/* * Mesa 3-D graphics library * Version: 7.1 * * Copyright (C) 1999-2007 Brian Paul All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include "main/glheader.h" #include "main/context.h" #include "main/colormac.h" #include "main/condrender.h" #include "main/convolve.h" #include "main/image.h" #include "main/macros.h" #include "main/imports.h" #include "s_context.h" #include "s_depth.h" #include "s_span.h" #include "s_stencil.h" #include "s_zoom.h" /** * Determine if there's overlap in an image copy. * This test also compensates for the fact that copies are done from * bottom to top and overlaps can sometimes be handled correctly * without making a temporary image copy. * \return GL_TRUE if the regions overlap, GL_FALSE otherwise. */ static GLboolean regions_overlap(GLint srcx, GLint srcy, GLint dstx, GLint dsty, GLint width, GLint height, GLfloat zoomX, GLfloat zoomY) { if (zoomX == 1.0 && zoomY == 1.0) { /* no zoom */ if (srcx >= dstx + width || (srcx + width <= dstx)) { return GL_FALSE; } else if (srcy < dsty) { /* this is OK */ return GL_FALSE; } else if (srcy > dsty + height) { return GL_FALSE; } else { return GL_TRUE; } } else { /* add one pixel of slop when zooming, just to be safe */ if (srcx > (dstx + ((zoomX > 0.0F) ? (width * zoomX + 1.0F) : 0.0F))) { /* src is completely right of dest */ return GL_FALSE; } else if (srcx + width + 1.0F < dstx + ((zoomX > 0.0F) ? 0.0F : (width * zoomX))) { /* src is completely left of dest */ return GL_FALSE; } else if ((srcy < dsty) && (srcy + height < dsty + (height * zoomY))) { /* src is completely below dest */ return GL_FALSE; } else if ((srcy > dsty) && (srcy + height > dsty + (height * zoomY))) { /* src is completely above dest */ return GL_FALSE; } else { return GL_TRUE; } } } /** * RGBA copypixels with convolution. */ static void copy_conv_rgba_pixels(GLcontext *ctx, GLint srcx, GLint srcy, GLint width, GLint height, GLint destx, GLint desty) { GLint row; const GLboolean zoom = ctx->Pixel.ZoomX != 1.0F || ctx->Pixel.ZoomY != 1.0F; const GLbitfield transferOps = ctx->_ImageTransferState; const GLboolean sink = (ctx->Pixel.MinMaxEnabled && ctx->MinMax.Sink) || (ctx->Pixel.HistogramEnabled && ctx->Histogram.Sink); GLfloat *dest, *tmpImage, *convImage; SWspan span; INIT_SPAN(span, GL_BITMAP); _swrast_span_default_attribs(ctx, &span); span.arrayMask = SPAN_RGBA; span.arrayAttribs = FRAG_BIT_COL0; /* allocate space for GLfloat image */ tmpImage = (GLfloat *) _mesa_malloc(width * height * 4 * sizeof(GLfloat)); if (!tmpImage) { _mesa_error(ctx, GL_OUT_OF_MEMORY, "glCopyPixels"); return; } convImage = (GLfloat *) _mesa_malloc(width * height * 4 * sizeof(GLfloat)); if (!convImage) { _mesa_free(tmpImage); _mesa_error(ctx, GL_OUT_OF_MEMORY, "glCopyPixels"); return; } /* read source image as float/RGBA */ dest = tmpImage; for (row = 0; row < height; row++) { _swrast_read_rgba_span(ctx, ctx->ReadBuffer->_ColorReadBuffer, width, srcx, srcy + row, GL_FLOAT, dest); dest += 4 * width; } /* do