From f721e3ac031f892af46f255a47d7f54a91317b30 Mon Sep 17 00:00:00 2001 From: The Android Open Source Project Date: Tue, 3 Mar 2009 18:28:35 -0800 Subject: auto import from //depot/cupcake/@135843 --- cpu-all.h | 1090 ------------------------------------------------------------- 1 file changed, 1090 deletions(-) delete mode 100644 cpu-all.h (limited to 'cpu-all.h') diff --git a/cpu-all.h b/cpu-all.h deleted file mode 100644 index 8f4cb3c..0000000 --- a/cpu-all.h +++ /dev/null @@ -1,1090 +0,0 @@ -/* - * defines common to all virtual CPUs - * - * Copyright (c) 2003 Fabrice Bellard - * - * This library is free software; you can redistribute it and/or - * modify it under the terms of the GNU Lesser General Public - * License as published by the Free Software Foundation; either - * version 2 of the License, or (at your option) any later version. - * - * This library is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Lesser General Public License for more details. - * - * You should have received a copy of the GNU Lesser General Public - * License along with this library; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA - */ -#ifndef CPU_ALL_H -#define CPU_ALL_H - -#if defined(__arm__) || defined(__sparc__) || defined(__mips__) || defined(__hppa__) -#define WORDS_ALIGNED -#endif - -/* some important defines: - * - * WORDS_ALIGNED : if defined, the host cpu can only make word aligned - * memory accesses. - * - * WORDS_BIGENDIAN : if defined, the host cpu is big endian and - * otherwise little endian. - * - * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet)) - * - * TARGET_WORDS_BIGENDIAN : same for target cpu - */ - -#include "bswap.h" -#include "softfloat.h" - -#if defined(WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) -#define BSWAP_NEEDED -#endif - -#ifdef BSWAP_NEEDED - -static inline uint16_t tswap16(uint16_t s) -{ - return bswap16(s); -} - -static inline uint32_t tswap32(uint32_t s) -{ - return bswap32(s); -} - -static inline uint64_t tswap64(uint64_t s) -{ - return bswap64(s); -} - -static inline void tswap16s(uint16_t *s) -{ - *s = bswap16(*s); -} - -static inline void tswap32s(uint32_t *s) -{ - *s = bswap32(*s); -} - -static inline void tswap64s(uint64_t *s) -{ - *s = bswap64(*s); -} - -#else - -static inline uint16_t tswap16(uint16_t s) -{ - return s; -} - -static inline uint32_t tswap32(uint32_t s) -{ - return s; -} - -static inline uint64_t tswap64(uint64_t s) -{ - return s; -} - -static inline void tswap16s(uint16_t *s) -{ -} - -static inline void tswap32s(uint32_t *s) -{ -} - -static inline void tswap64s(uint64_t *s) -{ -} - -#endif - -#if TARGET_LONG_SIZE == 4 -#define tswapl(s) tswap32(s) -#define tswapls(s) tswap32s((uint32_t *)(s)) -#define bswaptls(s) bswap32s(s) -#else -#define tswapl(s) tswap64(s) -#define tswapls(s) tswap64s((uint64_t *)(s)) -#define bswaptls(s) bswap64s(s) -#endif - -typedef union { - float32 f; - uint32_t l; -} CPU_FloatU; - -/* NOTE: arm FPA is horrible as double 32 bit words are stored in big - endian ! */ -typedef union { - float64 d; -#if defined(WORDS_BIGENDIAN) \ - || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT)) - struct { - uint32_t upper; - uint32_t lower; - } l; -#else - struct { - uint32_t lower; - uint32_t upper; - } l; -#endif - uint64_t ll; -} CPU_DoubleU; - -#ifdef