/* * Copyright (c) 2011-2015, Intel Corporation * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation and/or * other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its contributors * may be used to endorse or promote products derived from this software without * specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "FixedPointParameterType.h" #include #include #include #include #include #include "Parameter.h" #include "ParameterAccessContext.h" #include "ConfigurationAccessContext.h" #include "Utility.h" #include #include #define base CParameterType using std::string; CFixedPointParameterType::CFixedPointParameterType(const string& strName) : base(strName), _uiIntegral(0), _uiFractional(0) { } string CFixedPointParameterType::getKind() const { return "FixedPointParameter"; } // Element properties void CFixedPointParameterType::showProperties(string& strResult) const { base::showProperties(strResult); // Notation strResult += "Notation: Q"; strResult += CUtility::toString(_uiIntegral); strResult += "."; strResult += CUtility::toString(_uiFractional); strResult += "\n"; } // XML Serialization value space handling // Value space handling for configuration import void CFixedPointParameterType::handleValueSpaceAttribute(CXmlElement& xmlConfigurableElementSettingsElement, CConfigurationAccessContext& configurationAccessContext) const { // Direction? if (!configurationAccessContext.serializeOut()) { // Get Value space from XML if (xmlConfigurableElementSettingsElement.hasAttribute("ValueSpace")) { configurationAccessContext.setValueSpaceRaw(xmlConfigurableElementSettingsElement.getAttributeBoolean("ValueSpace", "Raw")); } else { configurationAccessContext.setValueSpaceRaw(false); } } else { // Provide value space only if not the default one if (configurationAccessContext.valueSpaceIsRaw()) { xmlConfigurableElementSettingsElement.setAttributeString("ValueSpace", "Raw"); } } } bool CFixedPointParameterType::fromXml(const CXmlElement& xmlElement, CXmlSerializingContext& serializingContext) { // Size uint32_t uiSizeInBits = xmlElement.getAttributeInteger("Size"); // Q notation _uiIntegral = xmlElement.getAttributeInteger("Integral"); _uiFractional = xmlElement.getAttributeInteger("Fractional"); // Size vs. Q notation integrity check if (uiSizeInBits < getUtilSizeInBits()) { serializingContext.setError("Inconsistent Size vs. Q notation for " + getKind() + " " + xmlElement.getPath() + ": Summing (Integral + _uiFractional + 1) should not exceed given Size (" + xmlElement.getAttributeString("Size") + ")"); return false; } // Set the size setSize(uiSizeInBits / 8); return base::fromXml(xmlElement, serializingContext); } bool CFixedPointParameterType::toBlackboard(const string& strValue, uint32_t& uiValue, CParameterAccessContext& parameterAccessContext) const { bool bValueProvidedAsHexa = isHexadecimal(strValue); // Check data integrity if (bValueProvidedAsHexa && !parameterAccessContext.valueSpaceIsRaw()) { parameterAccessContext.setError("Hexadecimal values are not supported for " + getKind() + " when selected value space is real:"); return false; } if (parameterAccessContext.valueSpaceIsRaw()) { if (bValueProvidedAsHexa) { return convertFromHexadecimal(strValue, uiValue, parameterAccessContext); } return convertFromDecimal(strValue, uiValue, parameterAccessContext); } return convertFromQnm(strValue, uiValue, parameterAccessContext); } void CFixedPointParameterType::setOutOfRangeError(const string& strValue, CParameterAccessContext& parameterAccessContext) const { std::ostringstream strStream; strStream << "Value " << strValue << " standing out of admitted "; if (!parameterAccessContext.valueSpaceIsRaw()) { // Min/Max computation double dMin = 0; double dMax = 0; getRange(dMin, dMax); strStream << std::fixed << std::setprecision(_uiFractional) << "real range [" << dMin << ", " << dMax << "]"; } else { // Min/Max computation int32_t iMax = getMaxValue(); int32_t iMin = -iMax - 1; strStream << "raw range ["; if (isHexadecimal(strValue)) { // Format Min strStream << "0x" << std::hex << std::uppercase << std::setw(getSize() * 2) << std::setfill('0') << makeEncodable(iMin); // Format Max strStream << ", 0x" << std::hex << std::uppercase << std::setw(getSize() * 2) << std::setfill('0') << makeEncodable(iMax); } else { strStream << iMin << ", " << iMax; } strStream << "]"; } strStream << " for " << getKind(); parameterAccessContext.setError(strStream.str()); } bool CFixedPointParameterType::fromBlackboard(string& strValue, const uint32_t& uiValue, CParameterAccessContext& parameterAccessContext) const { int32_t iData = uiValue; // Check encodability assert(isEncodable((uint32_t)iData, false)); // Format