/* * Mesa 3-D graphics library * * Copyright (C) 1999-2008 Brian Paul All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: * Keith Whitwell Brian Paul */ #include "main/imports.h" #include "main/bufferobj.h" #include "main/mtypes.h" #include "main/samplerobj.h" #include "main/teximage.h" #include "program/prog_parameter.h" #include "program/prog_statevars.h" #include "swrast.h" #include "s_blend.h" #include "s_context.h" #include "s_lines.h" #include "s_points.h" #include "s_span.h" #include "s_texfetch.h" #include "s_triangle.h" #include "s_texfilter.h" /** * Recompute the value of swrast->_RasterMask, etc. according to * the current context. The _RasterMask field can be easily tested by * drivers to determine certain basic GL state (does the primitive need * stenciling, logic-op, fog, etc?). */ static void _swrast_update_rasterflags( struct gl_context *ctx ) { SWcontext *swrast = SWRAST_CONTEXT(ctx); GLbitfield rasterMask = 0; GLuint i; if (ctx->Color.AlphaEnabled) rasterMask |= ALPHATEST_BIT; if (ctx->Color.BlendEnabled) rasterMask |= BLEND_BIT; if (ctx->Depth.Test) rasterMask |= DEPTH_BIT; if (swrast->_FogEnabled) rasterMask |= FOG_BIT; if (ctx->Scissor.EnableFlags) rasterMask |= CLIP_BIT; if (ctx->Stencil._Enabled) rasterMask |= STENCIL_BIT; for (i = 0; i < ctx->Const.MaxDrawBuffers; i++) { if (!ctx->Color.ColorMask[i][0] || !ctx->Color.ColorMask[i][1] || !ctx->Color.ColorMask[i][2] || !ctx->Color.ColorMask[i][3]) { rasterMask |= MASKING_BIT; break; } } if (ctx->Color.ColorLogicOpEnabled) rasterMask |= LOGIC_OP_BIT; if (ctx->Texture._MaxEnabledTexImageUnit >= 0) rasterMask |= TEXTURE_BIT; if ( ctx->ViewportArray[0].X < 0 || ctx->ViewportArray[0].X + ctx->ViewportArray[0].Width > (GLfloat) ctx->DrawBuffer->Width || ctx->ViewportArray[0].Y < 0 || ctx->ViewportArray[0].Y + ctx->ViewportArray[0].Height > (GLfloat) ctx->DrawBuffer->Height) { rasterMask |= CLIP_BIT; } if (ctx->Query.CurrentOcclusionObject) rasterMask |= OCCLUSION_BIT; /* If we're not drawing to exactly one color buffer set the * MULTI_DRAW_BIT flag. Also set it if we're drawing to no * buffers or the RGBA or CI mask disables all writes. */ if (ctx->DrawBuffer->_NumColorDrawBuffers != 1) { /* more than one color buffer designated for writing (or zero buffers) */ rasterMask |= MULTI_DRAW_BIT; } for (i = 0; i < ctx->Const.MaxDrawBuffers; i++) { if (ctx->Color.ColorMask[i][0] + ctx->Color.ColorMask[i][1] + ctx->Color.ColorMask[i][2] + ctx->Color.ColorMask[i][3] == 0) { rasterMask |= MULTI_DRAW_BIT; /* all RGBA channels disabled */ break; } } if (_swrast_use_fragment_program(ctx)) { rasterMask |= FRAGPROG_BIT; } if (ctx->ATIFragmentShader._Enabled) { rasterMask |= ATIFRAGSHADER_BIT; } #if CHAN_TYPE == GL_FLOAT if (ctx->Color.ClampFragmentColor == GL_TRUE) { rasterMask |= CLAMPING_BIT; } #endif SWRAST_CONTEXT(ctx)->_RasterMask = rasterMask; } /** * Examine polygon cull state to compute the _BackfaceCullSign