diff options
author | Upstream <upstream-import@none> | 1970-01-12 13:46:40 +0000 |
---|---|---|
committer | Upstream <upstream-import@none> | 1970-01-12 13:46:40 +0000 |
commit | 413f05aaf54fa08c0ae7e997327a4f4a473c0a8d (patch) | |
tree | 642d637ab01ee6c54ca27d1fa96cf92a32df8053 /hw/arm_timer.c | |
download | external_qemu-413f05aaf54fa08c0ae7e997327a4f4a473c0a8d.zip external_qemu-413f05aaf54fa08c0ae7e997327a4f4a473c0a8d.tar.gz external_qemu-413f05aaf54fa08c0ae7e997327a4f4a473c0a8d.tar.bz2 |
external/qemu 0.8.2
Diffstat (limited to 'hw/arm_timer.c')
-rw-r--r-- | hw/arm_timer.c | 383 |
1 files changed, 383 insertions, 0 deletions
diff --git a/hw/arm_timer.c b/hw/arm_timer.c new file mode 100644 index 0000000..a97d73e --- /dev/null +++ b/hw/arm_timer.c @@ -0,0 +1,383 @@ +/* + * ARM PrimeCell Timer modules. + * + * Copyright (c) 2005-2006 CodeSourcery. + * Written by Paul Brook + * + * This code is licenced under the GPL. + */ + +#include "vl.h" +#include "arm_pic.h" + +/* Common timer implementation. */ + +#define TIMER_CTRL_ONESHOT (1 << 0) +#define TIMER_CTRL_32BIT (1 << 1) +#define TIMER_CTRL_DIV1 (0 << 2) +#define TIMER_CTRL_DIV16 (1 << 2) +#define TIMER_CTRL_DIV256 (2 << 2) +#define TIMER_CTRL_IE (1 << 5) +#define TIMER_CTRL_PERIODIC (1 << 6) +#define TIMER_CTRL_ENABLE (1 << 7) + +typedef struct { + int64_t next_time; + int64_t expires; + int64_t loaded; + QEMUTimer *timer; + uint32_t control; + uint32_t count; + uint32_t limit; + int raw_freq; + int freq; + int int_level; + void *pic; + int irq; +} arm_timer_state; + +/* Calculate the new expiry time of the given timer. */ + +static void arm_timer_reload(arm_timer_state *s) +{ + int64_t delay; + + s->loaded = s->expires; + delay = muldiv64(s->count, ticks_per_sec, s->freq); + if (delay == 0) + delay = 1; + s->expires += delay; +} + +/* Check all active timers, and schedule the next timer interrupt. */ + +static void arm_timer_update(arm_timer_state *s, int64_t now) +{ + int64_t next; + + /* Ignore disabled timers. */ + if ((s->control & TIMER_CTRL_ENABLE) == 0) + return; + /* Ignore expired one-shot timers. */ + if (s->count == 0 && (s->control & TIMER_CTRL_ONESHOT)) + return; + if (s->expires - now <= 0) { + /* Timer has expired. */ + s->int_level = 1; + if (s->control & TIMER_CTRL_ONESHOT) { + /* One-shot. */ + s->count = 0; + } else { + if ((s->control & TIMER_CTRL_PERIODIC) == 0) { + /* Free running. */ + if (s->control & TIMER_CTRL_32BIT) + s->count = 0xffffffff; + else + s->count = 0xffff; + } else { + /* Periodic. */ + s->count = s->limit; + } + } + } + while (s->expires - now <= 0) { + arm_timer_reload(s); + } + /* Update interrupts. */ + if (s->int_level && (s->control & TIMER_CTRL_IE)) { + pic_set_irq_new(s->pic, s->irq, 1); + } else { + pic_set_irq_new(s->pic, s->irq, 0); + } + + next = now; + if (next - s->expires < 0) + next = s->expires; + + /* Schedule the next timer interrupt. */ + if (next == now) { + qemu_del_timer(s->timer); + s->next_time = 0; + } else if (next != s->next_time) { + qemu_mod_timer(s->timer, next); + s->next_time = next; + } +} + +/* Return the current value of the timer. */ +static uint32_t arm_timer_getcount(arm_timer_state *s, int64_t now) +{ + int64_t elapsed; + int64_t period; + + if (s->count == 0) + return 0; + if ((s->control & TIMER_CTRL_ENABLE) == 0) + return s->count; + elapsed = now - s->loaded; + period = s->expires - s->loaded; + /* If the timer should have expired then return 0. This can happen + when the host timer signal doesnt occur immediately. It's better to + have a timer appear to sit at zero for a while than have it wrap + around before the guest interrupt is raised. */ + /* ??? Could we trigger the interrupt here? */ + if (elapsed > period) + return 0; + /* We need to calculate count * elapsed / period without overfowing. + Scale both elapsed and period so they fit in a 32-bit int. */ + while (period != (int32_t)period) { + period >>= 1; + elapsed >>= 1; + } + return ((uint64_t)s->count * (uint64_t)(int32_t)elapsed) + / (int32_t)period; +} + +uint32_t arm_timer_read(void *opaque, target_phys_addr_t offset) +{ + arm_timer_state *s = (arm_timer_state *)opaque; + + switch (offset >> 2) { + case 0: /* TimerLoad */ + case 6: /* TimerBGLoad */ + return s->limit; + case 1: /* TimerValue */ + return arm_timer_getcount(s, qemu_get_clock(vm_clock)); + case 2: /* TimerControl */ + return s->control; + case 4: /* TimerRIS */ + return s->int_level; + case 5: /* TimerMIS */ + if ((s->control & TIMER_CTRL_IE) == 0) + return 0; + return s->int_level; + default: + cpu_abort (cpu_single_env, "arm_timer_read: Bad offset %x\n", offset); + return 0; + } +} + +static void arm_timer_write(void *opaque, target_phys_addr_t offset, + uint32_t value) +{ + arm_timer_state *s = (arm_timer_state *)opaque; + int64_t now; + + now = qemu_get_clock(vm_clock); + switch (offset >> 2) { + case 0: /* TimerLoad */ + s->limit = value; + s->count = value; + s->expires = now; + arm_timer_reload(s); + break; + case 1: /* TimerValue */ + /* ??? Linux seems to want to write to this readonly register. + Ignore it. */ + break; + case 2: /* TimerControl */ + if (s->control & TIMER_CTRL_ENABLE) { + /* Pause the timer if it is running. This may cause some + inaccuracy dure to rounding, but avoids a whole lot of other + messyness. */ + s->count = arm_timer_getcount(s, now); + } + s->control = value; + s->freq = s->raw_freq; + /* ??? Need to recalculate expiry time after changing divisor. */ + switch ((value >> 2) & 3) { + case 1: s->freq >>= 4; break; + case 2: s->freq >>= 8; break; + } + if (s->control & TIMER_CTRL_ENABLE) { + /* Restart the timer if still enabled. */ + s->expires = now; + arm_timer_reload(s); + } + break; + case 3: /* TimerIntClr */ + s->int_level = 0; + break; + case 6: /* TimerBGLoad */ + s->limit = value; + break; + default: + cpu_abort (cpu_single_env, "arm_timer_write: Bad offset %x\n", offset); + } + arm_timer_update(s, now); +} + +static void arm_timer_tick(void *opaque) +{ + int64_t now; + + now = qemu_get_clock(vm_clock); + arm_timer_update((arm_timer_state *)opaque, now); +} + +static void *arm_timer_init(uint32_t freq, void *pic, int irq) +{ + arm_timer_state *s; + + s = (arm_timer_state *)qemu_mallocz(sizeof(arm_timer_state)); + s->pic = pic; + s->irq = irq; + s->raw_freq = s->freq = 1000000; + s->control = TIMER_CTRL_IE; + s->count = 0xffffffff; + + s->timer = qemu_new_timer(vm_clock, arm_timer_tick, s); + /* ??? Save/restore. */ + return s; +} + +/* ARM PrimeCell SP804 dual timer module. + Docs for this device don't seem to be publicly available. This + implementation is based on gueswork, the linux kernel sources and the + Integrator/CP timer modules. */ + +typedef struct { + /* Include a pseudo-PIC device to merge the two interrupt sources. */ + arm_pic_handler handler; + void *timer[2]; + int level[2]; + uint32_t base; + /* The output PIC device. */ + void *pic; + int irq; +} sp804_state; + +static void sp804_set_irq(void *opaque, int irq, int level) +{ + sp804_state *s = (sp804_state *)opaque; + + s->level[irq] = level; + pic_set_irq_new(s->pic, s->irq, s->level[0] || s->level[1]); +} + +static uint32_t sp804_read(void *opaque, target_phys_addr_t offset) +{ + sp804_state *s = (sp804_state *)opaque; + + /* ??? Don't know the PrimeCell ID for this device. */ + offset -= s->base; + if (offset < 0x20) { + return arm_timer_read(s->timer[0], offset); + } else { + return arm_timer_read(s->timer[1], offset - 0x20); + } +} + +static void sp804_write(void *opaque, target_phys_addr_t offset, + uint32_t value) +{ + sp804_state *s = (sp804_state *)opaque; + + offset -= s->base; + if (offset < 0x20) { + arm_timer_write(s->timer[0], offset, value); + } else { + arm_timer_write(s->timer[1], offset - 0x20, value); + } +} + +static CPUReadMemoryFunc *sp804_readfn[] = { + sp804_read, + sp804_read, + sp804_read +}; + +static CPUWriteMemoryFunc *sp804_writefn[] = { + sp804_write, + sp804_write, + sp804_write +}; + +void sp804_init(uint32_t base, void *pic, int irq) +{ + int iomemtype; + sp804_state *s; + + s = (sp804_state *)qemu_mallocz(sizeof(sp804_state)); + s->handler = sp804_set_irq; + s->base = base; + s->pic = pic; + s->irq = irq; + /* ??? The timers are actually configurable between 32kHz and 1MHz, but + we don't implement that. */ + s->timer[0] = arm_timer_init(1000000, s, 0); + s->timer[1] = arm_timer_init(1000000, s, 1); + iomemtype = cpu_register_io_memory(0, sp804_readfn, + sp804_writefn, s); + cpu_register_physical_memory(base, 0x00000fff, iomemtype); + /* ??? Save/restore. */ +} + + +/* Integrator/CP timer module. */ + +typedef struct { + void *timer[3]; + uint32_t base; +} icp_pit_state; + +static uint32_t icp_pit_read(void *opaque, target_phys_addr_t offset) +{ + icp_pit_state *s = (icp_pit_state *)opaque; + int n; + + /* ??? Don't know the PrimeCell ID for this device. */ + offset -= s->base; + n = offset >> 8; + if (n > 3) + cpu_abort(cpu_single_env, "sp804_read: Bad timer %d\n", n); + + return arm_timer_read(s->timer[n], offset & 0xff); +} + +static void icp_pit_write(void *opaque, target_phys_addr_t offset, + uint32_t value) +{ + icp_pit_state *s = (icp_pit_state *)opaque; + int n; + + offset -= s->base; + n = offset >> 8; + if (n > 3) + cpu_abort(cpu_single_env, "sp804_write: Bad timer %d\n", n); + + arm_timer_write(s->timer[n], offset & 0xff, value); +} + + +static CPUReadMemoryFunc *icp_pit_readfn[] = { + icp_pit_read, + icp_pit_read, + icp_pit_read +}; + +static CPUWriteMemoryFunc *icp_pit_writefn[] = { + icp_pit_write, + icp_pit_write, + icp_pit_write +}; + +void icp_pit_init(uint32_t base, void *pic, int irq) +{ + int iomemtype; + icp_pit_state *s; + + s = (icp_pit_state *)qemu_mallocz(sizeof(icp_pit_state)); + s->base = base; + /* Timer 0 runs at the system clock speed (40MHz). */ + s->timer[0] = arm_timer_init(40000000, pic, irq); + /* The other two timers run at 1MHz. */ + s->timer[1] = arm_timer_init(1000000, pic, irq + 1); + s->timer[2] = arm_timer_init(1000000, pic, irq + 2); + + iomemtype = cpu_register_io_memory(0, icp_pit_readfn, + icp_pit_writefn, s); + cpu_register_physical_memory(base, 0x00000fff, iomemtype); + /* ??? Save/restore. */ +} + |