aboutsummaryrefslogtreecommitdiffstats
path: root/java/src/main/java/com/google/protobuf/RopeByteString.java
diff options
context:
space:
mode:
Diffstat (limited to 'java/src/main/java/com/google/protobuf/RopeByteString.java')
-rw-r--r--java/src/main/java/com/google/protobuf/RopeByteString.java957
1 files changed, 0 insertions, 957 deletions
diff --git a/java/src/main/java/com/google/protobuf/RopeByteString.java b/java/src/main/java/com/google/protobuf/RopeByteString.java
deleted file mode 100644
index d1655b8..0000000
--- a/java/src/main/java/com/google/protobuf/RopeByteString.java
+++ /dev/null
@@ -1,957 +0,0 @@
-// Protocol Buffers - Google's data interchange format
-// Copyright 2008 Google Inc. All rights reserved.
-// https://developers.google.com/protocol-buffers/
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-// * Redistributions in binary form must reproduce the above
-// copyright notice, this list of conditions and the following disclaimer
-// in the documentation and/or other materials provided with the
-// distribution.
-// * Neither the name of Google Inc. nor the names of its
-// contributors may be used to endorse or promote products derived from
-// this software without specific prior written permission.
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
-// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
-// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
-// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
-// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
-// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
-// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
-package com.google.protobuf;
-
-import java.io.IOException;
-import java.io.InputStream;
-import java.io.OutputStream;
-import java.io.UnsupportedEncodingException;
-import java.io.ByteArrayInputStream;
-import java.nio.ByteBuffer;
-import java.util.ArrayList;
-import java.util.Arrays;
-import java.util.Iterator;
-import java.util.List;
-import java.util.NoSuchElementException;
-import java.util.Stack;
-
-/**
- * Class to represent {@code ByteStrings} formed by concatenation of other
- * ByteStrings, without copying the data in the pieces. The concatenation is
- * represented as a tree whose leaf nodes are each a {@link LiteralByteString}.
- *
- * <p>Most of the operation here is inspired by the now-famous paper <a
- * href="http://www.cs.ubc.ca/local/reading/proceedings/spe91-95/spe/vol25/issue12/spe986.pdf">
- * BAP95 </a> Ropes: an Alternative to Strings hans-j. boehm, russ atkinson and
- * michael plass
- *
- * <p>The algorithms described in the paper have been implemented for character
- * strings in {@link com.google.common.string.Rope} and in the c++ class {@code
- * cord.cc}.
- *
- * <p>Fundamentally the Rope algorithm represents the collection of pieces as a
- * binary tree. BAP95 uses a Fibonacci bound relating depth to a minimum
- * sequence length, sequences that are too short relative to their depth cause a
- * tree rebalance. More precisely, a tree of depth d is "balanced" in the
- * terminology of BAP95 if its length is at least F(d+2), where F(n) is the
- * n-the Fibonacci number. Thus for depths 0, 1, 2, 3, 4, 5,... we have minimum
- * lengths 1, 2, 3, 5, 8, 13,...
- *
- * @author carlanton@google.com (Carl Haverl)
- */
-class RopeByteString extends ByteString {
-
- /**
- * BAP95. Let Fn be the nth Fibonacci number. A {@link RopeByteString} of
- * depth n is "balanced", i.e flat enough, if its length is at least Fn+2,
- * e.g. a "balanced" {@link RopeByteString} of depth 1 must have length at
- * least 2, of depth 4 must have length >= 8, etc.
- *
- * <p>There's nothing special about using the Fibonacci numbers for this, but
- * they are a reasonable sequence for encapsulating the idea that we are OK
- * with longer strings being encoded in deeper binary trees.
- *
- * <p>For 32-bit integers, this array has length 46.
- */
- private static final int[] minLengthByDepth;
-
- static {
- // Dynamically generate the list of Fibonacci numbers the first time this
- // class is accessed.
- List<Integer> numbers = new ArrayList<Integer>();
-
- // we skip the first Fibonacci number (1). So instead of: 1 1 2 3 5 8 ...