field. * _BackfaceCullSign will be 0 if no culling, -1 if culling back-faces, * and 1 if culling front-faces. The Polygon FrontFace state also * factors in. */ static void _swrast_update_polygon( struct gl_context *ctx ) { GLfloat backface_sign; if (ctx->Polygon.CullFlag) { switch (ctx->Polygon.CullFaceMode) { case GL_BACK: backface_sign = -1.0F; break; case GL_FRONT: backface_sign = 1.0F; break; case GL_FRONT_AND_BACK: /* fallthrough */ default: backface_sign = 0.0F; } } else { backface_sign = 0.0F; } SWRAST_CONTEXT(ctx)->_BackfaceCullSign = backface_sign; /* This is for front/back-face determination, but not for culling */ SWRAST_CONTEXT(ctx)->_BackfaceSign = (ctx->Polygon.FrontFace == GL_CW) ? -1.0F : 1.0F; } /** * Update the _PreferPixelFog field to indicate if we need to compute * fog blend factors (from the fog coords) per-fragment. */ static void _swrast_update_fog_hint( struct gl_context *ctx ) { SWcontext *swrast = SWRAST_CONTEXT(ctx); swrast->_PreferPixelFog = (!swrast->AllowVertexFog || _swrast_use_fragment_program(ctx) || (ctx->Hint.Fog == GL_NICEST && swrast->AllowPixelFog)); } /** * Update the swrast->_TextureCombinePrimary flag. */ static void _swrast_update_texture_env( struct gl_context *ctx ) { SWcontext *swrast = SWRAST_CONTEXT(ctx); GLuint i; swrast->_TextureCombinePrimary = GL_FALSE; for (i = 0; i < ctx->Const.MaxTextureUnits; i++) { const struct gl_tex_env_combine_state *combine = ctx->Texture.Unit[i]._CurrentCombine; GLuint term; for (term = 0; term < combine->_NumArgsRGB; term++) { if (combine->SourceRGB[term] == GL_PRIMARY_COLOR) { swrast->_TextureCombinePrimary = GL_TRUE; return; } if (combine->SourceA[term] == GL_PRIMARY_COLOR) { swrast->_TextureCombinePrimary = GL_TRUE; return; } } } } /** * Determine if we can defer texturing/shading until after Z/stencil * testing. This potentially allows us to skip texturing/shading for * lots of fragments. */ static void _swrast_update_deferred_texture(struct gl_context *ctx) { SWcontext *swrast = SWRAST_CONTEXT(ctx); if (ctx->Color.AlphaEnabled) { /* alpha test depends on post-texture/shader colors */ swrast->_DeferredTexture = GL_FALSE; } else { GLboolean use_fprog = _swrast_use_fragment_program(ctx); const struct gl_fragment_program *fprog = ctx->FragmentProgram._Current; if (use_fprog && (fprog->Base.OutputsWritten & (1 << FRAG_RESULT_DEPTH))) { /* Z comes from fragment program/shader */ swrast->_DeferredTexture = GL_FALSE; } else if (use_fprog && fprog->UsesKill) { swrast->_DeferredTexture = GL_FALSE; } else if (ctx->Query.CurrentOcclusionObject) { /* occlusion query depends on shader discard/kill results */ swrast->_DeferredTexture = GL_FALSE; } else { swrast->_DeferredTexture = GL_TRUE; } } } /** * Update swrast->_FogColor and swrast->_FogEnable values. */ static void _swrast_update_fog_state( struct gl_context *ctx ) { SWcontext *swrast = SWRAST_CONTEXT(ctx); const struct gl_fragment_program *fp = ctx->FragmentProgram._Current; assert(fp == NULL || fp->Base.Target == GL_FRAGMENT_PROGRAM_ARB); (void) fp; /* silence unused var warning */ /* determine if fog is needed, and if so, which fog mode */ swrast->_FogEnabled = (!