TARGET_SPARC -typedef union { - float128 q; -#if defined(WORDS_BIGENDIAN) \ - || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT)) - struct { - uint32_t upmost; - uint32_t upper; - uint32_t lower; - uint32_t lowest; - } l; - struct { - uint64_t upper; - uint64_t lower; - } ll; -#else - struct { - uint32_t lowest; - uint32_t lower; - uint32_t upper; - uint32_t upmost; - } l; - struct { - uint64_t lower; - uint64_t upper; - } ll; -#endif -} CPU_QuadU; -#endif - -/* CPU memory access without any memory or io remapping */ - -/* - * the generic syntax for the memory accesses is: - * - * load: ld{type}{sign}{size}{endian}_{access_type}(ptr) - * - * store: st{type}{size}{endian}_{access_type}(ptr, val) - * - * type is: - * (empty): integer access - * f : float access - * - * sign is: - * (empty): for floats or 32 bit size - * u : unsigned - * s : signed - * - * size is: - * b: 8 bits - * w: 16 bits - * l: 32 bits - * q: 64 bits - * - * endian is: - * (empty): target cpu endianness or 8 bit access - * r : reversed target cpu endianness (not implemented yet) - * be : big endian (not implemented yet) - * le : little endian (not implemented yet) - * - * access_type is: - * raw : host memory access - * user : user mode access using soft MMU - * kernel : kernel mode access using soft MMU - */ -static inline int ldub_p(void *ptr) -{ - return *(uint8_t *)ptr; -} - -static inline int ldsb_p(void *ptr) -{ - return *(int8_t *)ptr; -} - -static inline void stb_p(void *ptr, int v) -{ - *(uint8_t *)ptr = v; -} - -/* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the - kernel handles unaligned load/stores may give better results, but - it is a system wide setting : bad */ -#if defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED) - -/* conservative code for little endian unaligned accesses */ -static inline int lduw_le_p(void *ptr) -{ -#ifdef __powerpc__ - int val; - __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr)); - return val; -#else - uint8_t *p = ptr; - return p[0] | (p[1] << 8); -#endif -} - -static inline int ldsw_le_p(void *ptr) -{ -#ifdef __powerpc__ - int val; - __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr)); - return (int16_t)val; -#else - uint8_t *p = ptr; - return (int16_t)(p[0] | (p[1] << 8)); -#endif -} - -static inline int ldl_le_p(void *ptr) -{ -#ifdef __powerpc__ - int val; - __asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr)); - return val; -#else - uint8_t *p = ptr; - return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24); -#endif -} - -static inline uint64_t ldq_le_p(void *ptr) -{ - uint8_t *p = ptr; - uint32_t v1, v2; - v1 = ldl_le_p(p); - v2 = ldl_le_p(p + 4); - return v1 | ((uint64_t)v2 << 32); -} - -static inline void stw_le_p(void *ptr, int v) -{ -#ifdef __powerpc__ - __asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr)); -#else - uint8_t *p = ptr; - p[0] = v; - p[1] = v >> 8; -#endif -} - -static inline void stl_le_p(void *ptr, int v) -{ -#ifdef __powerpc__ - __asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr)); -#else - uint8_t *p = ptr; - p[0] = v; - p[1] = v >> 8; - p[2] = v >> 16; - p[3] = v >> 24; -#endif -} - -static inline void stq_le_p(void *ptr, uint64_t v) -{ - uint8_t *p = ptr; - stl_le_p(p, (uint32_t)v); - stl_le_p(p + 4, v >> 32); -} - -/* float access */ - -static inline float32 ldfl_le_p(void *ptr) -{ - union { - float32 f; - uint32_t i; - } u; - u.i = ldl_le_p(ptr); - return u.f; -} - -static inline void stfl_le_p(void *ptr, float32 v) -{ - union { - float32 f; - uint32_t i; - } u; - u.f = v; - stl_le_p(ptr, u.i); -} - -static inline float64 ldfq_le_p(void *ptr) -{ - CPU_DoubleU u; - u.l.lower = ldl_le_p(ptr); - u.l.upper = ldl_le_p(ptr + 4); - return u.d; -} - -static inline void stfq_le_p(void *ptr, float64 v) -{ - CPU_DoubleU u; - u.d = v; - stl_le_p(ptr, u.l.lower); - stl_le_p(ptr + 4, u.l.upper); -} - -#else - -static inline int lduw_le_p(void *ptr) -{ - return *(uint16_t *)ptr; -} - -static inline int ldsw_le_p(void *ptr) -{ - return *(int16_t *)ptr; -} - -static inline int ldl_le_p(void *ptr) -{ - return *(uint32_t *)ptr; -} - -static inline uint64_t ldq_le_p(void *ptr) -{ - return *(uint64_t *)ptr; -} - -static inline void stw_le_p(void *ptr, int v) -{ - *(uint16_t *)ptr = v; -} - -static inline void stl_le_p(void *ptr, int v) -{ - *(uint32_t *)ptr = v; -} - -static inline void stq_le_p(void *ptr, uint64_t v) -{ -#if defined(__i386__) && __GNUC__ >= 4 - const union { uint64_t v; uint32_t p[2]; } x = { .v = v }; - ((uint32_t *)ptr)[0] = x.p[0]; - ((uint32_t *)ptr)[1] = x.p[1]; -#else - *(uint64_t *)ptr = v; -#endif -} - -/* float access */ - -static inline float32 ldfl_le_p(void *ptr) -{ - return *(float32 *)ptr; -} - -static inline float64 ldfq_le_p(void *ptr) -{ - return *(float64 *)ptr; -} - -static inline void stfl_le_p(void *ptr, float32 v) -{ - *(float32 *)ptr = v; -} - -static inline void stfq_le_p(void *ptr, float64 v) -{ - *(float64 *)ptr = v; -} -#endif - -#if !defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED) - -static inline int lduw_be_p(void *ptr) -{ -#if defined(__i386__) - int val; - asm volatile ("movzwl %1, %0\n" - "xchgb %b0, %h0\n" - : "=q" (val) - : "m" (*(uint16_t *)ptr)); - return val; -#else - uint8_t *b = (uint8_t *) ptr; - return ((b[0] << 8) | b[1]); -#endif -} - -static inline int ldsw_be_p(void *ptr) -{ -#if defined(__i386__) - int val; - asm volatile ("movzwl %1, %0\n" - "xchgb %b0, %h0\n" - : "=q" (val) - : "m" (*(uint16_t *)ptr)); - return (int16_t)val; -#else - uint8_t *b = (uint8_t *) ptr; - return (int16_t)((b[0] << 8) | b[1]); -#endif -} - -static inline int ldl_be_p(void *ptr) -{ -#if defined(__i386__) || defined(__x86_64__) - int val; - asm volatile ("movl %1, %0\n" - "bswap %0\n" - : "=r" (val) - : "m" (*(uint32_t *)ptr)); - return val; -#else - uint8_t *b = (uint8_t *) ptr; - return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3]; -#endif -} - -static inline uint64_t ldq_be_p(void *ptr) -{ - uint32_t a,b; - a = ldl_be_p(ptr); - b = ldl_be_p((uint8_t *)ptr + 4); - return (((uint64_t)a<<32)|b); -} - -static inline void stw_be_p(void *ptr, int v) -{ -#if defined(__i386__) - asm volatile ("xchgb %b0, %h0\n" - "movw %w0, %1\n" - : "=q" (v) - : "m" (*(uint16_t *)ptr), "0" (v)); -#else - uint8_t *d = (uint8_t *) ptr; - d[0] = v >> 8; - d[1] = v; -#endif -} - -static inline void stl_be_p(void *ptr, int v) -{ -#if defined(__i386__) || defined(__x86_64__) - asm volatile ("bswap %0\n" - "movl %0, %1\n" - : "=r" (v) - : "m" (*(uint32_t *)ptr), "0" (v)); -#else - uint8_t *d = (uint8_t *) ptr; - d[0] = v >> 24; - d[1] = v >> 16; - d[2] = v >> 8; - d[3] = v; -#endif -} - -static inline void stq_be_p(void *ptr, uint64_t v) -{ - stl_be_p(ptr, v >> 32); - stl_be_p((uint8_t *)ptr + 4, v); -} - -/* float access */ - -static inline float32 ldfl_be_p(void *ptr) -{ - union { - float32 f; - uint32_t i; - } u; - u.i = ldl_be_p(ptr); - return u.f; -} - -static inline void stfl_be_p(void *ptr, float32 v) -{ - union { - float32 f; - uint32_t i; - } u; - u.f = v; - stl_be_p(ptr, u.i); -} - -static inline float64 ldfq_be_p(void *ptr) -{ - CPU_DoubleU u; - u.l.upper = ldl_be_p(ptr); - u.l.lower = ldl_be_p((uint8_t *)ptr + 4); - return u.d; -} - -static inline void stfq_be_p(void *ptr, float64 v) -{ - CPU_DoubleU u; - u.d = v; - stl_be_p(ptr, u.l.upper); - stl_be_p((uint8_t *)ptr + 4, u.l.lower); -} - -#else - -static inline int lduw_be_p(void *ptr) -{ - return *(uint16_t *)ptr; -} - -static inline int ldsw_be_p(void *ptr) -{ - return *(int16_t *)ptr; -} - -static inline int ldl_be_p(void *ptr) -{ - return *(uint32_t *)ptr; -} - -static inline uint64_t ldq_be_p(void *ptr) -{ - return *(uint64_t *)ptr; -} - -static inline void stw_be_p(void *ptr, int v) -{ - *(uint16_t *)ptr = v; -} - -static inline void stl_be_p(void *ptr, int v) -{ - *(uint32_t *)ptr = v; -} - -static inline void stq_be_p(void *ptr, uint64_t v) -{ - *(uint64_t *)ptr = v; -} - -/* float access */ - -static inline float32 ldfl_be_p(void *ptr) -{ - return *(float32 *)ptr; -} - -static inline float64 ldfq_be_p(void *ptr) -{ - return *(float64 *)ptr; -} - -static inline void stfl_be_p(void *ptr, float32 v) -{ - *(float32 *)ptr = v; -} - -static inline void stfq_be_p(void *ptr, float64 v) -{ - *(float64 *)ptr = v; -} - -#endif - -/* target CPU memory access functions */ -#if defined(TARGET_WORDS_BIGENDIAN) -#define lduw_p(p) lduw_be_p(p) -#define ldsw_p(p) ldsw_be_p(p) -#define ldl_p(p) ldl_be_p(p) -#define ldq_p(p) ldq_be_p(p) -#define ldfl_p(p) ldfl_be_p(p) -#define ldfq_p(p) ldfq_be_p(p) -#define stw_p(p, v) stw_be_p(p, v) -#define stl_p(p, v) stl_be_p(p, v) -#define stq_p(p, v) stq_be_p(p, v) -#define stfl_p(p, v) stfl_be_p(p, v) -#define stfq_p(p, v) stfq_be_p(p, v) -#else -#define lduw_p(p) lduw_le_p(p) -#define ldsw_p(p) ldsw_le_p(p) -#define ldl_p(p) ldl_le_p(p) -#define ldq_p(p) ldq_le_p(p) -#define ldfl_p(p) ldfl_le_p(p) -#define ldfq_p(p) ldfq_le_p(p) -#define stw_p(p, v) stw_le_p(p, v) -#define stl_p(p, v) stl_le_p(p, v) -#define stq_p(p, v) stq_le_p(p, v) -#define stfl_p(p, v) stfl_le_p(p, v) -#define stfq_p(p, v) stfq_le_p(p, v) -#endif - -/* MMU memory access macros */ - -#if defined(CONFIG_USER_ONLY) -/* On some host systems the guest address space is reserved on the host. - * This allows the guest address space to be offset to a convenient location. - */ -//#define GUEST_BASE 0x20000000 -#define GUEST_BASE 0 - -/* All direct uses of g2h and h2g need to go away for usermode softmmu. */ -#define g2h(x) ((void *)((unsigned long)(x) + GUEST_BASE)) -#define h2g(x) ((target_ulong)((unsigned long)(x) - GUEST_BASE)) - -#define saddr(x) g2h(x) -#define laddr(x) g2h(x) - -#else /* !CONFIG_USER_ONLY */ -/* NOTE: we use double casts if pointers and target_ulong have - different sizes */ -#define saddr(x) (uint8_t *)(long)(x) -#define laddr(x) (uint8_t *)(long)(x) -#endif - -#define ldub_raw(p) ldub_p(laddr((p))) -#define