- // we have: 1 2 3 5 8 ...
- int f1 = 1;
- int f2 = 1;
-
- // get all the values until we roll over.
- while (f2 > 0) {
- numbers.add(f2);
- int temp = f1 + f2;
- f1 = f2;
- f2 = temp;
- }
-
- // we include this here so that we can index this array to [x + 1] in the
- // loops below.
- numbers.add(Integer.MAX_VALUE);
- minLengthByDepth = new int[numbers.size()];
- for (int i = 0; i < minLengthByDepth.length; i++) {
- // unbox all the values
- minLengthByDepth[i] = numbers.get(i);
- }
- }
-
- private final int totalLength;
- private final ByteString left;
- private final ByteString right;
- private final int leftLength;
- private final int treeDepth;
-
- /**
- * Create a new RopeByteString, which can be thought of as a new tree node, by
- * recording references to the two given strings.
- *
- * @param left string on the left of this node, should have {@code size() >
- * 0}
- * @param right string on the right of this node, should have {@code size() >
- * 0}
- */
- private RopeByteString(ByteString left, ByteString right) {
- this.left = left;
- this.right = right;
- leftLength = left.size();
- totalLength = leftLength + right.size();
- treeDepth = Math.max(left.getTreeDepth(), right.getTreeDepth()) + 1;
- }
-
- /**
- * Concatenate the given strings while performing various optimizations to
- * slow the growth rate of tree depth and tree node count. The result is
- * either a {@link LiteralByteString} or a {@link RopeByteString}
- * depending on which optimizations, if any, were applied.
- *
- * <p>Small pieces of length less than {@link
- * ByteString#CONCATENATE_BY_COPY_SIZE} may be copied by value here, as in
- * BAP95. Large pieces are referenced without copy.
- *
- * @param left string on the left
- * @param right string on the right
- * @return concatenation representing the same sequence as the given strings
- */
- static ByteString concatenate(ByteString left, ByteString right) {
- ByteString result;
- RopeByteString leftRope =
- (left instanceof RopeByteString) ? (RopeByteString) left : null;
- if (right.size() == 0) {
- result = left;
- } else if (left.size() == 0) {
- result = right;
- } else {
- int newLength = left.size() + right.size();
- if (newLength < ByteString.CONCATENATE_BY_COPY_SIZE) {
- // Optimization from BAP95: For short (leaves in paper, but just short
- // here) total length, do a copy of data to a new leaf.
- result = concatenateBytes(left, right);
- } else if (leftRope != null
- && leftRope.right.size() + right.size() < CONCATENATE_BY_COPY_SIZE) {
- // Optimization from BAP95: As an optimization of the case where the
- // ByteString is constructed by repeated concatenate, recognize the case
- // where a short string is concatenated to a left-hand node whose
- // right-hand branch is short. In the paper this applies to leaves, but
- // we just look at the length here. This has the advantage of shedding
- // references to unneeded data when substrings have been taken.
- //
- // When we recognize this case, we do a copy of the data and create a
- // new parent node so that the depth of the result is the same as the
- // given left tree.
- ByteString newRight = concatenateBytes(leftRope.right, right);
- result = new RopeByteString(leftRope.left, newRight);
- } else if (leftRope != null
- && leftRope.left.getTreeDepth() > leftRope.right.getTreeDepth()
- && leftRope.getTreeDepth() > right.getTreeDepth()) {
- // Typically for concatenate-built strings the left-side is deeper than
- // the right. This is our final attempt to concatenate without
- // increasing the tree depth. We'll redo the the node on the RHS. This
- // is yet another optimization for building the string by repeatedly
- // concatenating on the right.