_swrast_use_fragment_program(ctx) && ctx->Fog.Enabled); } /** * Update state for running fragment programs. Basically, load the * program parameters with current state values. */ static void _swrast_update_fragment_program(struct gl_context *ctx, GLbitfield newState) { if (!_swrast_use_fragment_program(ctx)) return; _mesa_load_state_parameters(ctx, ctx->FragmentProgram._Current->Base.Parameters); } /** * See if we can do early diffuse+specular (primary+secondary) color * add per vertex instead of per-fragment. */ static void _swrast_update_specular_vertex_add(struct gl_context *ctx) { SWcontext *swrast = SWRAST_CONTEXT(ctx); GLboolean separateSpecular = ctx->Fog.ColorSumEnabled || (ctx->Light.Enabled && ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR); swrast->SpecularVertexAdd = (separateSpecular && ctx->Texture._MaxEnabledTexImageUnit == -1 && !_swrast_use_fragment_program(ctx) && !ctx->ATIFragmentShader._Enabled); } #define _SWRAST_NEW_DERIVED (_SWRAST_NEW_RASTERMASK | \ _NEW_PROGRAM_CONSTANTS | \ _NEW_TEXTURE | \ _NEW_HINT | \ _NEW_POLYGON ) /* State referenced by _swrast_choose_triangle, _swrast_choose_line. */ #define _SWRAST_NEW_TRIANGLE (_SWRAST_NEW_DERIVED | \ _NEW_RENDERMODE| \ _NEW_POLYGON| \ _NEW_DEPTH| \ _NEW_STENCIL| \ _NEW_COLOR| \ _NEW_TEXTURE| \ _SWRAST_NEW_RASTERMASK| \ _NEW_LIGHT| \ _NEW_FOG | \ _MESA_NEW_SEPARATE_SPECULAR) #define _SWRAST_NEW_LINE (_SWRAST_NEW_DERIVED | \ _NEW_RENDERMODE| \ _NEW_LINE| \ _NEW_TEXTURE| \ _NEW_LIGHT| \ _NEW_FOG| \ _NEW_DEPTH | \ _MESA_NEW_SEPARATE_SPECULAR) #define _SWRAST_NEW_POINT (_SWRAST_NEW_DERIVED | \ _NEW_RENDERMODE | \ _NEW_POINT | \ _NEW_TEXTURE | \ _NEW_LIGHT | \ _NEW_FOG | \ _MESA_NEW_SEPARATE_SPECULAR) #define _SWRAST_NEW_TEXTURE_SAMPLE_FUNC _NEW_TEXTURE #define _SWRAST_NEW_TEXTURE_ENV_MODE _NEW_TEXTURE #define _SWRAST_NEW_BLEND_FUNC _NEW_COLOR /** * Stub for swrast->Triangle to select a true triangle function * after a state change. */ static void _swrast_validate_triangle( struct gl_context *ctx, const SWvertex *v0, const SWvertex *v1, const SWvertex *v2 ) { SWcontext *swrast = SWRAST_CONTEXT(ctx); _swrast_validate_derived( ctx ); swrast->choose_triangle( ctx ); assert(swrast->Triangle); if (swrast->SpecularVertexAdd) { /* separate specular color, but no texture */ swrast->SpecTriangle = swrast->Triangle; swrast->Triangle = _swrast_add_spec_terms_triangle; } swrast->Triangle( ctx, v0, v1, v2 ); } /** * Called via swrast->Line. Examine current GL state and choose a software * line routine. Then call it. */ static void _swrast_validate_line( struct gl_context *ctx, const SWvertex *v0, const SWvertex *v1 ) { SWcontext *swrast = SWRAST_CONTEXT(ctx); _swrast_validate_derived( ctx ); swrast->choose_line( ctx ); assert(swrast->Line); if (swrast->SpecularVertexAdd) { swrast->SpecLine = swrast->Line; swrast->Line = _swrast_add_spec_terms_line; } swrast->Line( ctx, v0, v1 ); } /** * Called via swrast->Point. Examine current GL state and choose a software * point routine. Then call it. */ static void _swrast_validate_point( struct gl_context *ctx, const SWvertex *v0 ) { SWcontext *swrast = SWRAST_CONTEXT(ctx); _swrast_validate_derived( ctx ); swrast->choose_point( ctx ); if (swrast->SpecularVertexAdd) { swrast->SpecPoint = swrast->Point; swrast->Point = _swrast_add_spec_terms_point; } swrast->Point( ctx, v0 ); } /** * Called via swrast->BlendFunc. Examine GL state to choose a blending * function, then call it. */ static void _swrast_validate_blend_func(struct gl_context *ctx, GLuint n, const GLubyte mask[], GLvoid *src, const GLvoid *dst, GLenum chanType ) { SWcontext *swrast = SWRAST_CONTEXT(ctx); _swrast_validate_derived( ctx ); /* why is this needed? */ _swrast_choose_blend_func( ctx, chanType ); swrast->BlendFunc( ctx, n, mask, src, dst, chanType ); } static void _swrast_sleep( struct gl_context *ctx, GLbitfield new_state ) { (void) ctx; (void) new_state; } static void _swrast_invalidate_state( struct gl_context *ctx, GLbitfield new_state ) { SWcontext *swrast = SWRAST_CONTEXT(ctx); GLuint i; swrast->NewState |= new_state; /* After 10 statechanges without any swrast functions being called, * put the module to sleep. */ if (++swrast->StateChanges > 10) { swrast->InvalidateState = _swrast_sleep; swrast->NewState = ~0; new_state = ~0; } if (new_state & swrast->InvalidateTriangleMask) swrast->Triangle = _swrast_validate_triangle; if (new_state & swrast->InvalidateLineMask) swrast->Line = _swrast_validate_line; if (new_state & swrast->InvalidatePointMask) swrast->Point = _swrast_validate_point; if (new_state & _SWRAST_NEW_BLEND_FUNC) swrast->BlendFunc = _swrast_validate_blend_func; if (new_state & _SWRAST_NEW_TEXTURE_SAMPLE_FUNC) for (i = 0 ; i < ARRAY_SIZE(swrast->TextureSample); i++) swrast->TextureSample[i] = NULL; } void _swrast_update_texture_samplers(struct gl_context *ctx) { SWcontext *swrast = SWRAST_CONTEXT(ctx); GLuint u; if (!swrast) return; /* pipe hack */ for (u = 0; u < ARRAY_SIZE(swrast->TextureSample); u++) { struct gl_texture_object *tObj = ctx->Texture.Unit[u]._Current; /* Note: If tObj is NULL, the sample function will be a simple * function that just returns opaque black (0,0,0,1). */ _mesa_update_fetch_functions(ctx, u); swrast->TextureSample[u] = _swrast_choose_texture_sample_func(ctx, tObj, _mesa_get_samplerobj(ctx, u)); } } /** * Update swrast->_ActiveAttribs, swrast->_NumActiveAttribs, * swrast->_ActiveAtttribMask. */ static void _swrast_update_active_attribs(struct gl_context *ctx) { SWcontext *swrast = SWRAST_CONTEXT(ctx); GLbitfield64 attribsMask; /* * Compute _ActiveAttribsMask = which fragment attributes