From f721e3ac031f892af46f255a47d7f54a91317b30 Mon Sep 17 00:00:00 2001 From: The Android Open Source Project Date: Tue, 3 Mar 2009 18:28:35 -0800 Subject: auto import from //depot/cupcake/@135843 --- fpu/softfloat-macros.h | 720 ------ fpu/softfloat-native.c | 505 ---- fpu/softfloat-native.h | 425 ---- fpu/softfloat-specialize.h | 569 ----- fpu/softfloat.c | 5541 -------------------------------------------- fpu/softfloat.h | 444 ---- 6 files changed, 8204 deletions(-) delete mode 100644 fpu/softfloat-macros.h delete mode 100644 fpu/softfloat-native.c delete mode 100644 fpu/softfloat-native.h delete mode 100644 fpu/softfloat-specialize.h delete mode 100644 fpu/softfloat.c delete mode 100644 fpu/softfloat.h (limited to 'fpu') diff --git a/fpu/softfloat-macros.h b/fpu/softfloat-macros.h deleted file mode 100644 index 2c8f18b..0000000 --- a/fpu/softfloat-macros.h +++ /dev/null @@ -1,720 +0,0 @@ - -/*============================================================================ - -This C source fragment is part of the SoftFloat IEC/IEEE Floating-point -Arithmetic Package, Release 2b. - -Written by John R. Hauser. This work was made possible in part by the -International Computer Science Institute, located at Suite 600, 1947 Center -Street, Berkeley, California 94704. Funding was partially provided by the -National Science Foundation under grant MIP-9311980. The original version -of this code was written as part of a project to build a fixed-point vector -processor in collaboration with the University of California at Berkeley, -overseen by Profs. Nelson Morgan and John Wawrzynek. More information -is available through the Web page `http://www.cs.berkeley.edu/~jhauser/ -arithmetic/SoftFloat.html'. - -THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has -been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES -RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS -AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES, -COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE -EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE -INSTITUTE (possibly via similar legal notice) AGAINST ALL LOSSES, COSTS, OR -OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE. - -Derivative works are acceptable, even for commercial purposes, so long as -(1) the source code for the derivative work includes prominent notice that -the work is derivative, and (2) the source code includes prominent notice with -these four paragraphs for those parts of this code that are retained. - -=============================================================================*/ - -/*---------------------------------------------------------------------------- -| Shifts `a' right by the number of bits given in `count'. If any nonzero -| bits are shifted off, they are ``jammed'' into the least significant bit of -| the result by setting the least significant bit to 1. The value of `count' -| can be arbitrarily large; in particular, if `count' is greater than 32, the -| result will be either 0 or 1, depending on whether `a' is zero or nonzero. -| The result is stored in the location pointed to by `zPtr'. -*----------------------------------------------------------------------------*/ - -INLINE void shift32RightJamming( bits32 a, int16 count, bits32 *zPtr ) -{ - bits32 z; - - if ( count == 0 ) { - z = a; - } - else if ( count < 32 ) { - z = ( a>>count ) | ( ( a<<( ( - count ) & 31 ) ) != 0 ); - } - else { - z = ( a != 0 ); - } - *zPtr = z; - -} - -/*---------------------------------------------------------------------------- -| Shifts `a' right by the number of bits given in `count'. If any nonzero -| bits are shifted off, they are ``jammed'' into the least significant bit of -| the result by setting the least significant bit to 1. The value of `count' -| can be arbitrarily large; in particular, if `count' is greater than 64, the -| result will be either 0 or 1, depending on whether `a' is zero or nonzero. -| The result is stored in the location pointed to by `zPtr'. -*----------------------------------------------------------------------------*/ - -INLINE void shift64RightJamming( bits64 a, int16 count, bits64 *zPtr ) -{ - bits64 z; - - if ( count == 0 ) { - z = a; - } - else if ( count < 64 ) { - z = ( a>>count ) | ( ( a<<( ( - count ) & 63 ) ) != 0 ); - } - else { - z = ( a != 0 ); - } - *zPtr = z; - -} - -/*---------------------------------------------------------------------------- -| Shifts the 128-bit value formed by concatenating `a0' and `a1' right by 64 -| _plus_ the number of bits given in `count'. The shifted result is at most -| 64 nonzero bits; this is stored at the location pointed to by `z0Ptr'. The -| bits shifted off form a second 64-bit result as follows: The _last_ bit -| shifted off is the most-significant bit of the extra result, and the other -| 63 bits of the extra result are all zero if and only if _all_but_the_last_ -| bits shifted off were all zero. This extra result is stored in the location -| pointed to by `z1Ptr'. The value of `count' can be arbitrarily large. -| (This routine makes more sense if `a0' and `a1' are considered to form -| a fixed-point value with binary point between `a0' and `a1'. This fixed- -| point value is shifted right by the number of bits given in `count', and -| the integer part of the result is returned at the location pointed to by -| `z0Ptr'. The fractional part of the result may be slightly corrupted as -| described above, and is returned at the location pointed to by `z1Ptr'.) -*----------------------------------------------------------------------------*/ - -INLINE void - shift64ExtraRightJamming( - bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr ) -{ - bits64 z0, z1; - int8 negCount = ( - count ) & 63; - - if ( count == 0 ) { - z1 = a1; - z0 = a0; - } - else if ( count < 64 ) { - z1 = ( a0<>count; - } - else { - if ( count == 64 ) { - z1 = a0 | ( a1 != 0 ); - } - else { - z1 = ( ( a0 | a1 ) != 0 ); - } - z0 = 0; - } - *z1Ptr = z1; - *z0Ptr = z0; - -} - -/*---------------------------------------------------------------------------- -| Shifts the 128-bit value formed by concatenating `a0' and `a1' right by the -| number of bits given in `count'. Any bits shifted off are lost. The value -| of `count' can be arbitrarily large; in particular, if `count' is greater -| than 128, the result will be 0. The result is broken into two 64-bit pieces -| which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'. -*----------------------------------------------------------------------------*/ - -INLINE void - shift128Right( - bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr ) -{ - bits64 z0, z1; - int8 negCount = ( - count ) & 63; - - if ( count == 0 ) { - z1 = a1; - z0 = a0; - } - else if ( count < 64 ) { - z1 = ( a0<>count ); - z0 = a0>>count; - } - else { - z1 = ( count < 64 ) ? ( a0>>( count & 63 ) ) : 0; - z0 = 0; - } - *z1Ptr = z1; - *z0Ptr = z0; - -} - -/*---------------------------------------------------------------------------- -| Shifts the 128-bit value formed by concatenating `a0' and `a1' right by the -| number of bits given in `count'. If any nonzero bits are shifted off, they -| are ``jammed'' into the least significant bit of the result by setting the -| least significant bit to 1. The value of `count' can be arbitrarily large; -| in particular, if `count' is greater than 128, the result will be either -| 0 or 1, depending on whether the concatenation of `a0' and `a1' is zero or -| nonzero. The result is broken into two 64-bit pieces which are stored at -| the locations pointed to by `z0Ptr' and `z1Ptr'. -*----------------------------------------------------------------------------*/ - -INLINE void - shift128RightJamming( - bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr ) -{ - bits64 z0, z1; - int8 negCount = ( - count ) & 63; - - if ( count == 0 ) { - z1 = a1; - z0 = a0; - } - else if ( count < 64 ) { - z1 = ( a0<>count ) | ( ( a1<>count; - } - else { - if ( count == 64 ) { - z1 = a0 | ( a1 != 0 ); - } - else if ( count < 128 ) { - z1 = ( a0>>( count & 63 ) ) | ( ( ( a0<>count ); - z0 = a0>>count; - } - else { - if ( count == 64 ) { - z2 = a1; - z1 = a0; - } - else { - a2 |= a1; - if ( count < 128 ) { - z2 = a0<>( count & 63 ); - } - else { - z2 = ( count == 128 ) ? a0 : ( a0 != 0 ); - z1 = 0; - } - } - z0 = 0; - } - z2 |= ( a2 != 0 ); - } - *z2Ptr = z2; - *z1Ptr = z1; - *z0Ptr = z0; - -} - -/*---------------------------------------------------------------------------- -| Shifts the 128-bit value formed by concatenating `a0' and `a1' left by the -| number of bits given in `count'. Any bits shifted off are lost. The value -| of `count' must be less than 64. The result is broken into two 64-bit -| pieces which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'. -*----------------------------------------------------------------------------*/ - -INLINE void - shortShift128Left( - bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr ) -{ - - *z1Ptr = a1<>( ( - count ) & 63 ) ); - -} - -/*---------------------------------------------------------------------------- -| Shifts the 192-bit value formed by concatenating `a0', `a1', and `a2' left -| by the number of bits given in `count'. Any bits shifted off are lost. -| The value of `count' must be less than 64. The result is broken into three -| 64-bit pieces which are stored at the locations pointed to by `z0Ptr', -| `z1Ptr', and `z2Ptr'. -*----------------------------------------------------------------------------*/ - -INLINE void - shortShift192Left( - bits64 a0, - bits64 a1, - bits64 a2, - int16 count, - bits64 *z0Ptr, - bits64 *z1Ptr, - bits64 *z2Ptr - ) -{ - bits64 z0, z1, z2; - int8 negCount; - - z2 = a2<>negCount; - z0 |= a1>>negCount; - } - *z2Ptr = z2; - *z1Ptr = z1; - *z0Ptr = z0; - -} - -/*---------------------------------------------------------------------------- -| Adds the 128-bit value formed by concatenating `a0' and `a1' to the 128-bit -| value formed by concatenating `b0' and `b1'. Addition is modulo 2^128, so -| any carry out is lost. The result is broken into two 64-bit pieces which -| are stored at the locations pointed to by `z0Ptr' and `z1Ptr'. -*----------------------------------------------------------------------------*/ - -INLINE void - add128( - bits64 a0, bits64 a1, bits64 b0, bits64 b1, bits64 *z0Ptr, bits64 *z1Ptr ) -{ - bits64 z1; - - z1 = a1 + b1; - *z1Ptr = z1; - *z0Ptr = a0 + b0 + ( z1 < a1 ); - -} - -/*---------------------------------------------------------------------------- -| Adds the 192-bit value formed by concatenating `a0', `a1', and `a2' to the -| 192-bit value formed by concatenating `b0', `b1', and `b2'. Addition is -| modulo 2^192, so any carry out is lost. The result is broken into three -| 64-bit pieces which are stored at the locations pointed to by `z0Ptr', -| `z1Ptr', and `z2Ptr'. -*----------------------------------------------------------------------------*/ - -INLINE void - add192( - bits64 a0, - bits64 a1, - bits64 a2, - bits64 b0, - bits64 b1, - bits64 b2, - bits64 *z0Ptr, - bits64 *z1Ptr, - bits64 *z2Ptr - ) -{ - bits64 z0, z1, z2; - int8 carry0, carry1; - - z2 = a2 + b2; - carry1 = ( z2 < a2 ); - z1 = a1 + b1; - carry0 = ( z1 < a1 ); - z0 = a0 + b0; - z1 += carry1; - z0 += ( z1 < carry1 ); - z0 += carry0; - *z2Ptr = z2; - *z1Ptr = z1; - *z0Ptr = z0; - -} - -/*---------------------------------------------------------------------------- -| Subtracts the 128-bit value formed by concatenating `b0' and `b1' from the -| 128-bit value formed by concatenating `a0' and `a1'. Subtraction is modulo -| 2^128, so any borrow out (carry out) is lost. The result is broken into two -| 64-bit pieces which are stored at the locations pointed to by `z0Ptr' and -| `z1Ptr'. -*----------------------------------------------------------------------------*/ - -INLINE void - sub128( - bits64 a0, bits64 a1, bits64 b0, bits64 b1, bits64 *z0Ptr, bits64 *z1Ptr ) -{ - - *z1Ptr = a1 - b1; - *z0Ptr = a0 - b0 - ( a1 < b1 ); - -} - -/*---------------------------------------------------------------------------- -| Subtracts the 192-bit value formed by concatenating `b0', `b1', and `b2' -| from the 192-bit value formed by concatenating `a0', `a1', and `a2'. -| Subtraction is modulo 2^192, so any borrow out (carry out) is lost. The -| result is broken into three 64-bit pieces which are stored at the locations -| pointed to by `z0Ptr', `z1Ptr', and `z2Ptr'. -*----------------------------------------------------------------------------*/ - -INLINE void - sub192( - bits64 a0, - bits64 a1, - bits64 a2, - bits64 b0, - bits64 b1, - bits64 b2, - bits64 *z0Ptr, - bits64 *z1Ptr, - bits64 *z2Ptr - ) -{ - bits64 z0, z1, z2; - int8 borrow0, borrow1; - - z2 = a2 - b2; - borrow1 = ( a2 < b2 ); - z1 = a1 - b1; - borrow0 = ( a1 < b1 ); - z0 = a0 - b0; - z0 -= ( z1 < borrow1 ); - z1 -= borrow1; - z0 -= borrow0; - *z2Ptr = z2; - *z1Ptr = z1; - *z0Ptr = z0; - -} - -/*---------------------------------------------------------------------------- -| Multiplies `a' by `b' to obtain a 128-bit product. The product is broken -| into two 64-bit pieces which are stored at the locations pointed to by -| `z0Ptr' and `z1Ptr'. -*----------------------------------------------------------------------------*/ - -INLINE void mul64To128( bits64 a, bits64 b, bits64 *z0Ptr, bits64 *z1Ptr ) -{ - bits32 aHigh, aLow, bHigh, bLow; - bits64 z0, zMiddleA, zMiddleB, z1; - - aLow = a; - aHigh = a>>32; - bLow = b; - bHigh = b>>32; - z1 = ( (bits64) aLow ) * bLow; - zMiddleA = ( (bits64) aLow ) * bHigh; - zMiddleB = ( (bits64) aHigh ) * bLow; - z0 = ( (bits64) aHigh ) * bHigh; - zMiddleA += zMiddleB; - z0 += ( ( (bits64) ( zMiddleA < zMiddleB ) )<<32 ) + ( zMiddleA>>32 ); - zMiddleA <<= 32; - z1 += zMiddleA; - z0 += ( z1 < zMiddleA ); - *z1Ptr = z1; - *z0Ptr = z0; - -} - -/*---------------------------------------------------------------------------- -| Multiplies the 128-bit value formed by concatenating `a0' and `a1' by -| `b' to obtain a 192-bit product. The product is broken into three 64-bit -| pieces which are stored at the locations pointed to by `z0Ptr', `z1Ptr', and -| `z2Ptr'. -*----------------------------------------------------------------------------*/ - -INLINE void - mul128By64To192( - bits64 a0, - bits64 a1, - bits64 b, - bits64 *z0Ptr, - bits64 *z1Ptr, - bits64 *z2Ptr - ) -{ - bits64 z0, z1, z2, more1; - - mul64To128( a1, b, &z1, &z2 ); - mul64To128( a0, b, &z0, &more1 ); - add128( z0, more1, 0, z1, &z0, &z1 ); - *z2Ptr = z2; - *z1Ptr = z1; - *z0Ptr = z0; - -} - -/*---------------------------------------------------------------------------- -| Multiplies the 128-bit value formed by concatenating `a0' and `a1' to the -| 128-bit value formed by concatenating `b0' and `b1' to obtain a 256-bit -| product. The product is broken into four 64-bit pieces which are stored at -| the locations pointed to by `z0Ptr', `z1Ptr', `z2Ptr', and `z3Ptr'. -*----------------------------------------------------------------------------*/ - -INLINE void - mul128To256( - bits64 a0, - bits64 a1, - bits64 b0, - bits64 b1, - bits64 *z0Ptr, - bits64 *z1Ptr, - bits64 *z2Ptr, - bits64 *z3Ptr - ) -{ - bits64 z0, z1, z2, z3; - bits64 more1, more2; - - mul64To128( a1, b1, &z2, &z3 ); - mul64To128( a1, b0, &z1, &more2 ); - add128( z1, more2, 0, z2, &z1, &z2 ); - mul64To128( a0, b0, &z0, &more1 ); - add128( z0, more1, 0, z1, &z0, &z1 ); - mul64To128( a0, b1, &more1, &more2 ); - add128( more1, more2, 0, z2, &more1, &z2 ); - add128( z0, z1, 0, more1, &z0, &z1 ); - *z3Ptr = z3; - *z2Ptr = z2; - *z1Ptr = z1; - *z0Ptr = z0; - -} - -/*---------------------------------------------------------------------------- -| Returns an approximation to the 64-bit integer quotient obtained by dividing -| `b' into the 128-bit value formed by concatenating `a0' and `a1'. The -| divisor `b' must be at least 2^63. If q is the exact quotient truncated -| toward zero, the approximation returned lies between q and q + 2 inclusive. -| If the exact quotient q is larger than 64 bits, the maximum positive 64-bit -| unsigned integer is returned. -*----------------------------------------------------------------------------*/ - -static bits64 estimateDiv128To64( bits64 a0, bits64 a1, bits64 b ) -{ - bits64 b0, b1; - bits64 rem0, rem1, term0, term1; - bits64 z; - - if ( b <= a0 ) return LIT64( 0xFFFFFFFFFFFFFFFF ); - b0 = b>>32; - z = ( b0<<32 <= a0 ) ? LIT64( 0xFFFFFFFF00000000 ) : ( a0 / b0 )<<32; - mul64To128( b, z, &term0, &term1 ); - sub128( a0, a1, term0, term1, &rem0, &rem1 ); - while ( ( (sbits64) rem0 ) < 0 ) { - z -= LIT64( 0x100000000 ); - b1 = b<<32; - add128( rem0, rem1, b0, b1, &rem0, &rem1 ); - } - rem0 = ( rem0<<32 ) | ( rem1>>32 ); - z |= ( b0<<32 <= rem0 ) ? 0xFFFFFFFF : rem0 / b0; - return z; - -} - -/*---------------------------------------------------------------------------- -| Returns an approximation to the square root of the 32-bit significand given -| by `a'. Considered as an integer, `a' must be at least 2^31. If bit 0 of -| `aExp' (the least significant bit) is 1, the integer returned approximates -| 2^31*sqrt(`a'/2^31), where `a' is considered an integer. If bit 0 of `aExp' -| is 0, the integer returned approximates 2^31*sqrt(`a'/2^30). In either -| case, the approximation returned lies strictly within +/-2 of the exact -| value. -*----------------------------------------------------------------------------*/ - -static bits32 estimateSqrt32( int16 aExp, bits32 a ) -{ - static const bits16 sqrtOddAdjustments[] = { - 0x0004, 0x0022, 0x005D, 0x00B1, 0x011D, 0x019F, 0x0236, 0x02E0, - 0x039C, 0x0468, 0x0545, 0x0631, 0x072B, 0x0832, 0x0946, 0x0A67 - }; - static const bits16 sqrtEvenAdjustments[] = { - 0x0A2D, 0x08AF, 0x075A, 0x0629, 0x051A, 0x0429, 0x0356, 0x029E, - 0x0200, 0x0179, 0x0109, 0x00AF, 0x0068, 0x0034, 0x0012, 0x0002 - }; - int8 index; - bits32 z; - - index = ( a>>27 ) & 15; - if ( aExp & 1 ) { - z = 0x4000 + ( a>>17 ) - sqrtOddAdjustments[ index ]; - z = ( ( a / z )<<14 ) + ( z<<15 ); - a >>= 1; - } - else { - z = 0x8000 + ( a>>17 ) - sqrtEvenAdjustments[ index ]; - z = a / z + z; - z = ( 0x20000 <= z ) ? 0xFFFF8000 : ( z<<15 ); - if ( z <= a ) return (bits32) ( ( (sbits32) a )>>1 ); - } - return ( (bits32) ( ( ( (bits64) a )<<31 ) / z ) ) + ( z>>1 ); - -} - -/*---------------------------------------------------------------------------- -| Returns the number of leading 0 bits before the most-significant 1 bit of -| `a'. If `a' is zero, 32 is returned. -*----------------------------------------------------------------------------*/ - -static int8 countLeadingZeros32( bits32 a ) -{ - static const int8 countLeadingZerosHigh[] = { - 8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, - 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, - 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, - 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, - 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, - 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, - 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, - 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 - }; - int8 shiftCount; - - shiftCount = 0; - if ( a < 0x10000 ) { - shiftCount += 16; - a <<= 16; - } - if ( a < 0x1000000 ) { - shiftCount += 8; - a <<= 8; - } - shiftCount += countLeadingZerosHigh[ a>>24 ]; - return shiftCount; - -} - -/*---------------------------------------------------------------------------- -| Returns the number of leading 0 bits before the most-significant 1 bit of -| `a'. If `a' is zero, 64 is returned. -*----------------------------------------------------------------------------*/ - -static int8 countLeadingZeros64( bits64 a ) -{ - int8 shiftCount; - - shiftCount = 0; - if ( a < ( (bits64) 1 )<<32 ) { - shiftCount += 32; - } - else { - a >>= 32; - } - shiftCount += countLeadingZeros32( a ); - return shiftCount; - -} - -/*---------------------------------------------------------------------------- -| Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' -| is equal to the 128-bit value formed by concatenating `b0' and `b1'. -| Otherwise, returns 0. -*----------------------------------------------------------------------------*/ - -INLINE flag eq128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 ) -{ - - return ( a0 == b0 ) && ( a1 == b1 ); - -} - -/*---------------------------------------------------------------------------- -| Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' is less -| than or equal to the 128-bit value formed by concatenating `b0' and `b1'. -| Otherwise, returns 0. -*----------------------------------------------------------------------------*/ - -INLINE flag le128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 ) -{ - - return ( a0 < b0 ) || ( ( a0 == b0 ) && ( a1 <= b1 ) ); - -} - -/*---------------------------------------------------------------------------- -| Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' is less -| than the 128-bit value formed by concatenating `b0' and `b1'. Otherwise, -| returns 0. -*----------------------------------------------------------------------------*/ - -INLINE flag lt128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 ) -{ - - return ( a0 < b0 ) || ( ( a0 == b0 ) && ( a1 < b1 ) ); - -} - -/*---------------------------------------------------------------------------- -| Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' is -| not equal to the 128-bit value formed by concatenating `b0' and `b1'. -| Otherwise, returns 0. -*----------------------------------------------------------------------------*/ - -INLINE flag ne128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 ) -{ - - return ( a0 != b0 ) || ( a1 != b1 ); - -} - diff --git a/fpu/softfloat-native.c b/fpu/softfloat-native.c deleted file mode 100644 index e58551f..0000000 --- a/fpu/softfloat-native.c +++ /dev/null @@ -1,505 +0,0 @@ -/* Native implementation of soft float functions. Only a single status - context is supported */ -#include "softfloat.h" -#include - -void set_float_rounding_mode(int val STATUS_PARAM) -{ - STATUS(float_rounding_mode) = val; -#if defined(_BSD) && !defined(__APPLE__) || (defined(HOST_SOLARIS) && HOST_SOLARIS < 10) - fpsetround(val); -#elif defined(__arm__) - /* nothing to do */ -#else - fesetround(val); -#endif -} - -#ifdef FLOATX80 -void set_floatx80_rounding_precision(int val STATUS_PARAM) -{ - STATUS(floatx80_rounding_precision) = val; -} -#endif - -#if defined(_BSD) || (defined(HOST_SOLARIS) && HOST_SOLARIS < 10) -#define lrint(d) ((int32_t)rint(d)) -#define llrint(d) ((int64_t)rint(d)) -#define lrintf(f) ((int32_t)rint(f)) -#define llrintf(f) ((int64_t)rint(f)) -#define sqrtf(f) ((float)sqrt(f)) -#define remainderf(fa, fb) ((float)remainder(fa, fb)) -#define rintf(f) ((float)rint(f)) -#if !defined(__sparc__) && defined(HOST_SOLARIS) && HOST_SOLARIS < 10 -extern long double rintl(long double); -extern long double scalbnl(long double, int); - -long long -llrintl(long double x) { - return ((long long) rintl(x)); -} - -long -lrintl(long double x) { - return ((long) rintl(x)); -} - -long double -ldexpl(long double x, int n) { - return (scalbnl(x, n)); -} -#endif -#endif - -#if defined(__powerpc__) - -/* correct (but slow) PowerPC rint() (glibc version is incorrect) */ -double qemu_rint(double x) -{ - double y = 4503599627370496.0; - if (fabs(x) >= y) - return x; - if (x < 0) - y = -y; - y = (x + y) - y; - if (y == 0.0) - y = copysign(y, x); - return y; -} - -#define rint qemu_rint -#endif - -/*---------------------------------------------------------------------------- -| Software IEC/IEEE integer-to-floating-point conversion routines. -*----------------------------------------------------------------------------*/ -float32 int32_to_float32(int v STATUS_PARAM) -{ - return (float32)v; -} - -float32 uint32_to_float32(unsigned int v STATUS_PARAM) -{ - return (float32)v; -} - -float64 int32_to_float64(int v STATUS_PARAM) -{ - return (float64)v; -} - -float64 uint32_to_float64(unsigned int v STATUS_PARAM) -{ - return (float64)v; -} - -#ifdef FLOATX80 -floatx80 int32_to_floatx80(int v STATUS_PARAM) -{ - return (floatx80)v; -} -#endif -float32 int64_to_float32( int64_t v STATUS_PARAM) -{ - return (float32)v; -} -float32 uint64_to_float32( uint64_t v STATUS_PARAM) -{ - return (float32)v; -} -float64 int64_to_float64( int64_t v STATUS_PARAM) -{ - return (float64)v; -} -float64 uint64_to_float64( uint64_t v STATUS_PARAM) -{ - return (float64)v; -} -#ifdef FLOATX80 -floatx80 int64_to_floatx80( int64_t v STATUS_PARAM) -{ - return (floatx80)v; -} -#endif - -/* XXX: this code implements the x86 behaviour, not the IEEE one. */ -#if HOST_LONG_BITS == 32 -static inline int long_to_int32(long a) -{ - return a; -} -#else -static inline int long_to_int32(long a) -{ - if (a != (int32_t)a) - a = 0x80000000; - return a; -} -#endif - -/*---------------------------------------------------------------------------- -| Software