std::ostringstream strStream; // Raw formatting? if (parameterAccessContext.valueSpaceIsRaw()) { // Hexa formatting? if (parameterAccessContext.outputRawFormatIsHex()) { strStream << "0x" << std::hex << std::uppercase << std::setw(getSize()*2) << std::setfill('0') << (uint32_t)iData; } else { // Sign extend signExtend(iData); strStream << iData; } } else { // Sign extend signExtend(iData); // Conversion double dData = binaryQnmToDouble(iData); strStream << std::fixed << std::setprecision(_uiFractional) << dData; } strValue = strStream.str(); return true; } // Value access bool CFixedPointParameterType::toBlackboard(double dUserValue, uint32_t& uiValue, CParameterAccessContext& parameterAccessContext) const { // Check that the value is within the allowed range for this type if (!checkValueAgainstRange(dUserValue)) { // Illegal value provided parameterAccessContext.setError("Value out of range"); return false; } // Do the conversion int32_t iData = doubleToBinaryQnm(dUserValue); // Check integrity assert(isEncodable((uint32_t)iData, true)); uiValue = iData; return true; } bool CFixedPointParameterType::fromBlackboard(double& dUserValue, uint32_t uiValue, CParameterAccessContext& parameterAccessContext) const { (void)parameterAccessContext; int32_t iData = uiValue; // Check unsigned value is encodable assert(isEncodable(uiValue, false)); // Sign extend signExtend(iData); dUserValue = binaryQnmToDouble(iData); return true; } // Util size uint32_t CFixedPointParameterType::getUtilSizeInBits() const { return _uiIntegral + _uiFractional + 1; } // Compute the range for the type (minimum and maximum values) void CFixedPointParameterType::getRange(double& dMin, double& dMax) const { dMax = (double)((1UL << (_uiIntegral + _uiFractional)) - 1) / (1UL << _uiFractional); dMin = -(double)(1UL << (_uiIntegral + _uiFractional)) / (1UL << _uiFractional); } bool CFixedPointParameterType::isHexadecimal(const string& strValue) const { return !strValue.compare(0, 2, "0x"); } bool CFixedPointParameterType::convertFromHexadecimal(const string& strValue, uint32_t& uiValue, CParameterAccessContext& parameterAccessContext) const { // For hexadecimal representation, we need full 32 bit range conversion. uint32_t uiData; if (!convertTo(strValue, uiData) || !isEncodable(uiData, false)) { setOutOfRangeError(strValue, parameterAccessContext); return false; } signExtend((int32_t&)uiData); // check that the data is encodable and can been safely written to the blackboard assert(isEncodable(uiData, true)); uiValue = uiData; return true; } bool CFixedPointParameterType::convertFromDecimal(const string& strValue, uint32_t& uiValue, CParameterAccessContext& parameterAccessContext) const { int32_t iData; if (!convertTo(strValue, iData) || !isEncodable((uint32_t)iData, true)) { setOutOfRangeError(strValue, parameterAccessContext); return false; } uiValue = static_cast(iData); return true; } bool CFixedPointParameterType::convertFromQnm(const string& strValue, uint32_t& uiValue, CParameterAccessContext& parameterAccessContext) const { double dData; if (!convertTo(strValue, dData) || !checkValueAgainstRange(dData)) { setOutOfRangeError(strValue, parameterAccessContext); return false; } uiValue = static_cast(doubleToBinaryQnm(dData)); // check that the data is encodable and has been safely written to the blackboard assert(isEncodable(uiValue, true)); return true; } // Check that the value is within available range for this type bool CFixedPointParameterType::checkValueAgainstRange(double dValue) const { double dMin = 0; double dMax = 0; getRange(dMin, dMax); return (dValue <= dMax) && (dValue >= dMin); } // Data conversion int32_t CFixedPointParameterType::doubleToBinaryQnm(double dValue) const { // For Qn.m number, multiply by 2^n and round to the nearest integer int32_t iData = static_cast(round(dValue * (1UL << _uiFractional))); // Left justify // For a Qn.m number, shift 32 - (n + m + 1) bits to the left (the rest of // the bits aren't used) iData <<= getSize() * 8 - getUtilSizeInBits(); return iData; } double CFixedPointParameterType::binaryQnmToDouble(int32_t iValue) const { // Unjustify iValue >>= getSize() * 8 - getUtilSizeInBits(); return static_cast(iValue) / (1UL << _uiFractional); } // From IXmlSource void CFixedPointParameterType::toXml(CXmlElement& xmlElement, CXmlSerializingContext& serializingContext) const { // Size xmlElement.setAttributeString("Size", CUtility::toString(getSize() * 8)); // Integral xmlElement.setAttributeString("Integral", CUtility::toString(_uiIntegral)); // Fractional xmlElement.setAttributeString("Fractional", CUtility::toString(_uiFractional)); base::toXml(xmlElement, serializingContext); }