are needed. */ if (_swrast_use_fragment_program(ctx)) { /* fragment program/shader */ attribsMask = ctx->FragmentProgram._Current->Base.InputsRead; attribsMask &= ~VARYING_BIT_POS; /* WPOS is always handled specially */ } else if (ctx->ATIFragmentShader._Enabled) { attribsMask = VARYING_BIT_COL0 | VARYING_BIT_COL1 | VARYING_BIT_FOGC | VARYING_BITS_TEX_ANY; } else { /* fixed function */ attribsMask = 0x0; #if CHAN_TYPE == GL_FLOAT attribsMask |= VARYING_BIT_COL0; #endif if (ctx->Fog.ColorSumEnabled || (ctx->Light.Enabled && ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR)) { attribsMask |= VARYING_BIT_COL1; } if (swrast->_FogEnabled) attribsMask |= VARYING_BIT_FOGC; attribsMask |= (ctx->Texture._EnabledCoordUnits << VARYING_SLOT_TEX0); } swrast->_ActiveAttribMask = attribsMask; /* Update _ActiveAttribs[] list */ { GLuint i, num = 0; for (i = 0; i < VARYING_SLOT_MAX; i++) { if (attribsMask & BITFIELD64_BIT(i)) { swrast->_ActiveAttribs[num++] = i; /* how should this attribute be interpolated? */ if (i == VARYING_SLOT_COL0 || i == VARYING_SLOT_COL1) swrast->_InterpMode[i] = ctx->Light.ShadeModel; else swrast->_InterpMode[i] = GL_SMOOTH; } } swrast->_NumActiveAttribs = num; } } void _swrast_validate_derived( struct gl_context *ctx ) { SWcontext *swrast = SWRAST_CONTEXT(ctx); if (swrast->NewState) { if (swrast->NewState & _NEW_POLYGON) _swrast_update_polygon( ctx ); if (swrast->NewState & (_NEW_HINT | _NEW_PROGRAM)) _swrast_update_fog_hint( ctx ); if (swrast->NewState & _SWRAST_NEW_TEXTURE_ENV_MODE) _swrast_update_texture_env( ctx ); if (swrast->NewState & (_NEW_FOG | _NEW_PROGRAM)) _swrast_update_fog_state( ctx ); if (swrast->NewState & (_NEW_PROGRAM_CONSTANTS | _NEW_PROGRAM)) _swrast_update_fragment_program( ctx, swrast->NewState ); if (swrast->NewState & (_NEW_TEXTURE | _NEW_PROGRAM)) { _swrast_update_texture_samplers( ctx ); } if (swrast->NewState & (_NEW_COLOR | _NEW_PROGRAM)) _swrast_update_deferred_texture(ctx); if (swrast->NewState & _SWRAST_NEW_RASTERMASK) _swrast_update_rasterflags( ctx ); if (swrast->NewState & (_NEW_DEPTH | _NEW_FOG | _NEW_LIGHT | _NEW_PROGRAM | _NEW_TEXTURE)) _swrast_update_active_attribs(ctx); if (swrast->NewState & (_NEW_FOG | _NEW_PROGRAM | _NEW_LIGHT | _NEW_TEXTURE)) _swrast_update_specular_vertex_add(ctx); swrast->NewState = 0; swrast->StateChanges = 0; swrast->InvalidateState = _swrast_invalidate_state; } } #define SWRAST_DEBUG 0 /* Public entrypoints: See also s_bitmap.c, etc. */ void _swrast_Quad( struct gl_context *ctx, const SWvertex *v0, const SWvertex *v1, const SWvertex *v2, const SWvertex *v3 ) { if (SWRAST_DEBUG) { _mesa_debug(ctx, "_swrast_Quad\n"); _swrast_print_vertex( ctx, v0 ); _swrast_print_vertex( ctx, v1 ); _swrast_print_vertex( ctx, v2 ); _swrast_print_vertex( ctx, v3 ); } SWRAST_CONTEXT(ctx)->Triangle( ctx, v0, v1, v3 ); SWRAST_CONTEXT(ctx)->Triangle( ctx, v1, v2, v3 ); } void _swrast_Triangle( struct