- ByteString newRight = new RopeByteString(leftRope.right, right);
- result = new RopeByteString(leftRope.left, newRight);
- } else {
- // Fine, we'll add a node and increase the tree depth--unless we
- // rebalance ;^)
- int newDepth = Math.max(left.getTreeDepth(), right.getTreeDepth()) + 1;
- if (newLength >= minLengthByDepth[newDepth]) {
- // The tree is shallow enough, so don't rebalance
- result = new RopeByteString(left, right);
- } else {
- result = new Balancer().balance(left, right);
- }
- }
- }
- return result;
- }
-
- /**
- * Concatenates two strings by copying data values. This is called in a few
- * cases in order to reduce the growth of the number of tree nodes.
- *
- * @param left string on the left
- * @param right string on the right
- * @return string formed by copying data bytes
- */
- private static LiteralByteString concatenateBytes(ByteString left,
- ByteString right) {
- int leftSize = left.size();
- int rightSize = right.size();
- byte[] bytes = new byte[leftSize + rightSize];
- left.copyTo(bytes, 0, 0, leftSize);
- right.copyTo(bytes, 0, leftSize, rightSize);
- return new LiteralByteString(bytes); // Constructor wraps bytes
- }
-
- /**
- * Create a new RopeByteString for testing only while bypassing all the
- * defenses of {@link #concatenate(ByteString, ByteString)}. This allows
- * testing trees of specific structure. We are also able to insert empty
- * leaves, though these are dis-allowed, so that we can make sure the
- * implementation can withstand their presence.
- *
- * @param left string on the left of this node
- * @param right string on the right of this node
- * @return an unsafe instance for testing only
- */
- static RopeByteString newInstanceForTest(ByteString left, ByteString right) {
- return new RopeByteString(left, right);
- }
-
- /**
- * Gets the byte at the given index.
- * Throws {@link ArrayIndexOutOfBoundsException} for backwards-compatibility
- * reasons although it would more properly be {@link
- * IndexOutOfBoundsException}.
- *
- * @param index index of byte
- * @return the value
- * @throws ArrayIndexOutOfBoundsException {@code index} is < 0 or >= size
- */
- @Override
- public byte byteAt(int index) {
- if (index < 0) {
- throw new ArrayIndexOutOfBoundsException("Index < 0: " + index);
- }
- if (index > totalLength) {
- throw new ArrayIndexOutOfBoundsException(
- "Index > length: " + index + ", " + totalLength);
- }
-
- byte result;
- // Find the relevant piece by recursive descent
- if (index < leftLength) {
- result = left.byteAt(index);
- } else {
- result = right.byteAt(index - leftLength);
- }
- return result;
- }
-
- @Override
- public int size() {
- return totalLength;
- }
-
- // =================================================================
- // Pieces
-
- @Override
- protected int getTreeDepth() {
- return treeDepth;
- }
-
- /**
- * Determines if the tree is balanced according to BAP95, which means the tree
- * is flat-enough with respect to the bounds. Note that this definition of
- * balanced is one where sub-trees of balanced trees are not necessarily
- * balanced.
- *
- * @return true if the tree is balanced
- */
- @Override
- protected boolean isBalanced() {
- return totalLength >= minLengthByDepth[treeDepth];
- }
-
- /**
- * Takes a substring of this one. This involves recursive descent along the
- * left and right edges of the substring, and referencing any wholly contained
- * segments in between. Any leaf nodes entirely uninvolved in the substring
- * will not be referenced by the substring.
- *
- * <p>Substrings of {@code length < 2} should result in at most a single
- * recursive call chain, terminating at a leaf node. Thus the result will be a
- * {@link LiteralByteString}. {@link #RopeByteString(ByteString,
- * ByteString)}.