ldsb_raw(p) ldsb_p(laddr((p))) -#define lduw_raw(p) lduw_p(laddr((p))) -#define ldsw_raw(p) ldsw_p(laddr((p))) -#define ldl_raw(p) ldl_p(laddr((p))) -#define ldq_raw(p) ldq_p(laddr((p))) -#define ldfl_raw(p) ldfl_p(laddr((p))) -#define ldfq_raw(p) ldfq_p(laddr((p))) -#define stb_raw(p, v) stb_p(saddr((p)), v) -#define stw_raw(p, v) stw_p(saddr((p)), v) -#define stl_raw(p, v) stl_p(saddr((p)), v) -#define stq_raw(p, v) stq_p(saddr((p)), v) -#define stfl_raw(p, v) stfl_p(saddr((p)), v) -#define stfq_raw(p, v) stfq_p(saddr((p)), v) - - -#if defined(CONFIG_USER_ONLY) - -/* if user mode, no other memory access functions */ -#define ldub(p) ldub_raw(p) -#define ldsb(p) ldsb_raw(p) -#define lduw(p) lduw_raw(p) -#define ldsw(p) ldsw_raw(p) -#define ldl(p) ldl_raw(p) -#define ldq(p) ldq_raw(p) -#define ldfl(p) ldfl_raw(p) -#define ldfq(p) ldfq_raw(p) -#define stb(p, v) stb_raw(p, v) -#define stw(p, v) stw_raw(p, v) -#define stl(p, v) stl_raw(p, v) -#define stq(p, v) stq_raw(p, v) -#define stfl(p, v) stfl_raw(p, v) -#define stfq(p, v) stfq_raw(p, v) - -#define ldub_code(p) ldub_raw(p) -#define ldsb_code(p) ldsb_raw(p) -#define lduw_code(p) lduw_raw(p) -#define ldsw_code(p) ldsw_raw(p) -#define ldl_code(p) ldl_raw(p) -#define ldq_code(p) ldq_raw(p) - -#define ldub_kernel(p) ldub_raw(p) -#define ldsb_kernel(p) ldsb_raw(p) -#define lduw_kernel(p) lduw_raw(p) -#define ldsw_kernel(p) ldsw_raw(p) -#define ldl_kernel(p) ldl_raw(p) -#define ldq_kernel(p) ldq_raw(p) -#define ldfl_kernel(p) ldfl_raw(p) -#define ldfq_kernel(p) ldfq_raw(p) -#define stb_kernel(p, v) stb_raw(p, v) -#define stw_kernel(p, v) stw_raw(p, v) -#define stl_kernel(p, v) stl_raw(p, v) -#define stq_kernel(p, v) stq_raw(p, v) -#define stfl_kernel(p, v) stfl_raw(p, v) -#define stfq_kernel(p, vt) stfq_raw(p, v) - -#endif /* defined(CONFIG_USER_ONLY) */ - -/* page related stuff */ - -#define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS) -#define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1) -#define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK) - -/* ??? These should be the larger of unsigned long and target_ulong. */ -extern unsigned long qemu_real_host_page_size; -extern unsigned long qemu_host_page_bits; -extern unsigned long qemu_host_page_size; -extern unsigned long qemu_host_page_mask; - -#define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask) - -/* same as PROT_xxx */ -#define PAGE_READ 0x0001 -#define PAGE_WRITE 0x0002 -#define PAGE_EXEC 0x0004 -#define PAGE_BITS (PAGE_READ | PAGE_WRITE | PAGE_EXEC) -#define PAGE_VALID 0x0008 -/* original state of the write flag (used when tracking self-modifying - code */ -#define PAGE_WRITE_ORG 0x0010 -#define PAGE_RESERVED 0x0020 - -void page_dump(FILE *f); -int page_get_flags(target_ulong address); -void page_set_flags(target_ulong start, target_ulong end, int flags); -int page_check_range(target_ulong start, target_ulong len, int flags); - -void cpu_exec_init_all(unsigned long tb_size); -CPUState *cpu_copy(CPUState *env); - -void cpu_dump_state(CPUState *env, FILE *f, - int (*cpu_fprintf)(FILE *f, const char *fmt, ...), - int flags); -void cpu_dump_statistics (CPUState *env, FILE *f, - int (*cpu_fprintf)(FILE *f, const char *fmt, ...), - int flags); - -void cpu_abort(CPUState *env, const char *fmt, ...) - __attribute__ ((__format__ (__printf__, 2, 3))) - __attribute__ ((__noreturn__)); -extern CPUState *first_cpu; -extern CPUState *cpu_single_env; -extern int64_t qemu_icount; -extern int use_icount; - -#define CPU_INTERRUPT_EXIT 0x01 /* wants exit from main loop */ -#define CPU_INTERRUPT_HARD 0x02 /* hardware interrupt pending */ -#define CPU_INTERRUPT_EXITTB 0x04 /* exit the current TB (use for x86 a20 case) */ -#define CPU_INTERRUPT_TIMER 0x08 /* internal timer exception pending */ -#define CPU_INTERRUPT_FIQ 0x10 /* Fast interrupt pending. */ -#define CPU_INTERRUPT_HALT 0x20 /* CPU halt wanted */ -#define CPU_INTERRUPT_SMI 0x40 /* (x86 only) SMI interrupt pending */ -#define CPU_INTERRUPT_DEBUG 0x80 /* Debug event occured. */ -#define CPU_INTERRUPT_VIRQ 0x100 /* virtual interrupt pending. */ -#define CPU_INTERRUPT_NMI 0x200 /* NMI pending. */ - -void cpu_interrupt(CPUState *s, int mask); -void cpu_reset_interrupt(CPUState *env, int mask); - -int cpu_watchpoint_insert(CPUState *env, target_ulong addr, int type); -int cpu_watchpoint_remove(CPUState *env, target_ulong addr); -void cpu_watchpoint_remove_all(CPUState *env); -int cpu_breakpoint_insert(CPUState *env, target_ulong pc); -int cpu_breakpoint_remove(CPUState *env, target_ulong pc); -void cpu_breakpoint_remove_all(CPUState *env); - -#define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */ -#define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */ -#define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */ - -void cpu_single_step(CPUState *env, int enabled); -void cpu_reset(CPUState *s); - -/* Return the physical page corresponding to a virtual one. Use it - only for debugging because no protection checks are done. Return -1 - if no page found. */ -target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr); - -#define CPU_LOG_TB_OUT_ASM (1 << 0) -#define CPU_LOG_TB_IN_ASM (1 << 1) -#define CPU_LOG_TB_OP (1 << 2) -#define CPU_LOG_TB_OP_OPT (1 << 3) -#define CPU_LOG_INT (1 << 4) -#define CPU_LOG_EXEC (1 << 5) -#define CPU_LOG_PCALL (1 << 6) -#define CPU_LOG_IOPORT (1 << 7) -#define CPU_LOG_TB_CPU (1 << 8) - -/* define log items */ -typedef struct CPULogItem { - int mask; - const char *name; - const char *help; -} CPULogItem; - -extern CPULogItem cpu_log_items[]; - -void cpu_set_log(int log_flags); -void cpu_set_log_filename(const char *filename); -int cpu_str_to_log_mask(const char *str); - -/* IO ports API */ - -/* NOTE: as these functions may be even used when there is an isa - brige on non x86 targets, we always defined them */ -#ifndef NO_CPU_IO_DEFS -void cpu_outb(CPUState *env, int addr, int val); -void cpu_outw(CPUState *env, int addr, int val); -void cpu_outl(CPUState *env, int addr, int val); -int cpu_inb(CPUState *env, int addr); -int cpu_inw(CPUState *env, int addr); -int cpu_inl(CPUState *env, int addr); -#endif - -/* address in the RAM (different from a physical address) */ -#ifdef USE_KQEMU -typedef uint32_t ram_addr_t; -#else -typedef unsigned long ram_addr_t; -#endif - -/* memory API */ - -extern ram_addr_t phys_ram_size; -extern int phys_ram_fd; -extern uint8_t *phys_ram_base; -extern uint8_t *phys_ram_dirty; -extern ram_addr_t ram_size; - -/* physical memory access */ - -/* MMIO pages are identified by a combination of an IO device index and - 3 flags. The ROMD code stores