gl_context *ctx, const SWvertex *v0, const SWvertex *v1, const SWvertex *v2 ) { if (SWRAST_DEBUG) { _mesa_debug(ctx, "_swrast_Triangle\n"); _swrast_print_vertex( ctx, v0 ); _swrast_print_vertex( ctx, v1 ); _swrast_print_vertex( ctx, v2 ); } SWRAST_CONTEXT(ctx)->Triangle( ctx, v0, v1, v2 ); } void _swrast_Line( struct gl_context *ctx, const SWvertex *v0, const SWvertex *v1 ) { if (SWRAST_DEBUG) { _mesa_debug(ctx, "_swrast_Line\n"); _swrast_print_vertex( ctx, v0 ); _swrast_print_vertex( ctx, v1 ); } SWRAST_CONTEXT(ctx)->Line( ctx, v0, v1 ); } void _swrast_Point( struct gl_context *ctx, const SWvertex *v0 ) { if (SWRAST_DEBUG) { _mesa_debug(ctx, "_swrast_Point\n"); _swrast_print_vertex( ctx, v0 ); } SWRAST_CONTEXT(ctx)->Point( ctx, v0 ); } void _swrast_InvalidateState( struct gl_context *ctx, GLbitfield new_state ) { if (SWRAST_DEBUG) { _mesa_debug(ctx, "_swrast_InvalidateState\n"); } SWRAST_CONTEXT(ctx)->InvalidateState( ctx, new_state ); } void _swrast_ResetLineStipple( struct gl_context *ctx ) { if (SWRAST_DEBUG) { _mesa_debug(ctx, "_swrast_ResetLineStipple\n"); } SWRAST_CONTEXT(ctx)->StippleCounter = 0; } void _swrast_SetFacing(struct gl_context *ctx, GLuint facing) { SWRAST_CONTEXT(ctx)->PointLineFacing = facing; } void _swrast_allow_vertex_fog( struct gl_context *ctx, GLboolean value ) { if (SWRAST_DEBUG) { _mesa_debug(ctx, "_swrast_allow_vertex_fog %d\n", value); } SWRAST_CONTEXT(ctx)->InvalidateState( ctx, _NEW_HINT ); SWRAST_CONTEXT(ctx)->AllowVertexFog = value; } void _swrast_allow_pixel_fog( struct gl_context *ctx, GLboolean value ) { if (SWRAST_DEBUG) { _mesa_debug(ctx, "_swrast_allow_pixel_fog %d\n", value); } SWRAST_CONTEXT(ctx)->InvalidateState( ctx, _NEW_HINT ); SWRAST_CONTEXT(ctx)->AllowPixelFog = value; } /** * Initialize native program limits by copying the logical limits. * See comments in init_program_limits() in context.c */ static void init_program_native_limits(struct gl_program_constants *prog) { prog->MaxNativeInstructions = prog->MaxInstructions; prog->MaxNativeAluInstructions = prog->MaxAluInstructions; prog->MaxNativeTexInstructions = prog->MaxTexInstructions; prog->MaxNativeTexIndirections = prog->MaxTexIndirections; prog->MaxNativeAttribs = prog->MaxAttribs; prog->MaxNativeTemps = prog->MaxTemps; prog->MaxNativeAddressRegs = prog->MaxAddressRegs; prog->MaxNativeParameters = prog->MaxParameters; } GLboolean _swrast_CreateContext( struct gl_context *ctx ) { GLuint i; SWcontext *swrast = calloc(1, sizeof(SWcontext)); #ifdef _OPENMP const GLuint maxThreads = omp_get_max_threads(); #else const GLuint maxThreads = 1; #endif assert(ctx->Const.MaxViewportWidth <= SWRAST_MAX_WIDTH); assert(ctx->Const.MaxViewportHeight <= SWRAST_MAX_WIDTH); assert(ctx->Const.MaxRenderbufferSize <= SWRAST_MAX_WIDTH); /* make sure largest texture image is <= SWRAST_MAX_WIDTH in size */ assert((1 << (ctx->Const.MaxTextureLevels - 1)) <= SWRAST_MAX_WIDTH); assert((1 << (ctx->Const.MaxCubeTextureLevels - 1)) <= SWRAST_MAX_WIDTH); assert((1 << (ctx->Const.Max3DTextureLevels - 1)) <= SWRAST_MAX_WIDTH); assert(PROG_MAX_WIDTH == SWRAST_MAX_WIDTH); if (SWRAST_DEBUG) { _mesa_debug(ctx, "_swrast_CreateContext\n"); } if (!swrast) return GL_FALSE; swrast->NewState = ~0; swrast->choose_point = _swrast_choose_point; swrast->choose_line = _swrast_choose_line; swrast->choose_triangle = _swrast_choose_triangle; swrast->InvalidatePointMask = _SWRAST_NEW_POINT; swrast->InvalidateLineMask = _SWRAST_NEW_LINE; swrast->InvalidateTriangleMask = _SWRAST_NEW_TRIANGLE; swrast->Point = _swrast_validate_point; swrast->Line = _swrast_validate_line; swrast->Triangle = _swrast_validate_triangle; swrast->InvalidateState = _swrast_sleep; swrast->BlendFunc = _swrast_validate_blend_func; swrast->AllowVertexFog = GL_TRUE; swrast->AllowPixelFog = GL_TRUE; swrast->Driver.SpanRenderStart = _swrast_span_render_start; swrast->Driver.SpanRenderFinish = _swrast_span_render_finish; for (i = 0; i < ARRAY_SIZE(swrast->TextureSample); i++) swrast->TextureSample[i] = NULL; /* SpanArrays is global and shared by all SWspan instances. However, when * using multiple threads, it is necessary to have one SpanArrays instance * per thread. */ swrast->SpanArrays = malloc(maxThreads * sizeof(SWspanarrays)); if (!swrast->SpanArrays) { free(swrast); return GL_FALSE; } for(i = 0; i < maxThreads; i++) { swrast->SpanArrays[i].ChanType = CHAN_TYPE; #if CHAN_TYPE == GL_UNSIGNED_BYTE swrast->SpanArrays[i].rgba = swrast->SpanArrays[i].rgba8; #elif CHAN_TYPE == GL_UNSIGNED_SHORT swrast->SpanArrays[i].rgba = swrast->SpanArrays[i].rgba16; #else swrast->SpanArrays[i].rgba = swrast->SpanArrays[i].attribs[VARYING_SLOT_COL0]; #endif } /* init point span buffer */ swrast->PointSpan.primitive = GL_POINT; swrast->PointSpan.end = 0; swrast->PointSpan.facing = 0; swrast->PointSpan.array = swrast->SpanArrays; init_program_native_limits(&ctx->Const.Program[MESA_SHADER_VERTEX]); init_program_native_limits(&ctx->Const.Program[MESA_SHADER_GEOMETRY]); init_program_native_limits(&ctx->Const.Program[MESA_SHADER_FRAGMENT]); ctx->swrast_context = swrast; swrast->stencil_temp.buf1 = malloc(SWRAST_MAX_WIDTH * sizeof(GLubyte)); swrast->stencil_temp.buf2 = malloc(SWRAST_MAX_WIDTH * sizeof(GLubyte)); swrast->stencil_temp.buf3 = malloc(SWRAST_MAX_WIDTH * sizeof(GLubyte)); swrast->stencil_temp.buf4 = malloc(SWRAST_MAX_WIDTH * sizeof(GLubyte)); if (!swrast->stencil_temp.buf1 || !swrast->stencil_temp.buf2 || !swrast->stencil_temp.buf3 || !swrast->stencil_temp.buf4) { _swrast_DestroyContext(ctx); return GL_FALSE; } return GL_TRUE; } void _swrast_DestroyContext( struct gl_context *ctx ) { SWcontext *swrast = SWRAST_CONTEXT(ctx); if (SWRAST_DEBUG) { _mesa_debug(ctx, "_swrast_DestroyContext\n"); } free( swrast->SpanArrays ); free( swrast->ZoomedArrays ); free( swrast->TexelBuffer ); free(swrast->stencil_temp.buf1); free(swrast->stencil_temp.buf2); free(swrast->stencil_temp.buf3); free(swrast->stencil_temp.buf4); free( swrast ); ctx->swrast_context = 0; } struct swrast_device_driver * _swrast_GetDeviceDriverReference( struct gl_context *ctx ) { SWcontext *swrast = SWRAST_CONTEXT(ctx); return &swrast->Driver; } void _swrast_flush( struct gl_context *ctx ) { SWcontext *swrast = SWRAST_CONTEXT(ctx); /* flush any pending fragments from rendering points */ if (swrast->PointSpan.end > 0) { _swrast_write_rgba_span(ctx, &(swrast->PointSpan)); swrast->PointSpan.end = 0; } } void _swrast_render_primitive( struct gl_context *ctx, GLenum prim ) { SWcontext *swrast = SWRAST_CONTEXT(ctx); if (swrast->Primitive == GL_POINTS && prim != GL_POINTS) { _swrast_flush(ctx); } swrast->Primitive = prim; } /** called via swrast->Driver.SpanRenderStart() */ void _swrast_span_render_start(struct gl_context *ctx) { _swrast_map_textures(ctx); _swrast_map_renderbuffers(ctx); } /** called via swrast->Driver.SpanRenderFinish() */ void _swrast_span_render_finish(struct gl_context *ctx) { _swrast_unmap_textures(ctx); _swrast_unmap_renderbuffers(ctx); } void _swrast_render_start( struct gl_context *ctx ) { SWcontext *swrast = SWRAST_CONTEXT(ctx); if (swrast->Driver.SpanRenderStart) swrast->Driver.SpanRenderStart( ctx ); swrast->PointSpan.end = 0; } void _swrast_render_finish( struct gl_context *ctx ) { SWcontext *swrast = SWRAST_CONTEXT(ctx); struct gl_query_object *query = ctx->Query.CurrentOcclusionObject; _swrast_flush(ctx); if (swrast->Driver.SpanRenderFinish) swrast->Driver.SpanRenderFinish( ctx ); if (query && (query->Target == GL_ANY_SAMPLES_PASSED || query->Target == GL_ANY_SAMPLES_PASSED_CONSERVATIVE)) query->Result = !!query->Result; } #define SWRAST_DEBUG_VERTICES 0 void _swrast_print_vertex( struct gl_context *ctx, const SWvertex *v ) { GLuint i; if (SWRAST_DEBUG_VERTICES) { _mesa_debug(ctx, "win %f %f %f %f\n", v->attrib[VARYING_SLOT_POS][0], v->attrib[VARYING_SLOT_POS][1], v->attrib[VARYING_SLOT_POS][2], v->attrib[VARYING_SLOT_POS][3]); for (i = 0 ; i < ctx->Const.MaxTextureCoordUnits ; i++) if (ctx->Texture.Unit[i]._Current) _mesa_debug(ctx, "texcoord[%d] %f %f %f %f\n", i, v->attrib[VARYING_SLOT_TEX0 + i][0], v->attrib[VARYING_SLOT_TEX0 + i][1], v->attrib[VARYING_SLOT_TEX0 + i][2], v->attrib[VARYING_SLOT_TEX0 + i][3]); #if CHAN_TYPE == GL_FLOAT _mesa_debug(ctx, "color %f %f %f %f\n", v->color[0], v->color[1], v->color[2], v->color[3]); #else _mesa_debug(ctx, "color %d %d %d %d\n", v->color[0], v->color[1], v->color[2], v->color[3]); #endif _mesa_debug(ctx, "spec %g %g %g %g\n", v->attrib[VARYING_SLOT_COL1][0], v->attrib[VARYING_SLOT_COL1][1], v->attrib[VARYING_SLOT_COL1][2], v->attrib[VARYING_SLOT_COL1][3]); _mesa_debug(ctx, "fog %f\n", v->attrib[VARYING_SLOT_FOGC][0]); _mesa_debug(ctx, "index %f\n", v->attrib[VARYING_SLOT_CI][0]); _mesa_debug(ctx, "pointsize %f\n", v->pointSize); _mesa_debug(ctx, "\n"); } }