IEC/IEEE single-precision conversion routines. -*----------------------------------------------------------------------------*/ -int float32_to_int32( float32 a STATUS_PARAM) -{ - return long_to_int32(lrintf(a)); -} -int float32_to_int32_round_to_zero( float32 a STATUS_PARAM) -{ - return (int)a; -} -int64_t float32_to_int64( float32 a STATUS_PARAM) -{ - return llrintf(a); -} - -int64_t float32_to_int64_round_to_zero( float32 a STATUS_PARAM) -{ - return (int64_t)a; -} - -float64 float32_to_float64( float32 a STATUS_PARAM) -{ - return a; -} -#ifdef FLOATX80 -floatx80 float32_to_floatx80( float32 a STATUS_PARAM) -{ - return a; -} -#endif - -unsigned int float32_to_uint32( float32 a STATUS_PARAM) -{ - int64_t v; - unsigned int res; - - v = llrintf(a); - if (v < 0) { - res = 0; - } else if (v > 0xffffffff) { - res = 0xffffffff; - } else { - res = v; - } - return res; -} -unsigned int float32_to_uint32_round_to_zero( float32 a STATUS_PARAM) -{ - int64_t v; - unsigned int res; - - v = (int64_t)a; - if (v < 0) { - res = 0; - } else if (v > 0xffffffff) { - res = 0xffffffff; - } else { - res = v; - } - return res; -} - -/*---------------------------------------------------------------------------- -| Software IEC/IEEE single-precision operations. -*----------------------------------------------------------------------------*/ -float32 float32_round_to_int( float32 a STATUS_PARAM) -{ - return rintf(a); -} - -float32 float32_rem( float32 a, float32 b STATUS_PARAM) -{ - return remainderf(a, b); -} - -float32 float32_sqrt( float32 a STATUS_PARAM) -{ - return sqrtf(a); -} -int float32_compare( float32 a, float32 b STATUS_PARAM ) -{ - if (a < b) { - return -1; - } else if (a == b) { - return 0; - } else if (a > b) { - return 1; - } else { - return 2; - } -} -int float32_compare_quiet( float32 a, float32 b STATUS_PARAM ) -{ - if (isless(a, b)) { - return -1; - } else if (a == b) { - return 0; - } else if (isgreater(a, b)) { - return 1; - } else { - return 2; - } -} -int float32_is_signaling_nan( float32 a1) -{ - float32u u; - uint32_t a; - u.f = a1; - a = u.i; - return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF ); -} - -/*---------------------------------------------------------------------------- -| Software IEC/IEEE double-precision conversion routines. -*----------------------------------------------------------------------------*/ -int float64_to_int32( float64 a STATUS_PARAM) -{ - return long_to_int32(lrint(a)); -} -int float64_to_int32_round_to_zero( float64 a STATUS_PARAM) -{ - return (int)a; -} -int64_t float64_to_int64( float64 a STATUS_PARAM) -{ - return llrint(a); -} -int64_t float64_to_int64_round_to_zero( float64 a STATUS_PARAM) -{ - return (int64_t)a; -} -float32 float64_to_float32( float64 a STATUS_PARAM) -{ - return a; -} -#ifdef FLOATX80 -floatx80 float64_to_floatx80( float64 a STATUS_PARAM) -{ - return a; -} -#endif -#ifdef FLOAT128 -float128 float64_to_float128( float64 a STATUS_PARAM) -{ - return a; -} -#endif - -unsigned int float64_to_uint32( float64 a STATUS_PARAM) -{ - int64_t v; - unsigned int res; - - v = llrint(a); - if (v < 0) { - res = 0; - } else if (v > 0xffffffff) { - res = 0xffffffff; - } else { - res = v; - } - return res; -} -unsigned int float64_to_uint32_round_to_zero( float64 a STATUS_PARAM) -{ - int64_t v; - unsigned int res; - - v = (int64_t)a; - if (v < 0) { - res = 0; - } else if (v > 0xffffffff) { - res = 0xffffffff; - } else { - res = v; - } - return res; -} -uint64_t float64_to_uint64 (float64 a STATUS_PARAM) -{ - int64_t v; - - v = llrint(a + (float64)INT64_MIN); - - return v - INT64_MIN; -} -uint64_t float64_to_uint64_round_to_zero (float64 a STATUS_PARAM) -{ - int64_t v; - - v = (int64_t)(a + (float64)INT64_MIN); - - return v - INT64_MIN; -} - -/*---------------------------------------------------------------------------- -| Software IEC/IEEE double-precision operations. -*----------------------------------------------------------------------------*/ -#if defined(__sun__) && defined(HOST_SOLARIS) && HOST_SOLARIS < 10 -static inline float64 trunc(float64 x) -{ - return x < 0 ? -floor(-x) : floor(x); -} -#endif -float64 float64_trunc_to_int( float64 a STATUS_PARAM ) -{ - return trunc(a); -} - -float64 float64_round_to_int( float64 a STATUS_PARAM ) -{ -#if defined(__arm__) - switch(STATUS(float_rounding_mode)) { - default: - case float_round_nearest_even: - asm("rndd %0, %1" : "=f" (a) : "f"(a)); - break; - case float_round_down: - asm("rnddm %0, %1" : "=f" (a) : "f"(a)); - break; - case float_round_up: - asm("rnddp %0, %1" : "=f" (a) : "f"(a)); - break; - case float_round_to_zero: - asm("rnddz %0, %1" : "=f" (a) : "f"(a)); - break; - } -#else - return rint(a); -#endif -} - -float64 float64_rem( float64 a, float64 b STATUS_PARAM) -{ - return remainder(a, b); -} - -float64 float64_sqrt( float64 a STATUS_PARAM) -{ - return sqrt(a); -} -int float64_compare( float64 a, float64 b STATUS_PARAM ) -{ - if (a < b) { - return -1; - } else if (a == b) { - return 0; - } else if (a > b) { - return 1; - } else { - return 2; - } -} -int float64_compare_quiet( float64 a, float64 b STATUS_PARAM ) -{ - if (isless(a, b)) { - return -1; - } else if (a == b) { - return 0; - } else if (isgreater(a, b)) { - return 1; - } else { - return 2; - } -} -int float64_is_signaling_nan( float64 a1) -{ - float64u u; - uint64_t a; - u.f = a1; - a = u.i; - return - ( ( ( a>>51 ) & 0xFFF ) == 0xFFE ) - && ( a & LIT64( 0x0007FFFFFFFFFFFF ) ); - -} - -int float64_is_nan( float64 a1 ) -{ - float64u u; - uint64_t a; - u.f = a1; - a = u.i; - - return ( LIT64( 0xFFE0000000000000 ) < (bits64) ( a<<1 ) ); - -} - -#ifdef FLOATX80 - -/*---------------------------------------------------------------------------- -| Software IEC/IEEE extended double-precision conversion routines. -*----------------------------------------------------------------------------*/ -int floatx80_to_int32( floatx80 a STATUS_PARAM) -{ - return long_to_int32(lrintl(a)); -} -int floatx80_to_int32_round_to_zero( floatx80 a STATUS_PARAM) -{ - return (int)a; -} -int64_t floatx80_to_int64( floatx80 a STATUS_PARAM) -{ - return llrintl(a); -} -int64_t floatx80_to_int64_round_to_zero( floatx80 a STATUS_PARAM) -{ - return (int64_t)a; -} -float32 floatx80_to_float32( floatx80 a STATUS_PARAM) -{ - return a; -} -float64 floatx80_to_float64( floatx80 a STATUS_PARAM) -{ - return a; -} - -/*---------------------------------------------------------------------------- -| Software IEC/IEEE extended double-precision operations. -*----------------------------------------------------------------------------*/ -floatx80 floatx80_round_to_int( floatx80 a STATUS_PARAM) -{ - return rintl(a); -} -floatx80 floatx80_rem( floatx80 a, floatx80 b STATUS_PARAM) -{ - return remainderl(a, b); -} -floatx80 floatx80_sqrt( floatx80 a STATUS_PARAM) -{ - return sqrtl(a); -} -int floatx80_compare( floatx80 a, floatx80 b STATUS_PARAM ) -{ - if (a < b) { - return -1; - } else if (a == b) { - return 0; - } else if (a > b) { - return 1; - } else { - return 2; - } -} -int floatx80_compare_quiet( floatx80 a, floatx80 b STATUS_PARAM ) -{ - if (isless(a, b)) { - return -1; - } else if (a == b) { - return 0; - } else if (isgreater(a, b)) { - return 1; - } else { - return 2; - } -} -int floatx80_is_signaling_nan( floatx80 a1) -{ - floatx80u u; - u.f = a1; - return ( ( u.i.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( u.i.low<<1 ); -} - -#endif diff --git a/fpu/softfloat-native.h b/fpu/softfloat-native.h deleted file mode 100644 index 379d49d..0000000 --- a/fpu/softfloat-native.h +++ /dev/null @@ -1,425 +0,0 @@ -/* Native implementation of soft float functions */ -#include - -#if (defined(_BSD) && !defined(__APPLE__)) || defined(HOST_SOLARIS) -#include -#define fabsf(f) ((float)fabs(f)) -#else -#include -#endif - -#ifdef __OpenBSD__ -/* Get OpenBSD version number */ -#include -#endif - -/* - * Define some C99-7.12.3 classification macros and - * some C99-.12.4 for Solaris systems OS less than 10, - * or Solaris 10 systems running GCC 3.x or less. - * Solaris 10 with GCC4 does not need these macros as they - * are defined in with a compiler directive - */ -#if defined(HOST_SOLARIS) && (( HOST_SOLARIS <= 9 ) || ((HOST_SOLARIS >= 10) \ - && (__GNUC__ <= 4))) \ - || (defined(__OpenBSD__) && (OpenBSD < 200811)) -/* - * C99 7.12.3 classification macros - * and - * C99 7.12.14 comparison macros - * - * ... do not work on Solaris 10 using GNU CC 3.4.x. - * Try to workaround the missing / broken C99 math macros. - */ -#if defined(__OpenBSD__) -#define unordered(x, y) (isnan(x) || isnan(y)) -#endif - -#define isnormal(x) (fpclass(x) >= FP_NZERO) -#define isgreater(x, y) ((!unordered(x, y)) && ((x) > (y))) -#define isgreaterequal(x, y) ((!unordered(x, y)) && ((x) >= (y))) -#define isless(x, y) ((!unordered(x, y)) && ((x) < (y))) -#define islessequal(x, y) ((!unordered(x, y)) && ((x) <= (y))) -#define isunordered(x,y) unordered(x, y) -#endif - -#if defined(__sun__) && !defined(NEED_LIBSUNMATH) - -#ifndef isnan -# define isnan(x) \ - (sizeof (x) == sizeof (long double) ? isnan_ld (x) \ - : sizeof (x) == sizeof (double) ? isnan_d (x) \ - : isnan_f (x)) -static inline int isnan_f (float x) { return x != x; } -static inline int isnan_d (double x) { return x != x; } -static inline int isnan_ld (long double x) { return x != x; } -#endif - -#ifndef isinf -# define isinf(x) \ - (sizeof (x) == sizeof (long double) ? isinf_ld (x) \ - : sizeof (x) == sizeof (double) ? isinf_d (x) \ - : isinf_f (x)) -static inline int isinf_f (float x) { return isnan (x - x); } -static inline int isinf_d (double x) { return isnan (x - x); } -static inline int isinf_ld (long double x) { return isnan (x - x); } -#endif -#endif - -typedef float float32; -typedef double float64; -#ifdef FLOATX80 -typedef long double floatx80; -#endif - -typedef union { - float32 f; - uint32_t i; -} float32u; -typedef union { - float64 f; - uint64_t i; -} float64u; -#ifdef FLOATX80 -typedef union { - floatx80 f; - struct { - uint64_t low; - uint16_t high; - } i; -} floatx80u; -#endif - -/*---------------------------------------------------------------------------- -| Software IEC/IEEE floating-point rounding mode. -*----------------------------------------------------------------------------*/ -#if (defined(_BSD) && !defined(__APPLE__)) || defined(HOST_SOLARIS) -#if defined(__OpenBSD__) -#define FE_RM FP_RM -#define FE_RP FP_RP -#define FE_RZ FP_RZ -#endif -enum { - float_round_nearest_even = FP_RN, - float_round_down = FP_RM, - float_round_up = FP_RP, - float_round_to_zero = FP_RZ -}; -#elif defined(__arm__) -enum { - float_round_nearest_even = 0, - float_round_down = 1, - float_round_up = 2, - float_round_to_zero = 3 -}; -#else -enum { - float_round_nearest_even = FE_TONEAREST, - float_round_down = FE_DOWNWARD, - float_round_up = FE_UPWARD, - float_round_to_zero = FE_TOWARDZERO -}; -#endif - -typedef struct float_status { - signed char float_rounding_mode; -#ifdef FLOATX80 - signed char floatx80_rounding_precision; -#endif -} float_status; - -void set_float_rounding_mode(int val STATUS_PARAM); -#ifdef FLOATX80 -void set_floatx80_rounding_precision(int val STATUS_PARAM); -#endif - -/*---------------------------------------------------------------------------- -| Software IEC/IEEE integer-to-floating-point conversion routines. -*----------------------------------------------------------------------------*/ -float32 int32_to_float32( int STATUS_PARAM); -float32 uint32_to_float32( unsigned int STATUS_PARAM); -float64 int32_to_float64( int STATUS_PARAM); -float64 uint32_to_float64( unsigned int STATUS_PARAM); -#ifdef FLOATX80 -floatx80 int32_to_floatx80( int STATUS_PARAM); -#endif -#ifdef FLOAT128 -float128 int32_to_float128( int STATUS_PARAM); -#endif -float32 int64_to_float32( int64_t STATUS_PARAM); -float32 uint64_to_float32( uint64_t STATUS_PARAM); -float64 int64_to_float64( int64_t STATUS_PARAM); -float64 uint64_to_float64( uint64_t v STATUS_PARAM); -#ifdef FLOATX80 -floatx80 int64_to_floatx80( int64_t STATUS_PARAM); -#endif -#ifdef FLOAT128 -float128 int64_to_float128( int64_t STATUS_PARAM); -#endif - -/*---------------------------------------------------------------------------- -| Software IEC/IEEE single-precision conversion routines. -*----------------------------------------------------------------------------*/ -int float32_to_int32( float32 STATUS_PARAM); -int float32_to_int32_round_to_zero( float32 STATUS_PARAM); -unsigned