the image transfer ops which preceed convolution */ for (row = 0; row < height; row++) { GLfloat (*rgba)[4] = (GLfloat (*)[4]) (tmpImage + row * width * 4); _mesa_apply_rgba_transfer_ops(ctx, transferOps & IMAGE_PRE_CONVOLUTION_BITS, width, rgba); } /* do convolution */ if (ctx->Pixel.Convolution2DEnabled) { _mesa_convolve_2d_image(ctx, &width, &height, tmpImage, convImage); } else { ASSERT(ctx->Pixel.Separable2DEnabled); _mesa_convolve_sep_image(ctx, &width, &height, tmpImage, convImage); } _mesa_free(tmpImage); /* do remaining post-convolution image transfer ops */ for (row = 0; row < height; row++) { GLfloat (*rgba)[4] = (GLfloat (*)[4]) (convImage + row * width * 4); _mesa_apply_rgba_transfer_ops(ctx, transferOps & IMAGE_POST_CONVOLUTION_BITS, width, rgba); } if (!sink) { /* write the new image */ for (row = 0; row < height; row++) { const GLfloat *src = convImage + row * width * 4; GLfloat *rgba = (GLfloat *) span.array->attribs[FRAG_ATTRIB_COL0]; /* copy convolved colors into span array */ memcpy(rgba, src, width * 4 * sizeof(GLfloat)); /* write span */ span.x = destx; span.y = desty + row; span.end = width; span.array->ChanType = GL_FLOAT; if (zoom) { _swrast_write_zoomed_rgba_span(ctx, destx, desty, &span, rgba); } else { _swrast_write_rgba_span(ctx, &span); } } /* restore this */ span.array->ChanType = CHAN_TYPE; } _mesa_free(convImage); } /** * RGBA copypixels */ static void copy_rgba_pixels(GLcontext *ctx, GLint srcx, GLint srcy, GLint width, GLint height, GLint destx, GLint desty) { GLfloat *tmpImage, *p; GLint sy, dy, stepy, row; const GLboolean zoom = ctx->Pixel.ZoomX != 1.0F || ctx->Pixel.ZoomY != 1.0F; GLint overlapping; GLuint transferOps = ctx->_ImageTransferState; SWspan span; if (!ctx->ReadBuffer->_ColorReadBuffer) { /* no readbuffer - OK */ return; } if (ctx->Pixel.Convolution2DEnabled || ctx->Pixel.Separable2DEnabled) { copy_conv_rgba_pixels(ctx, srcx, srcy, width, height, destx, desty); return; } else if (ctx->Pixel.Convolution1DEnabled) { /* make sure we don't apply 1D convolution */ transferOps &= ~(IMAGE_CONVOLUTION_BIT | IMAGE_POST_CONVOLUTION_SCALE_BIAS); } if (ctx->DrawBuffer == ctx->ReadBuffer) { overlapping = regions_overlap(srcx, srcy, destx, desty, width, height, ctx->Pixel.ZoomX, ctx->Pixel.ZoomY); } else { overlapping = GL_FALSE; } /* Determine if copy should be done bottom-to-top or top-to-bottom */ if (!overlapping && srcy < desty) { /* top-down max-to-min */ sy = srcy + height - 1; dy = desty + height - 1; stepy = -1; } else { /* bottom-up min-to-max */ sy = srcy; dy = desty; stepy = 1; } INIT_SPAN(span, GL_BITMAP); _swrast_span_default_attribs(ctx, &span); span.arrayMask = SPAN_RGBA; span.arrayAttribs = FRAG_BIT_COL0; /* we'll fill in COL0 attrib values */ if (overlapping) { tmpImage = (GLfloat *) _mesa_malloc(width * height * sizeof(GLfloat) * 4); if (!tmpImage) { _mesa_error( ctx, GL_OUT_OF_MEMORY, "glCopyPixels" ); return; } /* read the source image as RGBA/float */ p = tmpImage; for (row = 0; row < height; row++) { _swrast_read_rgba_span( ctx, ctx->ReadBuffer->_ColorReadBuffer, width, srcx, sy + row, GL_FLOAT, p ); p += width * 4; } p = tmpImage; } else { tmpImage = NULL; /* silence compiler warnings */ p = NULL; } ASSERT(width < MAX_WIDTH); for (row = 0; row < height; row++, sy += stepy, dy += stepy) { GLvoid *rgba = span.array->attribs[FRAG_ATTRIB_COL0]; /* Get row/span of source pixels */ if (overlapping) { /* get from buffered image */ memcpy(rgba, p, width * sizeof(GLfloat) * 4); p += width * 4; } else { /* get from framebuffer */ _swrast_read_rgba_span( ctx, ctx->ReadBuffer->_ColorReadBuffer, width, srcx, sy, GL_FLOAT, rgba ); } if (transferOps) { _mesa_apply_rgba_transfer_ops(ctx, transferOps, width, (GLfloat (*)[4]) rgba); } /* Write color span */ span.x = destx; span.y = dy; span.end = width; span.array->ChanType = GL_FLOAT; if (zoom) { _swrast_write_zoomed_rgba_span(ctx, destx, desty, &span, rgba); } else { _swrast_write_rgba_span(ctx, &span); } } span.array->ChanType = CHAN_TYPE; /* restore */ if (overlapping) _mesa_free(tmpImage); } static void copy_ci_pixels( GLcontext *ctx, GLint srcx, GLint srcy, GLint width, GLint height, GLint destx, GLint desty ) { GLuint *tmpImage,*p; GLint sy, dy, stepy; GLint j; const GLboolean zoom = ctx->Pixel.ZoomX != 1.0F || ctx->Pixel.ZoomY != 1.0F; GLint overlapping; SWspan span; if (!ctx->ReadBuffer->_ColorReadBuffer) { /* no readbuffer - OK */ return; } INIT_SPAN(span, GL_BITMAP); _swrast_span_default_attribs(ctx, &span); span.arrayMask = SPAN_INDEX; if (ctx->DrawBuffer == ctx->ReadBuffer) { overlapping = regions_overlap(srcx, srcy, destx, desty, width, height, ctx->Pixel.ZoomX, ctx->Pixel.ZoomY); } else { overlapping = GL_FALSE; } /* Determine if copy should be bottom-to-top or top-to-bottom */ if (!overlapping && srcy < desty) { /* top-down max-to-min */ sy = srcy + height - 1; dy = desty + height - 1; stepy = -1; } else { /* bottom-up min-to-max */ sy = srcy; dy = desty; stepy = 1; } if (overlapping) { GLint ssy = sy; tmpImage = (GLuint *) _mesa_malloc(width * height * sizeof(GLuint)); if (!tmpImage) { _mesa_error( ctx, GL_OUT_OF_MEMORY, "glCopyPixels" ); return; } /* read the image */ p = tmpImage; for (j = 0; j < height; j++, ssy += stepy) { _swrast_read_index_span( ctx, ctx->ReadBuffer->_ColorReadBuffer, width, srcx, ssy, p ); p += width; } p = tmpImage; } else { tmpImage = NULL; /* silence compiler warning */ p = NULL; } for (j = 0; j < height; j++, sy += stepy, dy += stepy) { /* Get color indexes */ if (overlapping) { memcpy(span.array->index, p, width * sizeof(GLuint)); p += width; } else { _swrast_read_index_span( ctx, ctx->ReadBuffer->_ColorReadBuffer, width, srcx, sy, span.array->index ); } if (ctx->_ImageTransferState) _mesa_apply_ci_transfer_ops(ctx, ctx->_ImageTransferState, width, span.array->index); /* write color indexes */ span.x = destx; span.y = dy; span.end = width; if (zoom) _swrast_write_zoomed_index_span(ctx, destx, desty, &span); else _swrast_write_index_span(ctx, &span); } if (overlapping) _mesa_free(tmpImage); } /** * Convert floating point Z values to integer Z values with pixel transfer's * Z scale and bias. */ static void scale_and_bias_z(GLcontext *ctx, GLuint width, const GLfloat depth[], GLuint z[]) { const GLuint depthMax = ctx->DrawBuffer->_DepthMax; GLuint i; if (depthMax <= 0xffffff && ctx->Pixel.DepthScale == 1.0 && ctx->Pixel.DepthBias == 0.0) { /* no scale or bias and no clamping and no worry of overflow */ const GLfloat depthMaxF = ctx->DrawBuffer->_DepthMaxF; for (i = 0; i < width; i++) { z[i] = (GLuint) (depth[i] * depthMaxF); } } else { /* need to be careful with overflow */ const GLdouble depthMaxF = ctx->DrawBuffer->_DepthMaxF; for (i = 0; i < width; i++) { GLdouble d = depth[i] * ctx->Pixel.DepthScale + ctx->Pixel.DepthBias; d = CLAMP(d, 0.0, 1.0) * depthMaxF; if (d >= depthMaxF) z[i] = depthMax; else z[i] = (GLuint) d; } } } /* * TODO: Optimize!!!! */ static void copy_depth_pixels( GLcontext *ctx, GLint srcx, GLint srcy, GLint width, GLint height, GLint destx, GLint desty ) { struct gl_framebuffer *fb = ctx->ReadBuffer; struct gl_renderbuffer *readRb = fb->_DepthBuffer; GLfloat *p, *tmpImage; GLint sy, dy, stepy; GLint j; const GLboolean zoom = ctx->Pixel.ZoomX != 1.0F || ctx->Pixel.ZoomY != 1.0F; GLint overlapping; SWspan span; if (!readRb) { /* no readbuffer - OK */ return; } INIT_SPAN(span, GL_BITMAP); _swrast_span_default_attribs(ctx, &span); span.arrayMask = SPAN_Z; if (ctx->DrawBuffer == ctx->ReadBuffer) { overlapping = regions_overlap(srcx, srcy, destx, desty, width, height, ctx->Pixel.ZoomX, ctx->Pixel.ZoomY); } else { overlapping = GL_FALSE; } /* Determine if copy should be bottom-to-top or top-to-bottom */ if (!overlapping && srcy < desty) { /* top-down max-to-min */ sy = srcy + height - 1; dy = desty + height - 1; stepy = -1; } else { /* bottom-up min-to-max */ sy = srcy; dy = desty; stepy = 1; } if (overlapping) { GLint ssy = sy; tmpImage = (GLfloat *) _mesa_malloc(width * height * sizeof(GLfloat)); if (!tmpImage) { _mesa_error( ctx, GL_OUT_OF_MEMORY, "glCopyPixels" ); return; } p = tmpImage; for (j = 0; j < height; j++, ssy += stepy) { _swrast_read_depth_span_float(ctx, readRb, width, srcx, ssy, p); p += width; } p = tmpImage; } else { tmpImage = NULL; /* silence compiler warning */ p = NULL; } for (j = 0; j < height; j++, sy += stepy, dy += stepy) { GLfloat depth[MAX_WIDTH]; /* get depth values */ if (overlapping) { memcpy(depth, p, width * sizeof(GLfloat)); p += width; } else { _swrast_read_depth_span_float(ctx, readRb, width, srcx, sy, depth); } /* apply scale and bias */ scale_and_bias_z(ctx, width, depth, span.array->z); /* write depth values */ span.x = destx; span.y = dy; span.end = width; if (fb->Visual.rgbMode) { if (zoom) _swrast_write_zoomed_depth_span(ctx, destx, desty, &span); else _swrast_write_rgba_span(ctx, &span); } else { if (zoom) _swrast_write_zoomed_depth_span(ctx, destx, desty, &span); else _swrast_write_index_span(ctx, &span); } } if (overlapping) _mesa_free(tmpImage); } static void copy_stencil_pixels( GLcontext *ctx, GLint srcx, GLint srcy, GLint width, GLint height, GLint destx, GLint desty ) { struct gl_framebuffer *fb = ctx->ReadBuffer; struct gl_renderbuffer *rb = fb->_StencilBuffer; GLint sy, dy, stepy; GLint j; GLstencil *p, *tmpImage; const GLboolean zoom = ctx->Pixel.ZoomX != 1.0F || ctx->Pixel.ZoomY != 1.0F; GLint overlapping; if (!rb) { /* no readbuffer - OK */ return; } if (ctx->DrawBuffer == ctx->ReadBuffer) { overlapping = regions_overlap(srcx, srcy, destx, desty, width, height, ctx->Pixel.ZoomX, ctx->Pixel.ZoomY); } else { overlapping = GL_FALSE; } /* Determine if copy should be bottom-to-top or top-to-bottom */ if (!overlapping && srcy < desty) { /* top-down max-to-min */ sy = srcy + height - 1; dy = desty + height - 1; stepy = -1; } else { /* bottom-up min-to-max */ sy = srcy; dy = desty; stepy = 1; } if (overlapping) { GLint ssy = sy; tmpImage = (GLstencil *) _mesa_malloc(width * height * sizeof(GLstencil)); if (!tmpImage) { _mesa_error( ctx, GL_OUT_OF_MEMORY, "glCopyPixels" ); return; } p = tmpImage; for (j = 0; j < height; j++, ssy += stepy) { _swrast_read_stencil_span( ctx, rb, width, srcx, ssy, p ); p += width; } p = tmpImage; } else { tmpImage = NULL; /* silence compiler warning */ p = NULL; } for (j = 0; j < height; j++, sy += stepy, dy += stepy) { GLstencil stencil[MAX_WIDTH]; /* Get stencil values */ if (overlapping) { memcpy(stencil, p, width * sizeof(GLstencil)); p += width; } else { _swrast_read_stencil_span( ctx, rb, width, srcx, sy, stencil ); } _mesa_apply_stencil_transfer_ops(ctx, width, stencil); /* Write stencil values */ if (zoom) { _swrast_write_zoomed_stencil_span(ctx, destx, desty, width, destx, dy, stencil); } else { _swrast_write_stencil_span( ctx, width, destx, dy, stencil ); } } if (overlapping) _mesa_free(tmpImage); } /** * This isn't terribly efficient. If a driver really has combined * depth/stencil buffers the driver should implement an optimized * CopyPixels function. */ static void copy_depth_stencil_pixels(GLcontext *ctx, const GLint srcX, const GLint srcY, const GLint width, const GLint height, const GLint destX, const GLint destY) { struct gl_renderbuffer *stencilReadRb, *depthReadRb, *depthDrawRb; GLint sy, dy, stepy; GLint j; GLstencil *tempStencilImage = NULL, *stencilPtr = NULL; GLfloat *tempDepthImage = NULL, *depthPtr = NULL; const GLfloat depthScale = ctx->DrawBuffer->_DepthMaxF; const GLuint stencilMask = ctx->Stencil.WriteMask[0]; const GLboolean zoom = ctx->Pixel.ZoomX != 1.0F || ctx->Pixel.ZoomY != 1.0F; const GLboolean scaleOrBias = ctx->Pixel.DepthScale != 1.0 || ctx->Pixel.DepthBias != 0.0; GLint overlapping; depthDrawRb = ctx->DrawBuffer->_DepthBuffer; depthReadRb = ctx->ReadBuffer->_DepthBuffer; stencilReadRb = ctx->ReadBuffer->_StencilBuffer; ASSERT(depthDrawRb); ASSERT(depthReadRb); ASSERT(stencilReadRb); if (ctx->DrawBuffer == ctx->ReadBuffer) { overlapping = regions_overlap(srcX, srcY, destX, destY, width, height, ctx->Pixel.ZoomX, ctx->Pixel.ZoomY); } else { overlapping = GL_FALSE; } /* Determine if copy should be bottom-to-top or top-to-bottom */ if (!overlapping && srcY < destY) { /* top-down max-to-min */ sy = srcY + height - 1; dy = destY + height - 1; stepy = -1; } else { /* bottom-up min-to-max */ sy = srcY; dy = destY; stepy = 1; } if (overlapping) { GLint ssy = sy; if (stencilMask != 0x0) { tempStencilImage = (GLstencil *) _mesa_malloc(width * height * sizeof(GLstencil)); if (!tempStencilImage) { _mesa_error(ctx, GL_OUT_OF_MEMORY, "glCopyPixels"); return; } /* get copy of stencil pixels */ stencilPtr = tempStencilImage; for (j = 0; j < height; j++, ssy += stepy) { _swrast_read_stencil_span(ctx, stencilReadRb, width, srcX, ssy, stencilPtr); stencilPtr += width; } stencilPtr = tempStencilImage; } if (ctx->Depth.Mask) { tempDepthImage = (GLfloat *) _mesa_malloc(width * height * sizeof(GLfloat)); if (!tempDepthImage) { _mesa_error(ctx, GL_OUT_OF_MEMORY, "glCopyPixels"); _mesa_free(tempStencilImage); return; } /* get copy of depth pixels */ depthPtr = tempDepthImage; for (j = 0; j < height; j++, ssy += stepy) { _swrast_read_depth_span_float(ctx, depthReadRb, width, srcX, ssy, depthPtr); depthPtr += width; } depthPtr = tempDepthImage; } } for (j = 0; j < height; j++, sy += stepy, dy += stepy) { if (stencilMask != 0x0) { GLstencil stencil[MAX_WIDTH]; /* Get stencil values */ if (overlapping) { memcpy(stencil, stencilPtr, width * sizeof(GLstencil)); stencilPtr += width; } else { _swrast_read_stencil_span(ctx, stencilReadRb, width, srcX, sy, stencil); } _mesa_apply_stencil_transfer_ops(ctx, width, stencil); /* Write values */ if (zoom) { _swrast_write_zoomed_stencil_span(ctx, destX, destY, width, destX, dy, stencil); } else { _swrast_write_stencil_span( ctx, width, destX, dy, stencil ); } } if (ctx->Depth.Mask) { GLfloat depth[MAX_WIDTH]; GLuint zVals32[MAX_WIDTH]; GLushort zVals16[MAX_WIDTH]; GLvoid *zVals; GLuint zBytes; /* get depth values */ if (overlapping) { memcpy(depth, depthPtr, width * sizeof(GLfloat)); depthPtr += width; } else { _swrast_read_depth_span_float(ctx, depthReadRb, width, srcX, sy, depth); } /* scale & bias */ if (scaleOrBias) { _mesa_scale_and_bias_depth(ctx, width, depth); } /* convert to integer Z values */ if (depthDrawRb->DataType == GL_UNSIGNED_SHORT) { GLint k; for (k = 0; k < width; k++) zVals16[k] = (GLushort) (depth[k] * depthScale); zVals = zVals16; zBytes = 2; } else { GLint k; for (k = 0; k < width; k++) zVals32[k] = (GLuint) (depth[k] * depthScale); zVals = zVals32; zBytes = 4; } /* Write values */ if (zoom) { _swrast_write_zoomed_z_span(ctx, destX, destY, width, destX, dy, zVals); } else { _swrast_put_row(ctx, depthDrawRb, width, destX, dy, zVals, zBytes); } } } if (tempStencilImage) _mesa_free(tempStencilImage); if (tempDepthImage) _mesa_free(tempDepthImage); } /** * Try to do a fast copy pixels. */ static GLboolean