- *
- * @param beginIndex start at this index
- * @param endIndex the last character is the one before this index
- * @return substring leaf node or tree
- */
- @Override
- public ByteString substring(int beginIndex, int endIndex) {
- if (beginIndex < 0) {
- throw new IndexOutOfBoundsException(
- "Beginning index: " + beginIndex + " < 0");
- }
- if (endIndex > totalLength) {
- throw new IndexOutOfBoundsException(
- "End index: " + endIndex + " > " + totalLength);
- }
- int substringLength = endIndex - beginIndex;
- if (substringLength < 0) {
- throw new IndexOutOfBoundsException(
- "Beginning index larger than ending index: " + beginIndex + ", "
- + endIndex);
- }
-
- ByteString result;
- if (substringLength == 0) {
- // Empty substring
- result = ByteString.EMPTY;
- } else if (substringLength == totalLength) {
- // The whole string
- result = this;
- } else {
- // Proper substring
- if (endIndex <= leftLength) {
- // Substring on the left
- result = left.substring(beginIndex, endIndex);
- } else if (beginIndex >= leftLength) {
- // Substring on the right
- result = right
- .substring(beginIndex - leftLength, endIndex - leftLength);
- } else {
- // Split substring
- ByteString leftSub = left.substring(beginIndex);
- ByteString rightSub = right.substring(0, endIndex - leftLength);
- // Intentionally not rebalancing, since in many cases these two
- // substrings will already be less deep than the top-level
- // RopeByteString we're taking a substring of.
- result = new RopeByteString(leftSub, rightSub);
- }
- }
- return result;
- }
-
- // =================================================================
- // ByteString -> byte[]
-
- @Override
- protected void copyToInternal(byte[] target, int sourceOffset,
- int targetOffset, int numberToCopy) {
- if (sourceOffset + numberToCopy <= leftLength) {
- left.copyToInternal(target, sourceOffset, targetOffset, numberToCopy);
- } else if (sourceOffset >= leftLength) {
- right.copyToInternal(target, sourceOffset - leftLength, targetOffset,
- numberToCopy);
- } else {
- int leftLength = this.leftLength - sourceOffset;
- left.copyToInternal(target, sourceOffset, targetOffset, leftLength);
- right.copyToInternal(target, 0, targetOffset + leftLength,
- numberToCopy - leftLength);
- }
- }
-
- @Override
- public void copyTo(ByteBuffer target) {
- left.copyTo(target);
- right.copyTo(target);
- }
-
- @Override
- public ByteBuffer asReadOnlyByteBuffer() {
- ByteBuffer byteBuffer = ByteBuffer.wrap(toByteArray());
- return byteBuffer.asReadOnlyBuffer();
- }
-
- @Override
- public List<ByteBuffer> asReadOnlyByteBufferList() {
- // Walk through the list of LiteralByteString's that make up this
- // rope, and add each one as a read-only ByteBuffer.
- List<ByteBuffer> result = new ArrayList<ByteBuffer>();
- PieceIterator pieces = new PieceIterator(this);
- while (pieces.hasNext()) {
- LiteralByteString byteString = pieces.next();
- result.add(byteString.asReadOnlyByteBuffer());
- }
- return result;
- }
-
- @Override
- public void writeTo(OutputStream outputStream) throws IOException {
- left.writeTo(outputStream);
- right.writeTo(outputStream);
- }
-
- @Override
- void writeToInternal(OutputStream out, int sourceOffset,
- int numberToWrite) throws IOException {
- if (sourceOffset + numberToWrite <= leftLength) {
- left.writeToInternal(out, sourceOffset, numberToWrite);
- } else if (sourceOffset >= leftLength) {
- right.writeToInternal(out, sourceOffset - leftLength, numberToWrite);
- } else {
- int numberToWriteInLeft = leftLength - sourceOffset;
- left.writeToInternal(out, sourceOffset, numberToWriteInLeft);
- right.writeToInternal(out, 0, numberToWrite - numberToWriteInLeft);
- }
- }
-
- @Override
- public String toString(String charsetName)
- throws UnsupportedEncodingException {