int float32_to_uint32( float32 a STATUS_PARAM); -unsigned int float32_to_uint32_round_to_zero( float32 a STATUS_PARAM); -int64_t float32_to_int64( float32 STATUS_PARAM); -int64_t float32_to_int64_round_to_zero( float32 STATUS_PARAM); -float64 float32_to_float64( float32 STATUS_PARAM); -#ifdef FLOATX80 -floatx80 float32_to_floatx80( float32 STATUS_PARAM); -#endif -#ifdef FLOAT128 -float128 float32_to_float128( float32 STATUS_PARAM); -#endif - -/*---------------------------------------------------------------------------- -| Software IEC/IEEE single-precision operations. -*----------------------------------------------------------------------------*/ -float32 float32_round_to_int( float32 STATUS_PARAM); -INLINE float32 float32_add( float32 a, float32 b STATUS_PARAM) -{ - return a + b; -} -INLINE float32 float32_sub( float32 a, float32 b STATUS_PARAM) -{ - return a - b; -} -INLINE float32 float32_mul( float32 a, float32 b STATUS_PARAM) -{ - return a * b; -} -INLINE float32 float32_div( float32 a, float32 b STATUS_PARAM) -{ - return a / b; -} -float32 float32_rem( float32, float32 STATUS_PARAM); -float32 float32_sqrt( float32 STATUS_PARAM); -INLINE int float32_eq( float32 a, float32 b STATUS_PARAM) -{ - return a == b; -} -INLINE int float32_le( float32 a, float32 b STATUS_PARAM) -{ - return a <= b; -} -INLINE int float32_lt( float32 a, float32 b STATUS_PARAM) -{ - return a < b; -} -INLINE int float32_eq_signaling( float32 a, float32 b STATUS_PARAM) -{ - return a <= b && a >= b; -} -INLINE int float32_le_quiet( float32 a, float32 b STATUS_PARAM) -{ - return islessequal(a, b); -} -INLINE int float32_lt_quiet( float32 a, float32 b STATUS_PARAM) -{ - return isless(a, b); -} -INLINE int float32_unordered( float32 a, float32 b STATUS_PARAM) -{ - return isunordered(a, b); - -} -int float32_compare( float32, float32 STATUS_PARAM ); -int float32_compare_quiet( float32, float32 STATUS_PARAM ); -int float32_is_signaling_nan( float32 ); - -INLINE float32 float32_abs(float32 a) -{ - return fabsf(a); -} - -INLINE float32 float32_chs(float32 a) -{ - return -a; -} - -INLINE float32 float32_scalbn(float32 a, int n) -{ - return scalbnf(a, n); -} - -/*---------------------------------------------------------------------------- -| Software IEC/IEEE double-precision conversion routines. -*----------------------------------------------------------------------------*/ -int float64_to_int32( float64 STATUS_PARAM ); -int float64_to_int32_round_to_zero( float64 STATUS_PARAM ); -unsigned int float64_to_uint32( float64 STATUS_PARAM ); -unsigned int float64_to_uint32_round_to_zero( float64 STATUS_PARAM ); -int64_t float64_to_int64( float64 STATUS_PARAM ); -int64_t float64_to_int64_round_to_zero( float64 STATUS_PARAM ); -uint64_t float64_to_uint64( float64 STATUS_PARAM ); -uint64_t float64_to_uint64_round_to_zero( float64 STATUS_PARAM ); -float32 float64_to_float32( float64 STATUS_PARAM ); -#ifdef FLOATX80 -floatx80 float64_to_floatx80( float64 STATUS_PARAM ); -#endif -#ifdef FLOAT128 -float128 float64_to_float128( float64 STATUS_PARAM ); -#endif - -/*---------------------------------------------------------------------------- -| Software IEC/IEEE double-precision operations. -*----------------------------------------------------------------------------*/ -float64 float64_round_to_int( float64 STATUS_PARAM ); -float64 float64_trunc_to_int( float64 STATUS_PARAM ); -INLINE float64 float64_add( float64 a, float64 b STATUS_PARAM) -{ - return a + b; -} -INLINE float64 float64_sub( float64 a, float64 b STATUS_PARAM) -{ - return a - b; -} -INLINE float64 float64_mul( float64 a, float64 b STATUS_PARAM) -{ - return a * b; -} -INLINE float64 float64_div( float64 a, float64 b STATUS_PARAM) -{ - return a / b; -} -float64 float64_rem( float64, float64 STATUS_PARAM ); -float64 float64_sqrt( float64 STATUS_PARAM ); -INLINE int float64_eq( float64 a, float64 b STATUS_PARAM) -{ - return a == b; -} -INLINE int float64_le( float64 a, float64 b STATUS_PARAM) -{ - return a <= b; -} -INLINE int float64_lt( float64 a, float64 b STATUS_PARAM) -{ - return a < b; -} -INLINE int float64_eq_signaling( float64 a, float64 b STATUS_PARAM) -{ - return a <= b && a >= b; -} -INLINE int float64_le_quiet( float64 a, float64 b STATUS_PARAM) -{ - return islessequal(a, b); -} -INLINE int float64_lt_quiet( float64 a, float64 b STATUS_PARAM) -{ - return isless(a, b); - -} -INLINE int float64_unordered( float64 a, float64 b STATUS_PARAM) -{ - return isunordered(a, b); - -} -int float64_compare( float64, float64 STATUS_PARAM ); -int float64_compare_quiet( float64, float64 STATUS_PARAM ); -int float64_is_signaling_nan( float64 ); -int float64_is_nan( float64 ); - -INLINE float64 float64_abs(float64 a) -{ - return fabs(a); -} - -INLINE float64 float64_chs(float64 a) -{ - return -a; -} - -INLINE float64 float64_scalbn(float64 a, int n) -{ - return scalbn(a, n); -} - -#ifdef FLOATX80 - -/*---------------------------------------------------------------------------- -| Software IEC/IEEE extended double-precision conversion routines. -*----------------------------------------------------------------------------*/ -int floatx80_to_int32( floatx80 STATUS_PARAM ); -int floatx80_to_int32_round_to_zero( floatx80 STATUS_PARAM ); -int64_t floatx80_to_int64( floatx80 STATUS_PARAM); -int64_t floatx80_to_int64_round_to_zero( floatx80 STATUS_PARAM); -float32 floatx80_to_float32( floatx80 STATUS_PARAM ); -float64 floatx80_to_float64( floatx80 STATUS_PARAM ); -#ifdef FLOAT128 -float128 floatx80_to_float128( floatx80 STATUS_PARAM ); -#endif - -/*---------------------------------------------------------------------------- -| Software IEC/IEEE extended double-precision operations. -*----------------------------------------------------------------------------*/ -floatx80 floatx80_round_to_int( floatx80 STATUS_PARAM ); -INLINE floatx80 floatx80_add( floatx80 a, floatx80 b STATUS_PARAM) -{ - return a + b; -} -INLINE floatx80 floatx80_sub( floatx80 a, floatx80 b STATUS_PARAM) -{ - return a - b; -} -INLINE floatx80 floatx80_mul( floatx80 a, floatx80 b STATUS_PARAM) -{ - return a * b; -} -INLINE floatx80 floatx80_div( floatx80 a, floatx80 b STATUS_PARAM) -{ - return a / b; -} -floatx80 floatx80_rem( floatx80, floatx80 STATUS_PARAM ); -floatx80 floatx80_sqrt( floatx80 STATUS_PARAM ); -INLINE int floatx80_eq( floatx80 a, floatx80 b STATUS_PARAM) -{ - return a == b; -} -INLINE int floatx80_le( floatx80 a, floatx80 b STATUS_PARAM) -{ - return a <= b; -} -INLINE int floatx80_lt( floatx80 a, floatx80 b STATUS_PARAM) -{ - return a < b; -} -INLINE int floatx80_eq_signaling( floatx80 a, floatx80 b STATUS_PARAM) -{ - return a <= b && a >= b; -} -INLINE int floatx80_le_quiet( floatx80 a, floatx80 b STATUS_PARAM) -{ - return islessequal(a, b); -} -INLINE int floatx80_lt_quiet( floatx80 a, floatx80 b STATUS_PARAM) -{ - return isless(a, b); - -} -INLINE int floatx80_unordered( floatx80 a, floatx80 b STATUS_PARAM) -{ - return isunordered(a, b); - -} -int floatx80_compare( floatx80, floatx80 STATUS_PARAM ); -int floatx80_compare_quiet( floatx80, floatx80 STATUS_PARAM ); -int floatx80_is_signaling_nan( floatx80 ); - -INLINE floatx80 floatx80_abs(floatx80 a) -{ - return fabsl(a); -} - -INLINE floatx80 floatx80_chs(floatx80 a) -{ - return -a; -} - -INLINE floatx80 floatx80_scalbn(floatx80 a, int n) -{ - return scalbnl(a, n); -} - -#endif diff --git a/fpu/softfloat-specialize.h b/fpu/softfloat-specialize.h deleted file mode 100644 index 93fe06e..0000000 --- a/fpu/softfloat-specialize.h +++ /dev/null @@ -1,569 +0,0 @@ - -/*============================================================================ - -This C source fragment is part of the SoftFloat IEC/IEEE Floating-point -Arithmetic Package, Release 2b. - -Written by John R. Hauser. This work was made possible in part by the -International Computer Science Institute, located at Suite 600, 1947 Center -Street, Berkeley, California 94704. Funding was partially provided by the -National Science Foundation under grant MIP-9311980. The original version -of this code was written as part of a project to build a fixed-point vector -processor in collaboration with the University of California at Berkeley, -overseen by Profs. Nelson Morgan and John Wawrzynek. More information -is available through the Web page `http://www.cs.berkeley.edu/~jhauser/ -arithmetic/SoftFloat.html'. - -THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has -been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES -RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS -AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES, -COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE -EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE -INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR -OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE. - -Derivative works are acceptable, even for commercial purposes, so long as -(1) the source code for the derivative work includes prominent notice that -the work is derivative, and (2) the source code includes prominent notice with -these four paragraphs for those parts of this code that are retained. - -=============================================================================*/ - -#if defined(TARGET_MIPS) || defined(TARGET_HPPA) -#define SNAN_BIT_IS_ONE 1 -#else -#define SNAN_BIT_IS_ONE 0 -#endif - -/*---------------------------------------------------------------------------- -| Underflow tininess-detection mode, statically initialized to default value. -| (The declaration in `softfloat.h' must match the `int8' type here.) -*----------------------------------------------------------------------------*/ -int8 float_detect_tininess = float_tininess_after_rounding; - -/*---------------------------------------------------------------------------- -| Raises the exceptions specified by `flags'. Floating-point traps can be -| defined here if desired. It is currently not possible for such a trap -| to substitute a result value. If traps are not implemented, this routine -| should be simply `float_exception_flags |= flags;'. -*----------------------------------------------------------------------------*/ - -void float_raise( int8 flags STATUS_PARAM ) -{ - STATUS(float_exception_flags) |= flags; -} - -/*---------------------------------------------------------------------------- -| Internal canonical NaN format. -*----------------------------------------------------------------------------*/ -typedef struct { - flag sign; - bits64 high, low; -} commonNaNT; - -/*---------------------------------------------------------------------------- -| The pattern for a default generated single-precision NaN. -*----------------------------------------------------------------------------*/ -#if defined(TARGET_SPARC) -#define float32_default_nan make_float32(0x7FFFFFFF) -#elif defined(TARGET_POWERPC) -#define float32_default_nan make_float32(0x7FC00000) -#elif defined(TARGET_HPPA) -#define float32_default_nan make_float32(0x7FA00000) -#elif SNAN_BIT_IS_ONE -#define float32_default_nan make_float32(0x7FBFFFFF) -#else -#define float32_default_nan make_float32(0xFFC00000) -#endif - -/*---------------------------------------------------------------------------- -| Returns 1 if the single-precision floating-point value `a' is a quiet -| NaN; otherwise returns 0. -*----------------------------------------------------------------------------*/ - -int float32_is_nan( float32 a_ ) -{ - uint32_t a = float32_val(a_); -#if SNAN_BIT_IS_ONE - return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF ); -#else - return ( 0xFF800000 <= (bits32) ( a<<1 ) ); -#endif -} - -/*---------------------------------------------------------------------------- -| Returns 1 if the single-precision floating-point value `a' is a signaling -| NaN; otherwise returns 0. -*----------------------------------------------------------------------------*/ - -int float32_is_signaling_nan( float32 a_ ) -{ - uint32_t a = float32_val(a_); -#if SNAN_BIT_IS_ONE - return ( 0xFF800000 <= (bits32) ( a<<1 ) ); -#else - return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF ); -#endif -} - -/*---------------------------------------------------------------------------- -| Returns the result of converting the single-precision floating-point NaN -| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid -| exception is raised. -*----------------------------------------------------------------------------*/ - -static commonNaNT float32ToCommonNaN( float32 a STATUS_PARAM ) -{ - commonNaNT z; - - if ( float32_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR ); - z.sign = float32_val(a)>>31; - z.low = 0; - z.high = ( (bits64) float32_val(a) )<<41; - return z; -} - -/*---------------------------------------------------------------------------- -| Returns the result of converting the canonical NaN `a' to the single- -| precision floating-point format. -*----------------------------------------------------------------------------*/ - -static float32 commonNaNToFloat32( commonNaNT a ) -{ - bits32 mantissa = a.high>>41; - if ( mantissa ) - return make_float32( - ( ( (bits32) a.sign )<<31 ) | 0x7F800000 | ( a.high>>41 ) ); - else - return float32_default_nan; -} - -/*---------------------------------------------------------------------------- -| Takes two single-precision floating-point values `a' and `b', one of which -| is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a -| signaling NaN, the invalid exception is raised. -*----------------------------------------------------------------------------*/ - -static float32 propagateFloat32NaN( float32 a, float32 b STATUS_PARAM) -{ - flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN; - bits32 av, bv, res; - - aIsNaN = float32_is_nan( a ); - aIsSignalingNaN = float32_is_signaling_nan( a ); - bIsNaN = float32_is_nan( b ); - bIsSignalingNaN = float32_is_signaling_nan( b ); - av = float32_val(a); - bv = float32_val(b); -#if SNAN_BIT_IS_ONE - av &= ~0x00400000; - bv &= ~0x00400000; -#else - av |= 0x00400000; - bv |= 0x00400000; -#endif - if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid STATUS_VAR); - if ( aIsSignalingNaN ) { - if ( bIsSignalingNaN ) goto returnLargerSignificand; - res = bIsNaN ? bv : av; - } - else if ( aIsNaN ) { - if ( bIsSignalingNaN | ! bIsNaN ) - res = av; - else { - returnLargerSignificand: - if ( (bits32) ( av<<1 ) < (bits32) ( bv<<1 ) ) - res = bv; - else if ( (bits32) ( bv<<1 ) < (bits32) ( av<<1 ) ) - res = av; - else - res = ( av < bv ) ? av : bv; - } - } - else { - res = bv; - } - return make_float32(res); -} - -/*---------------------------------------------------------------------------- -| The pattern for a default generated double-precision NaN. -*----------------------------------------------------------------------------*/ -#if defined(TARGET_SPARC) -#define float64_default_nan make_float64(LIT64( 0x7FFFFFFFFFFFFFFF )) -#elif defined(TARGET_POWERPC) -#define float64_default_nan make_float64(LIT64( 0x7FF8000000000000 )) -#elif defined(TARGET_HPPA) -#define float64_default_nan make_float64(LIT64( 0x7FF4000000000000 )) -#elif SNAN_BIT_IS_ONE -#define float64_default_nan make_float64(LIT64( 0x7FF7FFFFFFFFFFFF )) -#else -#define float64_default_nan make_float64(LIT64( 0xFFF8000000000000 )) -#endif - -/*---------------------------------------------------------------------------- -| Returns 1 if the double-precision floating-point value `a' is a quiet -| NaN; otherwise returns 0. -*----------------------------------------------------------------------------*/ - -int float64_is_nan( float64 a_ ) -{ - bits64 a = float64_val(a_); -#if SNAN_BIT_IS_ONE - return - ( ( ( a>>51 ) & 0xFFF ) == 0xFFE ) - && ( a & LIT64( 0x0007FFFFFFFFFFFF ) ); -#else - return ( LIT64( 0xFFF0000000000000 ) <= (bits64) ( a<<1 ) ); -#endif -} - -/*---------------------------------------------------------------------------- -| Returns 1 if the double-precision floating-point value `a' is a signaling -| NaN; otherwise returns 0. -*----------------------------------------------------------------------------*/ - -int float64_is_signaling_nan( float64 a_ ) -{ - bits64 a = float64_val(a_); -#if SNAN_BIT_IS_ONE - return ( LIT64( 0xFFF0000000000000 ) <= (bits64) ( a<<1 ) ); -#else - return - ( ( ( a>>51 ) & 0xFFF ) == 0xFFE ) - && ( a & LIT64( 0x0007FFFFFFFFFFFF ) ); -#endif -} - -/*---------------------------------------------------------------------------- -| Returns the result of converting the double-precision floating-point NaN -| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid -| exception is raised. -*----------------------------------------------------------------------------*/ - -static commonNaNT float64ToCommonNaN( float64 a STATUS_PARAM) -{ - commonNaNT z; - - if ( float64_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR); - z.sign = float64_val(a)>>63; - z.low = 0; - z.high = float64_val(a)<<12; - return z; -} - -/*---------------------------------------------------------------------------- -| Returns the result of converting the canonical NaN `a' to the double- -| precision floating-point format. -*----------------------------------------------------------------------------*/ - -static float64 commonNaNToFloat64( commonNaNT a ) -{ - bits64 mantissa = a.high>>12; - - if ( mantissa ) - return make_float64( - ( ( (bits64) a.sign )<<63 ) - | LIT64( 0x7FF0000000000000 ) - | ( a.high>>12 )); - else - return float64_default_nan; -} - -/*---------------------------------------------------------------------------- -| Takes two double-precision floating-point values `a' and `b', one of which -| is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a -| signaling NaN, the invalid exception is raised. -*----------------------------------------------------------------------------*/ - -static float64 propagateFloat64NaN( float64 a, float64 b STATUS_PARAM) -{ - flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN; - bits64 av, bv, res; - - aIsNaN = float64_is_nan( a ); - aIsSignalingNaN = float64_is_signaling_nan( a ); - bIsNaN = float64_is_nan( b ); - bIsSignalingNaN = float64_is_signaling_nan( b ); - av = float64_val(a); - bv = float64_val(b); -#if SNAN_BIT_IS_ONE - av &= ~LIT64( 0x0008000000000000 ); - bv &= ~LIT64( 0x0008000000000000 ); -#else - av |= LIT64( 0x0008000000000000 ); - bv |= LIT64( 0x0008000000000000 ); -#endif - if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid STATUS_VAR); - if ( aIsSignalingNaN ) { - if ( bIsSignalingNaN ) goto returnLargerSignificand; - res = bIsNaN ? bv : av; - } - else if ( aIsNaN ) { - if ( bIsSignalingNaN | ! bIsNaN ) - res = av; - else { - returnLargerSignificand: - if ( (bits64) ( av<<1 ) < (bits64) ( bv<<1 ) ) - res = bv; - else if ( (bits64) ( bv<<1 ) < (bits64) ( av<<1 ) ) - res = av; - else - res = ( av < bv ) ? av : bv; - } - } - else { - res = bv; - } - return make_float64(res); -} - -#ifdef FLOATX80 - -/*---------------------------------------------------------------------------- -| The pattern for a default generated extended double-precision NaN. The -| `high' and `low' values hold the most- and least-significant bits, -| respectively. -*----------------------------------------------------------------------------*/ -#if SNAN_BIT_IS_ONE -#define floatx80_default_nan_high 0x7FFF -#define floatx80_default_nan_low LIT64( 0xBFFFFFFFFFFFFFFF ) -#else -#define floatx80_default_nan_high 0xFFFF -#define floatx80_default_nan_low LIT64( 0xC000000000000000 ) -#endif - -/*---------------------------------------------------------------------------- -| Returns 1 if the extended double-precision floating-point value `a' is a -| quiet NaN; otherwise returns 0. -*----------------------------------------------------------------------------*/ - -int floatx80_is_nan( floatx80 a ) -{ -#if SNAN_BIT_IS_ONE - bits64 aLow; - - aLow = a.low & ~ LIT64( 0x4000000000000000 ); - return - ( ( a.high & 0x7FFF ) == 0x7FFF ) - && (bits64) ( aLow<<1 ) - && ( a.low == aLow ); -#else - return ( ( a.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( a.low<<1 ); -#endif -} - -/*---------------------------------------------------------------------------- -| Returns 1 if the extended double-precision floating-point value `a' is a -| signaling NaN; otherwise returns 0. -*----------------------------------------------------------------------------*/ - -int floatx80_is_signaling_nan( floatx80 a ) -{ -#if SNAN_BIT_IS_ONE - return ( ( a.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( a.low<<1 ); -#else - bits64 aLow; - - aLow = a.low & ~ LIT64( 0x4000000000000000 ); - return - ( ( a.high & 0x7FFF ) == 0x7FFF ) - && (bits64) ( aLow<<1 ) - && ( a.low == aLow ); -#endif -} - -/*---------------------------------------------------------------------------- -| Returns the result of converting the extended double-precision floating- -| point NaN `a' to the canonical NaN format. If `a' is a signaling NaN, the -| invalid exception is raised. -*----------------------------------------------------------------------------*/ - -static commonNaNT floatx80ToCommonNaN( floatx80 a STATUS_PARAM) -{ - commonNaNT z; - - if ( floatx80_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR); - z.sign = a.high>>15; - z.low = 0; - z.high = a.low; - return z; -} - -/*---------------------------------------------------------------------------- -| Returns the result of converting the canonical NaN `a' to the extended -| double-precision floating-point format. -*----------------------------------------------------------------------------*/ - -static floatx80 commonNaNToFloatx80( commonNaNT a ) -{ - floatx80 z; - - if (a.high) - z.low = a.high; - else - z.low = floatx80_default_nan_low; - z.high = ( ( (bits16) a.sign )<<15 ) | 0x7FFF; - return z; -} - -/*---------------------------------------------------------------------------- -| Takes two extended double-precision floating-point values `a' and `b', one -| of which is a NaN, and returns the appropriate NaN result. If either `a' or -| `b' is a signaling NaN, the invalid exception is raised. -*----------------------------------------------------------------------------*/ - -static floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b STATUS_PARAM) -{ - flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN; - - aIsNaN = floatx80_is_nan( a ); - aIsSignalingNaN = floatx80_is_signaling_nan( a ); - bIsNaN = floatx80_is_nan( b ); - bIsSignalingNaN = floatx80_is_signaling_nan( b ); -#if SNAN_BIT_IS_ONE - a.low &= ~LIT64( 0xC000000000000000 ); - b.low &= ~LIT64( 0xC000000000000000 ); -#else - a.low |= LIT64( 0xC000000000000000 ); - b.low |= LIT64( 0xC000000000000000 ); -#endif - if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid STATUS_VAR); - if ( aIsSignalingNaN ) { - if ( bIsSignalingNaN ) goto returnLargerSignificand; - return bIsNaN ? b : a; - } - else if ( aIsNaN ) { - if ( bIsSignalingNaN | ! bIsNaN ) return a; - returnLargerSignificand: - if ( a.low < b.low ) return b; - if ( b.low < a.low ) return a; - return ( a.high < b.high ) ? a : b; - } - else { - return b; - } -} - -#endif - -#ifdef FLOAT128 - -/*---------------------------------------------------------------------------- -| The pattern for a default generated quadruple-precision NaN. The `high' and -| `low' values hold the most- and least-significant bits, respectively. -*----------------------------------------------------------------------------*/ -#if SNAN_BIT_IS_ONE -#define float128_default_nan_high LIT64( 0x7FFF7FFFFFFFFFFF ) -#define float128_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF ) -#else -#define float128_default_nan_high LIT64( 0xFFFF800000000000 ) -#define float128_default_nan_low LIT64( 0x0000000000000000 ) -#endif - -/*---------------------------------------------------------------------------- -| Returns 1 if the quadruple-precision floating-point value `a' is a quiet -| NaN; otherwise returns 0. -*----------------------------------------------------------------------------*/ - -int float128_is_nan( float128 a ) -{ -#if SNAN_BIT_IS_ONE - return - ( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE ) - && ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) ); -#else - return - ( LIT64( 0xFFFE000000000000 ) <= (bits64) ( a.high<<1 ) ) - && ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) ); -#endif -} - -/*---------------------------------------------------------------------------- -| Returns 1 if the quadruple-precision floating-point value `a' is a -| signaling NaN; otherwise returns 0. -*----------------------------------------------------------------------------*/ - -int float128_is_signaling_nan( float128 a ) -{ -#if SNAN_BIT_IS_ONE - return - ( LIT64( 0xFFFE000000000000 ) <= (bits64) ( a.high<<1 ) ) - && ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) ); -#else - return - ( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE ) - && ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) ); -#endif -} - -/*---------------------------------------------------------------------------- -| Returns the result of converting the quadruple-precision floating-point NaN -| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid -| exception is raised. -*----------------------------------------------------------------------------*/ - -static commonNaNT float128ToCommonNaN( float128 a STATUS_PARAM) -{ - commonNaNT z; - - if ( float128_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR); - z.sign = a.high>>63; - shortShift128Left( a.high, a.low, 16, &z.high, &z.low ); - return z; -} - -/*---------------------------------------------------------------------------- -| Returns the result of converting the canonical NaN `a' to the quadruple- -| precision floating-point format. -*----------------------------------------------------------------------------*/ - -static float128 commonNaNToFloat128( commonNaNT a ) -{ - float128 z; - - shift128Right( a.high, a.low, 16, &z.high, &z.low ); - z.high |= ( ( (bits64) a.sign )<<63 ) | LIT64( 0x7FFF000000000000 ); - return z; -} - -/*---------------------------------------------------------------------------- -| Takes two quadruple-precision floating-point values `a' and `b', one of -| which is a NaN, and returns the appropriate NaN result. If either `a' or -| `b' is a signaling NaN, the invalid exception is raised. -*----------------------------------------------------------------------------*/ - -static float128 propagateFloat128NaN( float128 a, float128 b STATUS_PARAM) -{ - flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN; - - aIsNaN = float128_is_nan( a ); - aIsSignalingNaN = float128_is_signaling_nan( a ); - bIsNaN = float128_is_nan( b ); - bIsSignalingNaN = float128_is_signaling_nan( b ); -#if SNAN_BIT_IS_ONE - a.high &= ~LIT64( 0x0000800000000000 ); - b.high &= ~LIT64( 0x0000800000000000 ); -#else - a.high |= LIT64( 0x0000800000000000 ); - b.high |= LIT64( 0x0000800000000000 ); -#endif - if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid STATUS_VAR); - if ( aIsSignalingNaN ) { - if ( bIsSignalingNaN ) goto returnLargerSignificand; - return bIsNaN ? b : a; - } - else if ( aIsNaN ) { - if ( bIsSignalingNaN | ! bIsNaN ) return a; - returnLargerSignificand: - if ( lt128( a.high<<1, a.low, b.high<<1, b.low ) ) return b; - if ( lt128( b.high<<1, b.low, a.high<<1, a.low ) ) return a; - return ( a.high < b.high ) ? a : b; - } - else { - return b; - } -} - -#endif diff --git a/fpu/softfloat.c b/fpu/softfloat.c deleted file mode 100644 index 3ec1e0d..0000000 --- a/fpu/softfloat.c +++ /dev/null @@ -1,5541 +0,0 @@ - -/*============================================================================ - -This C source file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic -Package, Release 2b. - -Written by John R. Hauser. This work was made possible in part by the -International Computer Science Institute, located at Suite 600, 1947 Center -Street, Berkeley, California 94704. Funding was partially provided by the -National Science Foundation under grant MIP-9311980. The original version -of this code was written as part of a project to build a fixed-point vector -processor in collaboration with the University of California at Berkeley, -overseen by Profs. Nelson Morgan and John Wawrzynek. More information -is available through the Web page `http://www.cs.berkeley.edu/~jhauser/ -arithmetic/SoftFloat.html'. - -THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has -been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES -RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS -AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES, -COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE -EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE -INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR -OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE. - -Derivative works are acceptable, even for commercial purposes, so long as -(1) the source code for the derivative work includes prominent notice that -the work is derivative, and (2) the source code includes prominent notice with -these four paragraphs for those parts of this code that are retained. - -=============================================================================*/ - -#include "softfloat.h" - -/*---------------------------------------------------------------------------- -| Primitive arithmetic functions, including multi-word arithmetic, and -| division and square root approximations. (Can be specialized to target if -| desired.) -*----------------------------------------------------------------------------*/ -#include "softfloat-macros.h" - -/*---------------------------------------------------------------------------- -| Functions and definitions to determine: (1) whether tininess for underflow -| is detected before or after rounding by default, (2) what (if anything) -| happens when exceptions are raised, (3) how signaling NaNs are distinguished -| from quiet NaNs, (4) the default generated quiet NaNs, and (5) how NaNs -| are propagated from function inputs to output. These details are target- -| specific. -*----------------------------------------------------------------------------*/ -#include "softfloat-specialize.h" - -void set_float_rounding_mode(int val STATUS_PARAM) -{ - STATUS(float_rounding_mode) = val; -} - -void set_float_exception_flags(int val STATUS_PARAM) -{ - STATUS(float_exception_flags) = val; -} - -#ifdef FLOATX80 -void set_floatx80_rounding_precision(int val STATUS_PARAM) -{ - STATUS(floatx80_rounding_precision) = val; -} -#endif - -/*---------------------------------------------------------------------------- -| Takes a 64-bit fixed-point value `absZ' with binary point between bits 6 -| and 7, and returns the properly rounded 32-bit integer corresponding to the -| input. If `zSign' is 1, the input is negated before being converted to an -| integer. Bit 63 of `absZ' must be zero. Ordinarily, the fixed-point input -| is simply rounded to an integer, with the inexact exception raised if the -| input cannot be represented exactly as an integer. However, if the fixed- -| point input is too large, the invalid exception is raised and the largest -| positive or negative integer is returned. -*----------------------------------------------------------------------------*/ - -static int32 roundAndPackInt32( flag zSign, bits64 absZ STATUS_PARAM) -{ - int8 roundingMode; - flag roundNearestEven; - int8 roundIncrement, roundBits; - int32 z; - - roundingMode = STATUS(float_rounding_mode); - roundNearestEven = ( roundingMode == float_round_nearest_even ); - roundIncrement = 0x40; - if ( ! roundNearestEven ) { - if ( roundingMode == float_round_to_zero ) { - roundIncrement = 0; - } - else { - roundIncrement = 0x7F; - if ( zSign ) { - if ( roundingMode == float_round_up ) roundIncrement = 0; - } - else { - if ( roundingMode == float_round_down ) roundIncrement = 0; - } - } - } - roundBits = absZ & 0x7F; - absZ = ( absZ + roundIncrement )>>7; - absZ &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven ); - z = absZ; - if ( zSign ) z = - z; - if ( ( absZ>>32 ) || ( z && ( ( z < 0 ) ^ zSign ) ) ) { - float_raise( float_flag_invalid STATUS_VAR); - return zSign ? (sbits32) 0x80000000 : 0x7FFFFFFF; - } - if ( roundBits ) STATUS(float_exception_flags) |= float_flag_inexact; - return z; - -} - -/*---------------------------------------------------------------------------- -| Takes the 128-bit fixed-point value formed by concatenating `absZ0' and -| `absZ1', with binary point between bits 63 and 64 (between the input words), -| and returns the properly rounded 64-bit integer corresponding to the input. -| If `zSign' is 1, the input is negated before being converted to an integer. -| Ordinarily, the fixed-point input is simply rounded to an integer, with -| the inexact exception raised if the input cannot be represented exactly as -| an integer. However, if the fixed-point input is too large, the invalid -| exception is raised and the largest positive or negative integer is -| returned. -*----------------------------------------------------------------------------*/ - -static int64 roundAndPackInt64( flag zSign, bits64 absZ0, bits64 absZ1 STATUS_PARAM) -{ - int8 roundingMode; - flag roundNearestEven, increment; - int64 z; - - roundingMode = STATUS(float_rounding_mode); - roundNearestEven = ( roundingMode == float_round_nearest_even ); - increment = ( (sbits64) absZ1 < 0 ); - if ( ! roundNearestEven ) { - if ( roundingMode == float_round_to_zero ) { - increment = 0; - } - else { - if ( zSign ) { - increment = ( roundingMode == float_round_down ) && absZ1; - } - else { - increment = ( roundingMode == float_round_up ) && absZ1; - } - } - } - if ( increment ) { - ++absZ0; - if ( absZ0 == 0 ) goto overflow; - absZ0 &= ~ ( ( (bits64) ( absZ1<<1 ) == 0 ) & roundNearestEven ); - } - z = absZ0; - if ( zSign ) z = - z; - if ( z && ( ( z < 0 ) ^ zSign ) ) { - overflow: - float_raise( float_flag_invalid STATUS_VAR); - return - zSign ? (sbits64) LIT64( 0x8000000000000000 ) - : LIT64( 0x7FFFFFFFFFFFFFFF ); - } - if ( absZ1 ) STATUS(float_exception_flags) |= float_flag_inexact; - return z; - -} - -/*---------------------------------------------------------------------------- -| Returns the fraction bits of the single-precision floating-point value `a'. -*----------------------------------------------------------------------------*/ - -INLINE bits32 extractFloat32Frac( float32 a ) -{ - - return float32_val(a) & 0x007FFFFF; - -} - -/*---------------------------------------------------------------------------- -| Returns the exponent bits of the single-precision floating-point value `a'. -*----------------------------------------------------------------------------*/ - -INLINE int16 extractFloat32Exp( float32 a ) -{ - - return ( float32_val(a)>>23 ) & 0xFF; - -} - -/*---------------------------------------------------------------------------- -| Returns the sign bit of the single-precision floating-point value `a'. -*----------------------------------------------------------------------------*/ - -INLINE flag extractFloat32Sign( float32 a ) -{ - - return float32_val(a)>>31; - -} - -/*---------------------------------------------------------------------------- -| Normalizes the subnormal single-precision floating-point value represented -| by the denormalized significand `aSig'. The normalized exponent and -| significand are stored at the locations pointed to by `zExpPtr' and -| `zSigPtr', respectively. -*----------------------------------------------------------------------------*/ - -static void - normalizeFloat32Subnormal( bits32 aSig, int16 *zExpPtr, bits32 *zSigPtr ) -{ - int8 shiftCount; - - shiftCount = countLeadingZeros32( aSig ) - 8; - *zSigPtr = aSig<>7; - zSig &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven ); - if ( zSig == 0 ) zExp = 0; - return packFloat32( zSign, zExp, zSig ); - -} - -/*---------------------------------------------------------------------------- -| Takes an abstract floating-point value having sign `zSign', exponent `zExp', -| and significand `zSig', and returns the proper single-precision floating- -| point value corresponding to the abstract input. This routine is just like -| `roundAndPackFloat32' except that `zSig' does not have to be normalized. -| Bit 31 of `zSig' must be zero, and `zExp' must be 1 less than the ``true'' -| floating-point exponent. -*----------------------------------------------------------------------------*/ - -static float32 - normalizeRoundAndPackFloat32( flag zSign, int16 zExp, bits32 zSig STATUS_PARAM) -{ - int8 shiftCount; - - shiftCount = countLeadingZeros32( zSig ) - 1; - return roundAndPackFloat32( zSign, zExp - shiftCount, zSig<>52 ) & 0x7FF; - -} - -/*---------------------------------------------------------------------------- -| Returns the sign bit of the double-precision floating-point value `a'. -*----------------------------------------------------------------------------*/ - -INLINE flag extractFloat64Sign( float64 a ) -{ - - return float64_val(a)>>63; - -} - -/*---------------------------------------------------------------------------- -| Normalizes the subnormal double-precision floating-point value represented -| by the denormalized significand `aSig'. The normalized exponent and -| significand are stored at the locations pointed to by `zExpPtr' and -| `zSigPtr', respectively. -*----------------------------------------------------------------------------*/ - -static void - normalizeFloat64Subnormal( bits64 aSig, int16 *zExpPtr, bits64 *zSigPtr ) -{ - int8 shiftCount; - - shiftCount = countLeadingZeros64( aSig ) - 11; - *zSigPtr = aSig<>10; - zSig &= ~ ( ( ( roundBits ^ 0x200 ) == 0 ) & roundNearestEven ); - if ( zSig == 0 ) zExp = 0; - return packFloat64( zSign, zExp, zSig ); - -} - -/*---------------------------------------------------------------------------- -| Takes an abstract floating-point value having sign `zSign', exponent `zExp', -| and significand `zSig', and returns the proper double-precision floating- -| point value corresponding to the abstract input. This routine is just like -| `roundAndPackFloat64' except that `zSig' does not have to be normalized. -| Bit 63 of `zSig' must be zero, and `zExp' must be 1 less than the ``true'' -| floating-point exponent. -*----------------------------------------------------------------------------*/ - -static float64 - normalizeRoundAndPackFloat64( flag zSign, int16 zExp, bits64 zSig STATUS_PARAM) -{ - int8 shiftCount; - - shiftCount = countLeadingZeros64( zSig ) - 1; - return roundAndPackFloat64( zSign, zExp - shiftCount, zSig<>15; - -} - -/*---------------------------------------------------------------------------- -| Normalizes the subnormal extended double-precision floating-point value -| represented by the denormalized significand `aSig'. The normalized exponent -| and significand are stored at the locations pointed to by `zExpPtr' and -| `zSigPtr', respectively. -*----------------------------------------------------------------------------*/ - -static void - normalizeFloatx80Subnormal( bits64 aSig, int32 *zExpPtr, bits64 *zSigPtr ) -{ - int8 shiftCount; - - shiftCount = countLeadingZeros64( aSig ); - *zSigPtr = aSig<>48 ) & 0x7FFF; - -} - -/*---------------------------------------------------------------------------- -| Returns the sign bit of the quadruple-precision floating-point value `a'. -*----------------------------------------------------------------------------*/ - -INLINE flag extractFloat128Sign( float128 a ) -{ - - return a.high>>63; - -} - -/*---------------------------------------------------------------------------- -| Normalizes the subnormal quadruple-precision floating-point value -| represented by the denormalized significand formed by the concatenation of -| `aSig0' and `aSig1'. The normalized exponent is stored at the location -| pointed to by `zExpPtr'. The most significant 49 bits of the normalized -| significand are stored at the location pointed to by `zSig0Ptr', and the -| least significant 64 bits of the normalized significand are stored at the -| location pointed to by `zSig1Ptr'. -*----------------------------------------------------------------------------*/ - -static void - normalizeFloat128Subnormal( - bits64 aSig0, - bits64 aSig1, - int32 *zExpPtr, - bits64 *zSig0Ptr, - bits64 *zSig1Ptr - ) -{ - int8 shiftCount; - - if ( aSig0 == 0 ) { - shiftCount = countLeadingZeros64( aSig1 ) - 15; - if ( shiftCount < 0 ) { - *zSig0Ptr = aSig1>>( - shiftCount ); - *zSig1Ptr = aSig1<<( shiftCount & 63 ); - } - else { - *zSig0Ptr = aSig1< 0, 0x95 - shiftCount, a< 0, 0x9C - shiftCount, a STATUS_VAR ); - } -} - -/*---------------------------------------------------------------------------- -| Returns the result of converting the 64-bit two's complement integer `a' -| to the double-precision floating-point format. The conversion is performed -| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -float64 int64_to_float64( int64 a STATUS_PARAM ) -{ - flag zSign; - - if ( a == 0 ) return float64_zero; - if ( a == (sbits64) LIT64( 0x8000000000000000 ) ) { - return packFloat64( 1, 0x43E, 0 ); - } - zSign = ( a < 0 ); - return normalizeRoundAndPackFloat64( zSign, 0x43C, zSign ? - a : a STATUS_VAR ); - -} - -float64 uint64_to_float64( uint64 a STATUS_PARAM ) -{ - if ( a == 0 ) return float64_zero; - return normalizeRoundAndPackFloat64( 0, 0x43C, a STATUS_VAR ); - -} - -#ifdef FLOATX80 - -/*---------------------------------------------------------------------------- -| Returns the result of converting the 64-bit two's complement integer `a' -| to the extended double-precision floating-point format. The conversion -| is performed according to the IEC/IEEE Standard for Binary Floating-Point -| Arithmetic. -*----------------------------------------------------------------------------*/ - -floatx80 int64_to_floatx80( int64 a STATUS_PARAM ) -{ - flag zSign; - uint64 absA; - int8 shiftCount; - - if ( a == 0 ) return packFloatx80( 0, 0, 0 ); - zSign = ( a < 0 ); - absA = zSign ? - a : a; - shiftCount = countLeadingZeros64( absA ); - return packFloatx80( zSign, 0x403E - shiftCount, absA<>( - shiftCount ); - if ( (bits32) ( aSig<<( shiftCount & 31 ) ) ) { - STATUS(float_exception_flags) |= float_flag_inexact; - } - if ( aSign ) z = - z; - return z; - -} - -/*---------------------------------------------------------------------------- -| Returns the result of converting the single-precision floating-point value -| `a' to the 64-bit two's complement integer format. The conversion is -| performed according to the IEC/IEEE Standard for Binary Floating-Point -| Arithmetic---which means in particular that the conversion is rounded -| according to the current rounding mode. If `a' is a NaN, the largest -| positive integer is returned. Otherwise, if the conversion overflows, the -| largest integer with the same sign as `a' is returned. -*----------------------------------------------------------------------------*/ - -int64 float32_to_int64( float32 a STATUS_PARAM ) -{ - flag aSign; - int16 aExp, shiftCount; - bits32 aSig; - bits64 aSig64, aSigExtra; - - aSig = extractFloat32Frac( a ); - aExp = extractFloat32Exp( a ); - aSign = extractFloat32Sign( a ); - shiftCount = 0xBE - aExp; - if ( shiftCount < 0 ) { - float_raise( float_flag_invalid STATUS_VAR); - if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) { - return LIT64( 0x7FFFFFFFFFFFFFFF ); - } - return (sbits64) LIT64( 0x8000000000000000 ); - } - if ( aExp ) aSig |= 0x00800000; - aSig64 = aSig; - aSig64 <<= 40; - shift64ExtraRightJamming( aSig64, 0, shiftCount, &aSig64, &aSigExtra ); - return roundAndPackInt64( aSign, aSig64, aSigExtra STATUS_VAR ); - -} - -/*---------------------------------------------------------------------------- -| Returns the result of converting the single-precision floating-point value -| `a' to the 64-bit two's complement integer format. The conversion is -| performed according to the IEC/IEEE Standard for Binary Floating-Point -| Arithmetic, except that the conversion is always rounded toward zero. If -| `a' is a NaN, the largest positive integer is returned. Otherwise, if the -| conversion overflows, the largest integer with the same sign as `a' is -| returned. -*----------------------------------------------------------------------------*/ - -int64 float32_to_int64_round_to_zero( float32 a STATUS_PARAM ) -{ - flag aSign; - int16 aExp, shiftCount; - bits32 aSig; - bits64 aSig64; - int64 z; - - aSig = extractFloat32Frac( a ); - aExp = extractFloat32Exp( a ); - aSign = extractFloat32Sign( a ); - shiftCount = aExp - 0xBE; - if ( 0 <= shiftCount ) { - if ( float32_val(a) != 0xDF000000 ) { - float_raise( float_flag_invalid STATUS_VAR); - if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) { - return LIT64( 0x7FFFFFFFFFFFFFFF ); - } - } - return (sbits64) LIT64( 0x8000000000000000 ); - } - else if ( aExp <= 0x7E ) { - if ( aExp | aSig ) STATUS(float_exception_flags) |= float_flag_inexact; - return 0; - } - aSig64 = aSig | 0x00800000; - aSig64 <<= 40; - z = aSig64>>( - shiftCount ); - if ( (bits64) ( aSig64<<( shiftCount & 63 ) ) ) { - STATUS(float_exception_flags) |= float_flag_inexact; - } - if ( aSign ) z = - z; - return z; - -} - -/*---------------------------------------------------------------------------- -| Returns the result of converting the single-precision floating-point value -| `a' to the double-precision floating-point format. The conversion is -| performed according to the IEC/IEEE Standard for Binary Floating-Point -| Arithmetic. -*----------------------------------------------------------------------------*/ - -float64 float32_to_float64( float32 a STATUS_PARAM ) -{ - flag aSign; - int16 aExp; - bits32 aSig; - - aSig = extractFloat32Frac( a ); - aExp = extractFloat32Exp( a ); - aSign = extractFloat32Sign( a ); - if ( aExp == 0xFF ) { - if ( aSig ) return commonNaNToFloat64( float32ToCommonNaN( a STATUS_VAR )); - return packFloat64( aSign, 0x7FF, 0 ); - } - if ( aExp == 0 ) { - if ( aSig == 0 ) return packFloat64( aSign, 0, 0 ); - normalizeFloat32Subnormal( aSig, &aExp, &aSig ); - --aExp; - } - return packFloat64( aSign, aExp + 0x380, ( (bits64) aSig )<<29 ); - -} - -#ifdef FLOATX80 - -/*---------------------------------------------------------------------------- -| Returns the result of converting the single-precision floating-point value -| `a' to the extended double-precision floating-point format. The conversion -| is performed according to the IEC/IEEE Standard for Binary Floating-Point -| Arithmetic. -*----------------------------------------------------------------------------*/ - -floatx80 float32_to_floatx80( float32 a STATUS_PARAM ) -{ - flag aSign; - int16 aExp; - bits32 aSig; - - aSig = extractFloat32Frac( a ); - aExp = extractFloat32Exp( a ); - aSign = extractFloat32Sign( a ); - if ( aExp == 0xFF ) { - if ( aSig ) return commonNaNToFloatx80( float32ToCommonNaN( a STATUS_VAR ) ); - return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); - } - if ( aExp == 0 ) { - if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 ); - normalizeFloat32Subnormal( aSig, &aExp, &aSig ); - } - aSig |= 0x00800000; - return packFloatx80( aSign, aExp + 0x3F80, ( (bits64) aSig )<<40 ); - -} - -#endif - -#ifdef FLOAT128 - -/*---------------------------------------------------------------------------- -| Returns the result of converting the single-precision floating-point value -| `a' to the double-precision floating-point format. The conversion is -| performed according to the IEC/IEEE Standard for Binary Floating-Point -| Arithmetic. -*----------------------------------------------------------------------------*/ - -float128 float32_to_float128( float32 a STATUS_PARAM ) -{ - flag aSign; - int16 aExp; - bits32 aSig; - - aSig = extractFloat32Frac( a ); - aExp = extractFloat32Exp( a ); - aSign = extractFloat32Sign( a ); - if ( aExp == 0xFF ) { - if ( aSig ) return commonNaNToFloat128( float32ToCommonNaN( a STATUS_VAR ) ); - return packFloat128( aSign, 0x7FFF, 0, 0 ); - } - if ( aExp == 0 ) { - if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 ); - normalizeFloat32Subnormal( aSig, &aExp, &aSig ); - --aExp; - } - return packFloat128( aSign, aExp + 0x3F80, ( (bits64) aSig )<<25, 0 ); - -} - -#endif - -/*---------------------------------------------------------------------------- -| Rounds the single-precision floating-point value `a' to an integer, and -| returns the result as a single-precision floating-point value. The -| operation is performed according to the IEC/IEEE Standard for Binary -| Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -float32 float32_round_to_int( float32 a STATUS_PARAM) -{ - flag aSign; - int16 aExp; - bits32 lastBitMask, roundBitsMask; - int8 roundingMode; - bits32 z; - - aExp = extractFloat32Exp( a ); - if ( 0x96 <= aExp ) { - if ( ( aExp == 0xFF ) && extractFloat32Frac( a ) ) { - return propagateFloat32NaN( a, a STATUS_VAR ); - } - return a; - } - if ( aExp <= 0x7E ) { - if ( (bits32) ( float32_val(a)<<1 ) == 0 ) return a; - STATUS(float_exception_flags) |= float_flag_inexact; - aSign = extractFloat32Sign( a ); - switch ( STATUS(float_rounding_mode) ) { - case float_round_nearest_even: - if ( ( aExp == 0x7E ) && extractFloat32Frac( a ) ) { - return packFloat32( aSign, 0x7F, 0 ); - } - break; - case float_round_down: - return make_float32(aSign ? 0xBF800000 : 0); - case float_round_up: - return make_float32(aSign ? 