fast_copy_pixels(GLcontext *ctx, GLint srcX, GLint srcY, GLsizei width, GLsizei height, GLint dstX, GLint dstY, GLenum type) { struct gl_framebuffer *srcFb = ctx->ReadBuffer; struct gl_framebuffer *dstFb = ctx->DrawBuffer; struct gl_renderbuffer *srcRb, *dstRb; GLint row, yStep; if (SWRAST_CONTEXT(ctx)->_RasterMask != 0x0 || ctx->Pixel.ZoomX != 1.0F || ctx->Pixel.ZoomY != 1.0F || ctx->_ImageTransferState) { /* can't handle these */ return GL_FALSE; } if (type == GL_COLOR) { if (dstFb->_NumColorDrawBuffers != 1) return GL_FALSE; srcRb = srcFb->_ColorReadBuffer; dstRb = dstFb->_ColorDrawBuffers[0]; } else if (type == GL_STENCIL) { srcRb = srcFb->_StencilBuffer; dstRb = dstFb->_StencilBuffer; } else if (type == GL_DEPTH) { srcRb = srcFb->_DepthBuffer; dstRb = dstFb->_DepthBuffer; } else { ASSERT(type == GL_DEPTH_STENCIL_EXT); /* XXX correct? */ srcRb = srcFb->Attachment[BUFFER_DEPTH].Renderbuffer; dstRb = dstFb->Attachment[BUFFER_DEPTH].Renderbuffer; } /* src and dst renderbuffers must be same format and type */ if (!srcRb || !dstRb || srcRb->DataType != dstRb->DataType || srcRb->_BaseFormat != dstRb->_BaseFormat) { return GL_FALSE; } /* clipping not supported */ if (srcX < 0 || srcX + width > (GLint) srcFb->Width || srcY < 0 || srcY + height > (GLint) srcFb->Height || dstX < dstFb->_Xmin || dstX + width > dstFb->_Xmax || dstY < dstFb->_Ymin || dstY + height > dstFb->_Ymax) { return GL_FALSE; } /* overlapping src/dst doesn't matter, just determine Y direction */ if (srcY < dstY) { /* top-down max-to-min */ srcY = srcY + height - 1; dstY = dstY + height - 1; yStep = -1; } else { /* bottom-up min-to-max */ yStep = 1; } for (row = 0; row < height; row++) { GLuint temp[MAX_WIDTH][4]; srcRb->GetRow(ctx, srcRb, width, srcX, srcY, temp); dstRb->PutRow(ctx, dstRb, width, dstX, dstY, temp, NULL); srcY += yStep; dstY += yStep; } return GL_TRUE; } /** * Do software-based glCopyPixels. * By time we get here, all parameters will have been error-checked. */ void _swrast_CopyPixels( GLcontext *ctx, GLint srcx, GLint srcy, GLsizei width, GLsizei height, GLint destx, GLint desty, GLenum type ) { SWcontext *swrast = SWRAST_CONTEXT(ctx); swrast_render_start(ctx); if (!_mesa_check_conditional_render(ctx)) return; /* don't copy */ if (swrast->NewState) _swrast_validate_derived( ctx ); if (!fast_copy_pixels(ctx, srcx, srcy, width, height, destx, desty, type)) { switch (type) { case GL_COLOR: if (ctx->Visual.rgbMode) { copy_rgba_pixels( ctx, srcx, srcy, width, height, destx, desty ); } else { copy_ci_pixels( ctx, srcx, srcy, width, height, destx, desty ); } break; case GL_DEPTH: copy_depth_pixels( ctx, srcx, srcy, width, height, destx, desty ); break; case GL_STENCIL: copy_stencil_pixels( ctx, srcx, srcy, width, height, destx, desty ); break; case GL_DEPTH_STENCIL_EXT: copy_depth_stencil_pixels(ctx, srcx, srcy, width, height, destx, desty); break; default: _mesa_problem(ctx, "unexpected type in _swrast_CopyPixels"); } } swrast_render_finish(ctx); }