- return new String(toByteArray(), charsetName);
- }
-
- // =================================================================
- // UTF-8 decoding
-
- @Override
- public boolean isValidUtf8() {
- int leftPartial = left.partialIsValidUtf8(Utf8.COMPLETE, 0, leftLength);
- int state = right.partialIsValidUtf8(leftPartial, 0, right.size());
- return state == Utf8.COMPLETE;
- }
-
- @Override
- protected int partialIsValidUtf8(int state, int offset, int length) {
- int toIndex = offset + length;
- if (toIndex <= leftLength) {
- return left.partialIsValidUtf8(state, offset, length);
- } else if (offset >= leftLength) {
- return right.partialIsValidUtf8(state, offset - leftLength, length);
- } else {
- int leftLength = this.leftLength - offset;
- int leftPartial = left.partialIsValidUtf8(state, offset, leftLength);
- return right.partialIsValidUtf8(leftPartial, 0, length - leftLength);
- }
- }
-
- // =================================================================
- // equals() and hashCode()
-
- @Override
- public boolean equals(Object other) {
- if (other == this) {
- return true;
- }
- if (!(other instanceof ByteString)) {
- return false;
- }
-
- ByteString otherByteString = (ByteString) other;
- if (totalLength != otherByteString.size()) {
- return false;
- }
- if (totalLength == 0) {
- return true;
- }
-
- // You don't really want to be calling equals on long strings, but since
- // we cache the hashCode, we effectively cache inequality. We use the cached
- // hashCode if it's already computed. It's arguable we should compute the
- // hashCode here, and if we're going to be testing a bunch of byteStrings,
- // it might even make sense.
- if (hash != 0) {
- int cachedOtherHash = otherByteString.peekCachedHashCode();
- if (cachedOtherHash != 0 && hash != cachedOtherHash) {
- return false;
- }
- }
-
- return equalsFragments(otherByteString);
- }
-
- /**
- * Determines if this string is equal to another of the same length by
- * iterating over the leaf nodes. On each step of the iteration, the
- * overlapping segments of the leaves are compared.
- *
- * @param other string of the same length as this one
- * @return true if the values of this string equals the value of the given
- * one
- */
- private boolean equalsFragments(ByteString other) {
- int thisOffset = 0;
- Iterator<LiteralByteString> thisIter = new PieceIterator(this);
- LiteralByteString thisString = thisIter.next();
-
- int thatOffset = 0;
- Iterator<LiteralByteString> thatIter = new PieceIterator(other);
- LiteralByteString thatString = thatIter.next();
-
- int pos = 0;
- while (true) {
- int thisRemaining = thisString.size() - thisOffset;
- int thatRemaining = thatString.size() - thatOffset;
- int bytesToCompare = Math.min(thisRemaining, thatRemaining);
-
- // At least one of the offsets will be zero
- boolean stillEqual = (thisOffset == 0)
- ? thisString.equalsRange(thatString, thatOffset, bytesToCompare)
- : thatString.equalsRange(thisString, thisOffset, bytesToCompare);
- if (!stillEqual) {
- return false;
- }
-
- pos += bytesToCompare;
- if (pos >= totalLength) {
- if (pos == totalLength) {
- return true;
- }
- throw new IllegalStateException();
- }
- // We always get to the end of at least one of the pieces
- if (bytesToCompare == thisRemaining) { // If reached end of this
- thisOffset = 0;
- thisString = thisIter.next();
- } else {
- thisOffset += bytesToCompare;
- }
- if (bytesToCompare == thatRemaining) { // If reached end of that
- thatOffset = 0;
- thatString = thatIter.next();
- } else {
- thatOffset += bytesToCompare;
- }
- }
- }
-
- /**
- * Cached hash value. Intentionally accessed via a data race, which is safe
- * because of the Java Memory Model's "no out-of-thin-air values" guarantees
- * for ints.