the page ram offset in iotlb entry, - so only a limited number of ids are avaiable. */ - -#define IO_MEM_SHIFT 3 -#define IO_MEM_NB_ENTRIES (1 << (TARGET_PAGE_BITS - IO_MEM_SHIFT)) - -#define IO_MEM_RAM (0 << IO_MEM_SHIFT) /* hardcoded offset */ -#define IO_MEM_ROM (1 << IO_MEM_SHIFT) /* hardcoded offset */ -#define IO_MEM_UNASSIGNED (2 << IO_MEM_SHIFT) -#define IO_MEM_NOTDIRTY (3 << IO_MEM_SHIFT) - -/* Acts like a ROM when read and like a device when written. */ -#define IO_MEM_ROMD (1) -#define IO_MEM_SUBPAGE (2) -#define IO_MEM_SUBWIDTH (4) - -/* Flags stored in the low bits of the TLB virtual address. These are - defined so that fast path ram access is all zeros. */ -/* Zero if TLB entry is valid. */ -#define TLB_INVALID_MASK (1 << 3) -/* Set if TLB entry references a clean RAM page. The iotlb entry will - contain the page physical address. */ -#define TLB_NOTDIRTY (1 << 4) -/* Set if TLB entry is an IO callback. */ -#define TLB_MMIO (1 << 5) - -typedef void CPUWriteMemoryFunc(void *opaque, target_phys_addr_t addr, uint32_t value); -typedef uint32_t CPUReadMemoryFunc(void *opaque, target_phys_addr_t addr); - -void cpu_register_physical_memory(target_phys_addr_t start_addr, - ram_addr_t size, - ram_addr_t phys_offset); -ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr); -ram_addr_t qemu_ram_alloc(ram_addr_t); -void qemu_ram_free(ram_addr_t addr); -int cpu_register_io_memory(int io_index, - CPUReadMemoryFunc **mem_read, - CPUWriteMemoryFunc **mem_write, - void *opaque); -CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index); -CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index); - -void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf, - int len, int is_write); -static inline void cpu_physical_memory_read(target_phys_addr_t addr, - uint8_t *buf, int len) -{ - cpu_physical_memory_rw(addr, buf, len, 0); -} -static inline void cpu_physical_memory_write(target_phys_addr_t addr, - const uint8_t *buf, int len) -{ - cpu_physical_memory_rw(addr, (uint8_t *)buf, len, 1); -} -uint32_t ldub_phys(target_phys_addr_t addr); -uint32_t lduw_phys(target_phys_addr_t addr); -uint32_t ldl_phys(target_phys_addr_t addr); -uint64_t ldq_phys(target_phys_addr_t addr); -void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val); -void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val); -void stb_phys(target_phys_addr_t addr, uint32_t val); -void stw_phys(target_phys_addr_t addr, uint32_t val); -void stl_phys(target_phys_addr_t addr, uint32_t val); -void stq_phys(target_phys_addr_t addr, uint64_t val); - -void cpu_physical_memory_write_rom(target_phys_addr_t addr, - const uint8_t *buf, int len); -int cpu_memory_rw_debug(CPUState *env, target_ulong addr, - uint8_t *buf, int len, int is_write); - -#define VGA_DIRTY_FLAG 0x01 -#define CODE_DIRTY_FLAG 0x02 - -/* read dirty bit (return 0 or 1) */ -static inline int cpu_physical_memory_is_dirty(ram_addr_t addr) -{ - return phys_ram_dirty[addr >> TARGET_PAGE_BITS] == 0xff; -} - -static inline int cpu_physical_memory_get_dirty(ram_addr_t addr, - int dirty_flags) -{ - return phys_ram_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags; -} - -static inline void cpu_physical_memory_set_dirty(ram_addr_t addr) -{ - phys_ram_dirty[addr >> TARGET_PAGE_BITS] = 