]); case TYPE_FLOAT_2: case TYPE_FLOATN_2: params[1] = FLOAT_TO_FIXED(((GLfloat *) p)[1]); case TYPE_FLOAT: case TYPE_FLOATN: params[0] = FLOAT_TO_FIXED(((GLfloat *) p)[0]); break; case TYPE_DOUBLEN: params[0] = FLOAT_TO_FIXED(((GLdouble *) p)[0]); break; case TYPE_INT_4: params[3] = INT_TO_FIXED(((GLint *) p)[3]); case TYPE_INT_3: params[2] = INT_TO_FIXED(((GLint *) p)[2]); case TYPE_INT_2: case TYPE_ENUM_2: params[1] = INT_TO_FIXED(((GLint *) p)[1]); case TYPE_INT: case TYPE_ENUM: params[0] = INT_TO_FIXED(((GLint *) p)[0]); break; case TYPE_INT_N: for (i = 0; i < v.value_int_n.n; i++) params[i] = INT_TO_FIXED(v.value_int_n.ints[i]); break; case TYPE_INT64: params[0] = ((GLint64 *) p)[0]; break; case TYPE_BOOLEAN: params[0] = BOOLEAN_TO_FIXED(((GLboolean*) p)[0]); break; case TYPE_MATRIX: m = *(GLmatrix **) p; for (i = 0; i < 16; i++) params[i] = FLOAT_TO_FIXED(m->m[i]); break; case TYPE_MATRIX_T: m = *(GLmatrix **) p; for (i = 0; i < 16; i++) params[i] = FLOAT_TO_FIXED(m->m[transpose[i]]); break; case TYPE_BIT_0: case TYPE_BIT_1: case TYPE_BIT_2: case TYPE_BIT_3: case TYPE_BIT_4: case TYPE_BIT_5: case TYPE_BIT_6: case TYPE_BIT_7: shift = d->type - TYPE_BIT_0; params[0] = BOOLEAN_TO_FIXED((*(GLbitfield *) p >> shift) & 1); break; } }