- */
- private int hash = 0;
-
- @Override
- public int hashCode() {
- int h = hash;
-
- if (h == 0) {
- h = totalLength;
- h = partialHash(h, 0, totalLength);
- if (h == 0) {
- h = 1;
- }
- hash = h;
- }
- return h;
- }
-
- @Override
- protected int peekCachedHashCode() {
- return hash;
- }
-
- @Override
- protected int partialHash(int h, int offset, int length) {
- int toIndex = offset + length;
- if (toIndex <= leftLength) {
- return left.partialHash(h, offset, length);
- } else if (offset >= leftLength) {
- return right.partialHash(h, offset - leftLength, length);
- } else {
- int leftLength = this.leftLength - offset;
- int leftPartial = left.partialHash(h, offset, leftLength);
- return right.partialHash(leftPartial, 0, length - leftLength);
- }
- }
-
- // =================================================================
- // Input stream
-
- @Override
- public CodedInputStream newCodedInput() {
- return CodedInputStream.newInstance(new RopeInputStream());
- }
-
- @Override
- public InputStream newInput() {
- return new RopeInputStream();
- }
-
- /**
- * This class implements the balancing algorithm of BAP95. In the paper the
- * authors use an array to keep track of pieces, while here we use a stack.
- * The tree is balanced by traversing subtrees in left to right order, and the
- * stack always contains the part of the string we've traversed so far.
- *
- * <p>One surprising aspect of the algorithm is the result of balancing is not
- * necessarily balanced, though it is nearly balanced. For details, see
- * BAP95.
- */
- private static class Balancer {
- // Stack containing the part of the string, starting from the left, that
- // we've already traversed. The final string should be the equivalent of
- // concatenating the strings on the stack from bottom to top.
- private final Stack<ByteString> prefixesStack = new Stack<ByteString>();
-
- private ByteString balance(ByteString left, ByteString right) {
- doBalance(left);
- doBalance(right);
-
- // Sweep stack to gather the result
- ByteString partialString = prefixesStack.pop();
- while (!prefixesStack.isEmpty()) {
- ByteString newLeft = prefixesStack.pop();
- partialString = new RopeByteString(newLeft, partialString);
- }
- // We should end up with a RopeByteString since at a minimum we will
- // create one from concatenating left and right
- return partialString;
- }
-
- private void doBalance(ByteString root) {
- // BAP95: Insert balanced subtrees whole. This means the result might not
- // be balanced, leading to repeated rebalancings on concatenate. However,
- // these rebalancings are shallow due to ignoring balanced subtrees, and
- // relatively few calls to insert() result.
- if (root.isBalanced()) {
- insert(root);
- } else if (root instanceof RopeByteString) {
- RopeByteString rbs = (RopeByteString) root;
- doBalance(rbs.left);
- doBalance(rbs.right);
- } else {
- throw new IllegalArgumentException(
- "Has a new type of ByteString been created? Found " +
- root.getClass());
- }
- }
-
- /**
- * Push a string on the balance stack (BAP95). BAP95 uses an array and
- * calls the elements in the array 'bins'. We instead use a stack, so the
- * 'bins' of lengths are represented by differences between the elements of
- * minLengthByDepth.
- *
- * <p>If the length bin for our string, and all shorter length bins, are
- * empty, we just push it on the stack. Otherwise, we need to start
- * concatenating, putting the given string in the "middle" and continuing
- * until we land in an empty length bin that matches the length of our
- * concatenation.
- *
- * @param byteString string to place on the balance stack
- */
- private void insert(ByteString byteString) {
- int depthBin = getDepthBinForLength(byteString.size());
- int binEnd = minLengthByDepth[depthBin + 1];
-
- // BAP95: Concatenate all trees occupying bins representing the length of
- // our new piece or of shorter pieces, to the extent that is possible.
- // The goal is to clear the bin which our piece belongs in, but that may
- // not be entirely possible if there aren't enough longer bins occupied.