0xff; -} - -void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end, - int dirty_flags); -void cpu_tlb_update_dirty(CPUState *env); - -void dump_exec_info(FILE *f, - int (*cpu_fprintf)(FILE *f, const char *fmt, ...)); - -/*******************************************/ -/* host CPU ticks (if available) */ - -#if defined(__powerpc__) - -static inline uint32_t get_tbl(void) -{ - uint32_t tbl; - asm volatile("mftb %0" : "=r" (tbl)); - return tbl; -} - -static inline uint32_t get_tbu(void) -{ - uint32_t tbl; - asm volatile("mftbu %0" : "=r" (tbl)); - return tbl; -} - -static inline int64_t cpu_get_real_ticks(void) -{ - uint32_t l, h, h1; - /* NOTE: we test if wrapping has occurred */ - do { - h = get_tbu(); - l = get_tbl(); - h1 = get_tbu(); - } while (h != h1); - return ((int64_t)h << 32) | l; -} - -#elif defined(__i386__) - -static inline int64_t cpu_get_real_ticks(void) -{ - int64_t val; - asm volatile ("rdtsc" : "=A" (val)); - return val; -} - -#elif defined(__x86_64__) - -static inline int64_t cpu_get_real_ticks(void) -{ - uint32_t low,high; - int64_t val; - asm volatile("rdtsc" : "=a" (low), "=d" (high)); - val = high; - val <<= 32; - val |= low; - return val; -} - -#elif defined(__hppa__) - -static inline int64_t cpu_get_real_ticks(void) -{ - int val; - asm volatile ("mfctl %%cr16, %0" : "=r"(val)); - return val; -} - -#elif defined(__ia64) - -static inline int64_t cpu_get_real_ticks(void) -{ - int64_t val; - asm volatile ("mov %0 = ar.itc" : "=r"(val) :: "memory"); - return val; -} - -#elif defined(__s390__) - -static inline int64_t cpu_get_real_ticks(void) -{ - int64_t val; - asm volatile("stck 0(%1)" : "=m" (val) : "a" (&val) : "cc"); - return val; -} - -#elif defined(__sparc_v8plus__) || defined(__sparc_v8plusa__) || defined(__sparc_v9__) - -static inline int64_t cpu_get_real_ticks (void) -{ -#if defined(_LP64) - uint64_t rval; - asm volatile("rd %%tick,%0" : "=r"(rval)); - return rval; -#else - union { - uint64_t i64; - struct { - uint32_t high; - uint32_t low; - } i32; - } rval; - asm volatile("rd %%tick,%1; srlx %1,32,%0" - : "=r"(rval.i32.high), "=r"(rval.i32.low)); - return rval.i64; -#endif -} - -#elif defined(__mips__) - -static inline int64_t cpu_get_real_ticks(void) -{ -#if __mips_isa_rev >= 2 - uint32_t count; - static uint32_t cyc_per_count = 0; - - if (!cyc_per_count) - __asm__ __volatile__("rdhwr %0, $3" : "=r" (cyc_per_count)); - - __asm__ __volatile__("rdhwr %1, $2" : "=r" (count)); - return (int64_t)(count * cyc_per_count); -#else - /* FIXME */ - static int64_t ticks = 0; - return ticks++; -#endif -} - -#else -/* The host CPU doesn't have an easily accessible cycle counter. - Just return a monotonically increasing value. This will be - totally wrong, but hopefully better than nothing. */ -static inline int64_t cpu_get_real_ticks (void) -{ - static int64_t ticks = 0; - return ticks++; -} -#endif - -/* profiling */ -#ifdef CONFIG_PROFILER -static inline int64_t profile_getclock(void) -{ - return cpu_get_real_ticks(); -} - -extern int64_t kqemu_time, kqemu_time_start; -extern int64_t qemu_time, qemu_time_start; -extern int64_t tlb_flush_time; -extern int64_t kqemu_exec_count; -extern int64_t dev_time; -extern int64_t kqemu_ret_int_count; -extern int64_t kqemu_ret_excp_count; -extern int64_t kqemu_ret_intr_count; -#endif - -#endif /* CPU_ALL_H */ -- cgit v1.1