- if (prefixesStack.isEmpty() || prefixesStack.peek().size() >= binEnd) {
- prefixesStack.push(byteString);
- } else {
- int binStart = minLengthByDepth[depthBin];
-
- // Concatenate the subtrees of shorter length
- ByteString newTree = prefixesStack.pop();
- while (!prefixesStack.isEmpty()
- && prefixesStack.peek().size() < binStart) {
- ByteString left = prefixesStack.pop();
- newTree = new RopeByteString(left, newTree);
- }
-
- // Concatenate the given string
- newTree = new RopeByteString(newTree, byteString);
-
- // Continue concatenating until we land in an empty bin
- while (!prefixesStack.isEmpty()) {
- depthBin = getDepthBinForLength(newTree.size());
- binEnd = minLengthByDepth[depthBin + 1];
- if (prefixesStack.peek().size() < binEnd) {
- ByteString left = prefixesStack.pop();
- newTree = new RopeByteString(left, newTree);
- } else {
- break;
- }
- }
- prefixesStack.push(newTree);
- }
- }
-
- private int getDepthBinForLength(int length) {
- int depth = Arrays.binarySearch(minLengthByDepth, length);
- if (depth < 0) {
- // It wasn't an exact match, so convert to the index of the containing
- // fragment, which is one less even than the insertion point.
- int insertionPoint = -(depth + 1);
- depth = insertionPoint - 1;
- }
-
- return depth;
- }
- }
-
- /**
- * This class is a continuable tree traversal, which keeps the state
- * information which would exist on the stack in a recursive traversal instead
- * on a stack of "Bread Crumbs". The maximum depth of the stack in this
- * iterator is the same as the depth of the tree being traversed.
- *
- * <p>This iterator is used to implement
- * {@link RopeByteString#equalsFragments(ByteString)}.
- */
- private static class PieceIterator implements Iterator<LiteralByteString> {
-
- private final Stack<RopeByteString> breadCrumbs =
- new Stack<RopeByteString>();
- private LiteralByteString next;
-
- private PieceIterator(ByteString root) {
- next = getLeafByLeft(root);
- }
-
- private LiteralByteString getLeafByLeft(ByteString root) {
- ByteString pos = root;
- while (pos instanceof RopeByteString) {
- RopeByteString rbs = (RopeByteString) pos;
- breadCrumbs.push(rbs);
- pos = rbs.left;
- }
- return (LiteralByteString) pos;
- }
-
- private LiteralByteString getNextNonEmptyLeaf() {
- while (true) {
- // Almost always, we go through this loop exactly once. However, if
- // we discover an empty string in the rope, we toss it and try again.
- if (breadCrumbs.isEmpty()) {
- return null;
- } else {
- LiteralByteString result = getLeafByLeft(breadCrumbs.pop().right);
- if (!result.isEmpty()) {
- return result;
- }
- }
- }
- }
-
- public boolean hasNext() {
- return next != null;
- }
-
- /**
- * Returns the next item and advances one {@code LiteralByteString}.
- *
- * @return next non-empty LiteralByteString or {@code null}
- */
- public LiteralByteString next() {
- if (next == null) {
- throw new NoSuchElementException();
- }
- LiteralByteString result = next;
- next = getNextNonEmptyLeaf();
- return result;
- }
-
- public void remove() {
- throw new UnsupportedOperationException();
- }
- }
-
- // =================================================================
- // ByteIterator
-
- @Override
- public ByteIterator iterator() {
- return new RopeByteIterator();
- }
-
- private class RopeByteIterator implements ByteString.ByteIterator {
-
- private final PieceIterator pieces;
- private ByteIterator bytes;
- int bytesRemaining;
-
- private RopeByteIterator() {
- pieces = new PieceIterator(RopeByteString.this);
- bytes = pieces.next().iterator();
- bytesRemaining = size();
- }
-
- public boolean hasNext() {
- return (bytesRemaining > 0);
- }
-
- public Byte next() {
- return nextByte(); // Does not instantiate a Byte
- }
-
- public byte nextByte() {
- if (!bytes.hasNext()) {
- bytes = pieces.next().iterator();
- }
- --bytesRemaining;
- return bytes.nextByte();
- }
-
- public void remove() {
- throw new UnsupportedOperationException();
- }
- }
-
- /**
- * This class is the {@link RopeByteString} equivalent for
- * {@link ByteArrayInputStream}.
- */
- private class RopeInputStream extends InputStream {
- // Iterates through the pieces of the rope
- private PieceIterator pieceIterator;
- // The current piece
- private LiteralByteString currentPiece;
- // The size of the current piece
- private int currentPieceSize;
- // The index of the next byte to read in the current piece
- private int currentPieceIndex;
- // The offset of the start of the current piece in the rope byte string
- private int currentPieceOffsetInRope;
- // Offset in the buffer at which user called mark();
- private int mark;
-
- public RopeInputStream() {
- initialize();
- }
-
- @Override
- public int read(byte b[], int offset, int length) {
- if (b == null) {
- throw new NullPointerException();
- } else if (offset < 0 || length < 0 || length > b.length - offset) {
- throw new IndexOutOfBoundsException();
- }
- return readSkipInternal(b, offset, length);
- }
-
- @Override
- public long skip(long length) {
- if (length < 0) {
- throw new IndexOutOfBoundsException();
- } else if (length > Integer.MAX_VALUE) {
- length = Integer.MAX_VALUE;
- }
- return readSkipInternal(null, 0, (int) length);
- }
-
- /**
- * Internal implementation of read and skip. If b != null, then read the
- * next {@code length} bytes into the buffer {@code b} at
- * offset {@code offset}. If b == null, then skip the next {@code length)
- * bytes.
- * <p>
- * This method assumes that all error checking has already happened.
- * <p>
- * Returns the actual number of bytes read or skipped.
- */
- private int readSkipInternal(byte b[], int offset, int length) {
- int bytesRemaining = length;
- while (bytesRemaining > 0) {
- advanceIfCurrentPieceFullyRead();
- if (currentPiece == null) {
- if (bytesRemaining == length) {
- // We didn't manage to read anything
- return -1;
- }
- break;
- } else {
- // Copy the bytes from this piece.
- int currentPieceRemaining = currentPieceSize - currentPieceIndex;
- int count = Math.min(currentPieceRemaining, bytesRemaining);
- if (b != null) {
- currentPiece.copyTo(b, currentPieceIndex, offset, count);
- offset += count;
- }
- currentPieceIndex += count;
- bytesRemaining -= count;
- }
- }
- // Return the number of bytes read.
- return length - bytesRemaining;
- }
-
- @Override
- public int read() throws IOException {
- advanceIfCurrentPieceFullyRead();
- if (currentPiece == null) {
- return -1;
- } else {
- return currentPiece.byteAt(currentPieceIndex++) & 0xFF;
- }
- }
-
- @Override
- public int available() throws IOException {
- int bytesRead = currentPieceOffsetInRope + currentPieceIndex;
- return RopeByteString.this.size() - bytesRead;
- }
-
- @Override
- public boolean markSupported() {
- return true;
- }
-
- @Override
- public void mark(int readAheadLimit) {
- // Set the mark to our position in the byte string
- mark = currentPieceOffsetInRope + currentPieceIndex;
- }
-
- @Override
- public synchronized void reset() {
- // Just reinitialize and skip the specified number of bytes.
- initialize();
- readSkipInternal(null, 0, mark);
- }
-
- /** Common initialization code used by both the constructor and reset() */
- private void initialize() {
- pieceIterator = new PieceIterator(RopeByteString.this);
- currentPiece = pieceIterator.next();
- currentPieceSize = currentPiece.size();
- currentPieceIndex = 0;
- currentPieceOffsetInRope = 0;
- }
-
- /**
- * Skips to the next piece if we have read all the data in the current
- * piece. Sets currentPiece to null if we have reached the end of the
- * input.
- */
- private void advanceIfCurrentPieceFullyRead() {
- if (currentPiece != null && currentPieceIndex == currentPieceSize) {
- // Generally, we can only go through this loop at most once, since
- // empty strings can't end up in a rope. But better to test.
- currentPieceOffsetInRope += currentPieceSize;
- currentPieceIndex = 0;
- if (pieceIterator.hasNext()) {
- currentPiece = pieceIterator.next();
- currentPieceSize = currentPiece.size();
- } else {
- currentPiece = null;
- currentPieceSize = 0;
- }
- }
- }
- }
-}