0x80000000 : 0x3F800000); - } - return packFloat32( aSign, 0, 0 ); - } - lastBitMask = 1; - lastBitMask <<= 0x96 - aExp; - roundBitsMask = lastBitMask - 1; - z = float32_val(a); - roundingMode = STATUS(float_rounding_mode); - if ( roundingMode == float_round_nearest_even ) { - z += lastBitMask>>1; - if ( ( z & roundBitsMask ) == 0 ) z &= ~ lastBitMask; - } - else if ( roundingMode != float_round_to_zero ) { - if ( extractFloat32Sign( make_float32(z) ) ^ ( roundingMode == float_round_up ) ) { - z += roundBitsMask; - } - } - z &= ~ roundBitsMask; - if ( z != float32_val(a) ) STATUS(float_exception_flags) |= float_flag_inexact; - return make_float32(z); - -} - -/*---------------------------------------------------------------------------- -| Returns the result of adding the absolute values of the single-precision -| floating-point values `a' and `b'. If `zSign' is 1, the sum is negated -| before being returned. `zSign' is ignored if the result is a NaN. -| The addition is performed according to the IEC/IEEE Standard for Binary -| Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -static float32 addFloat32Sigs( float32 a, float32 b, flag zSign STATUS_PARAM) -{ - int16 aExp, bExp, zExp; - bits32 aSig, bSig, zSig; - int16 expDiff; - - aSig = extractFloat32Frac( a ); - aExp = extractFloat32Exp( a ); - bSig = extractFloat32Frac( b ); - bExp = extractFloat32Exp( b ); - expDiff = aExp - bExp; - aSig <<= 6; - bSig <<= 6; - if ( 0 < expDiff ) { - if ( aExp == 0xFF ) { - if ( aSig ) return propagateFloat32NaN( a, b STATUS_VAR ); - return a; - } - if ( bExp == 0 ) { - --expDiff; - } - else { - bSig |= 0x20000000; - } - shift32RightJamming( bSig, expDiff, &bSig ); - zExp = aExp; - } - else if ( expDiff < 0 ) { - if ( bExp == 0xFF ) { - if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR ); - return packFloat32( zSign, 0xFF, 0 ); - } - if ( aExp == 0 ) { - ++expDiff; - } - else { - aSig |= 0x20000000; - } - shift32RightJamming( aSig, - expDiff, &aSig ); - zExp = bExp; - } - else { - if ( aExp == 0xFF ) { - if ( aSig | bSig ) return propagateFloat32NaN( a, b STATUS_VAR ); - return a; - } - if ( aExp == 0 ) return packFloat32( zSign, 0, ( aSig + bSig )>>6 ); - zSig = 0x40000000 + aSig + bSig; - zExp = aExp; - goto roundAndPack; - } - aSig |= 0x20000000; - zSig = ( aSig + bSig )<<1; - --zExp; - if ( (sbits32) zSig < 0 ) { - zSig = aSig + bSig; - ++zExp; - } - roundAndPack: - return roundAndPackFloat32( zSign, zExp, zSig STATUS_VAR ); - -} - -/*---------------------------------------------------------------------------- -| Returns the result of subtracting the absolute values of the single- -| precision floating-point values `a' and `b'. If `zSign' is 1, the -| difference is negated before being returned. `zSign' is ignored if the -| result is a NaN. The subtraction is performed according to the IEC/IEEE -| Standard for Binary Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -static float32 subFloat32Sigs( float32 a, float32 b, flag zSign STATUS_PARAM) -{ - int16 aExp, bExp, zExp; - bits32 aSig, bSig, zSig; - int16 expDiff; - - aSig = extractFloat32Frac( a ); - aExp = extractFloat32Exp( a ); - bSig = extractFloat32Frac( b ); - bExp = extractFloat32Exp( b ); - expDiff = aExp - bExp; - aSig <<= 7; - bSig <<= 7; - if ( 0 < expDiff ) goto aExpBigger; - if ( expDiff < 0 ) goto bExpBigger; - if ( aExp == 0xFF ) { - if ( aSig | bSig ) return propagateFloat32NaN( a, b STATUS_VAR ); - float_raise( float_flag_invalid STATUS_VAR); - return float32_default_nan; - } - if ( aExp == 0 ) { - aExp = 1; - bExp = 1; - } - if ( bSig < aSig ) goto aBigger; - if ( aSig < bSig ) goto bBigger; - return packFloat32( STATUS(float_rounding_mode) == float_round_down, 0, 0 ); - bExpBigger: - if ( bExp == 0xFF ) { - if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR ); - return packFloat32( zSign ^ 1, 0xFF, 0 ); - } - if ( aExp == 0 ) { - ++expDiff; - } - else { - aSig |= 0x40000000; - } - shift32RightJamming( aSig, - expDiff, &aSig ); - bSig |= 0x40000000; - bBigger: - zSig = bSig - aSig; - zExp = bExp; - zSign ^= 1; - goto normalizeRoundAndPack; - aExpBigger: - if ( aExp == 0xFF ) { - if ( aSig ) return propagateFloat32NaN( a, b STATUS_VAR ); - return a; - } - if ( bExp == 0 ) { - --expDiff; - } - else { - bSig |= 0x40000000; - } - shift32RightJamming( bSig, expDiff, &bSig ); - aSig |= 0x40000000; - aBigger: - zSig = aSig - bSig; - zExp = aExp; - normalizeRoundAndPack: - --zExp; - return normalizeRoundAndPackFloat32( zSign, zExp, zSig STATUS_VAR ); - -} - -/*---------------------------------------------------------------------------- -| Returns the result of adding the single-precision floating-point values `a' -| and `b'. The operation is performed according to the IEC/IEEE Standard for -| Binary Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -float32 float32_add( float32 a, float32 b STATUS_PARAM ) -{ - flag aSign, bSign; - - aSign = extractFloat32Sign( a ); - bSign = extractFloat32Sign( b ); - if ( aSign == bSign ) { - return addFloat32Sigs( a, b, aSign STATUS_VAR); - } - else { - return subFloat32Sigs( a, b, aSign STATUS_VAR ); - } - -} - -/*---------------------------------------------------------------------------- -| Returns the result of subtracting the single-precision floating-point values -| `a' and `b'. The operation is performed according to the IEC/IEEE Standard -| for Binary Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -float32 float32_sub( float32 a, float32 b STATUS_PARAM ) -{ - flag aSign, bSign; - - aSign = extractFloat32Sign( a ); - bSign = extractFloat32Sign( b ); - if ( aSign == bSign ) { - return subFloat32Sigs( a, b, aSign STATUS_VAR ); - } - else { - return addFloat32Sigs( a, b, aSign STATUS_VAR ); - } - -} - -/*---------------------------------------------------------------------------- -| Returns the result of multiplying the single-precision floating-point values -| `a' and `b'. The operation is performed according to the IEC/IEEE Standard -| for Binary Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -float32 float32_mul( float32 a, float32 b STATUS_PARAM ) -{ - flag aSign, bSign, zSign; - int16 aExp, bExp, zExp; - bits32 aSig, bSig; - bits64 zSig64; - bits32 zSig; - - aSig = extractFloat32Frac( a ); - aExp = extractFloat32Exp( a ); - aSign = extractFloat32Sign( a ); - bSig = extractFloat32Frac( b ); - bExp = extractFloat32Exp( b ); - bSign = extractFloat32Sign( b ); - zSign = aSign ^ bSign; - if ( aExp == 0xFF ) { - if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) { - return propagateFloat32NaN( a, b STATUS_VAR ); - } - if ( ( bExp | bSig ) == 0 ) { - float_raise( float_flag_invalid STATUS_VAR); - return float32_default_nan; - } - return packFloat32( zSign, 0xFF, 0 ); - } - if ( bExp == 0xFF ) { - if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR ); - if ( ( aExp | aSig ) == 0 ) { - float_raise( float_flag_invalid STATUS_VAR); - return float32_default_nan; - } - return packFloat32( zSign, 0xFF, 0 ); - } - if ( aExp == 0 ) { - if ( aSig == 0 ) return packFloat32( zSign, 0, 0 ); - normalizeFloat32Subnormal( aSig, &aExp, &aSig ); - } - if ( bExp == 0 ) { - if ( bSig == 0 ) return packFloat32( zSign, 0, 0 ); - normalizeFloat32Subnormal( bSig, &bExp, &bSig ); - } - zExp = aExp + bExp - 0x7F; - aSig = ( aSig | 0x00800000 )<<7; - bSig = ( bSig | 0x00800000 )<<8; - shift64RightJamming( ( (bits64) aSig ) * bSig, 32, &zSig64 ); - zSig = zSig64; - if ( 0 <= (sbits32) ( zSig<<1 ) ) { - zSig <<= 1; - --zExp; - } - return roundAndPackFloat32( zSign, zExp, zSig STATUS_VAR ); - -} - -/*---------------------------------------------------------------------------- -| Returns the result of dividing the single-precision floating-point value `a' -| by the corresponding value `b'. The operation is performed according to the -| IEC/IEEE Standard for Binary Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -float32 float32_div( float32 a, float32 b STATUS_PARAM ) -{ - flag aSign, bSign, zSign; - int16 aExp, bExp, zExp; - bits32 aSig, bSig, zSig; - - aSig = extractFloat32Frac( a ); - aExp = extractFloat32Exp( a ); - aSign = extractFloat32Sign( a ); - bSig = extractFloat32Frac( b ); - bExp = extractFloat32Exp( b ); - bSign = extractFloat32Sign( b ); - zSign = aSign ^ bSign; - if ( aExp == 0xFF ) { - if ( aSig ) return propagateFloat32NaN( a, b STATUS_VAR ); - if ( bExp == 0xFF ) { - if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR ); - float_raise( float_flag_invalid STATUS_VAR); - return float32_default_nan; - } - return packFloat32( zSign, 0xFF, 0 ); - } - if ( bExp == 0xFF ) { - if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR ); - return packFloat32( zSign, 0, 0 ); - } - if ( bExp == 0 ) { - if ( bSig == 0 ) { - if ( ( aExp | aSig ) == 0 ) { - float_raise( float_flag_invalid STATUS_VAR); - return float32_default_nan; - } - float_raise( float_flag_divbyzero STATUS_VAR); - return packFloat32( zSign, 0xFF, 0 ); - } - normalizeFloat32Subnormal( bSig, &bExp, &bSig ); - } - if ( aExp == 0 ) { - if ( aSig == 0 ) return packFloat32( zSign, 0, 0 ); - normalizeFloat32Subnormal( aSig, &aExp, &aSig ); - } - zExp = aExp - bExp + 0x7D; - aSig = ( aSig | 0x00800000 )<<7; - bSig = ( bSig | 0x00800000 )<<8; - if ( bSig <= ( aSig + aSig ) ) { - aSig >>= 1; - ++zExp; - } - zSig = ( ( (bits64) aSig )<<32 ) / bSig; - if ( ( zSig & 0x3F ) == 0 ) { - zSig |= ( (bits64) bSig * zSig != ( (bits64) aSig )<<32 ); - } - return roundAndPackFloat32( zSign, zExp, zSig STATUS_VAR ); - -} - -/*---------------------------------------------------------------------------- -| Returns the remainder of the single-precision floating-point value `a' -| with respect to the corresponding value `b'. The operation is performed -| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -float32 float32_rem( float32 a, float32 b STATUS_PARAM ) -{ - flag aSign, bSign, zSign; - int16 aExp, bExp, expDiff; - bits32 aSig, bSig; - bits32 q; - bits64 aSig64, bSig64, q64; - bits32 alternateASig; - sbits32 sigMean; - - aSig = extractFloat32Frac( a ); - aExp = extractFloat32Exp( a ); - aSign = extractFloat32Sign( a ); - bSig = extractFloat32Frac( b ); - bExp = extractFloat32Exp( b ); - bSign = extractFloat32Sign( b ); - if ( aExp == 0xFF ) { - if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) { - return propagateFloat32NaN( a, b STATUS_VAR ); - } - float_raise( float_flag_invalid STATUS_VAR); - return float32_default_nan; - } - if ( bExp == 0xFF ) { - if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR ); - return a; - } - if ( bExp == 0 ) { - if ( bSig == 0 ) { - float_raise( float_flag_invalid STATUS_VAR); - return float32_default_nan; - } - normalizeFloat32Subnormal( bSig, &bExp, &bSig ); - } - if ( aExp == 0 ) { - if ( aSig == 0 ) return a; - normalizeFloat32Subnormal( aSig, &aExp, &aSig ); - } - expDiff = aExp - bExp; - aSig |= 0x00800000; - bSig |= 0x00800000; - if ( expDiff < 32 ) { - aSig <<= 8; - bSig <<= 8; - if ( expDiff < 0 ) { - if ( expDiff < -1 ) return a; - aSig >>= 1; - } - q = ( bSig <= aSig ); - if ( q ) aSig -= bSig; - if ( 0 < expDiff ) { - q = ( ( (bits64) aSig )<<32 ) / bSig; - q >>= 32 - expDiff; - bSig >>= 2; - aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q; - } - else { - aSig >>= 2; - bSig >>= 2; - } - } - else { - if ( bSig <= aSig ) aSig -= bSig; - aSig64 = ( (bits64) aSig )<<40; - bSig64 = ( (bits64) bSig )<<40; - expDiff -= 64; - while ( 0 < expDiff ) { - q64 = estimateDiv128To64( aSig64, 0, bSig64 ); - q64 = ( 2 < q64 ) ? q64 - 2 : 0; - aSig64 = - ( ( bSig * q64 )<<38 ); - expDiff -= 62; - } - expDiff += 64; - q64 = estimateDiv128To64( aSig64, 0, bSig64 ); - q64 = ( 2 < q64 ) ? q64 - 2 : 0; - q = q64>>( 64 - expDiff ); - bSig <<= 6; - aSig = ( ( aSig64>>33 )<<( expDiff - 1 ) ) - bSig * q; - } - do { - alternateASig = aSig; - ++q; - aSig -= bSig; - } while ( 0 <= (sbits32) aSig ); - sigMean = aSig + alternateASig; - if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) { - aSig = alternateASig; - } - zSign = ( (sbits32) aSig < 0 ); - if ( zSign ) aSig = - aSig; - return normalizeRoundAndPackFloat32( aSign ^ zSign, bExp, aSig STATUS_VAR ); - -} - -/*---------------------------------------------------------------------------- -| Returns the square root of the single-precision floating-point value `a'. -| The operation is performed according to the IEC/IEEE Standard for Binary -| Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -float32 float32_sqrt( float32 a STATUS_PARAM ) -{ - flag aSign; - int16 aExp, zExp; - bits32 aSig, zSig; - bits64 rem, term; - - aSig = extractFloat32Frac( a ); - aExp = extractFloat32Exp( a ); - aSign = extractFloat32Sign( a ); - if ( aExp == 0xFF ) { - if ( aSig ) return propagateFloat32NaN( a, float32_zero STATUS_VAR ); - if ( ! aSign ) return a; - float_raise( float_flag_invalid STATUS_VAR); - return float32_default_nan; - } - if ( aSign ) { - if ( ( aExp | aSig ) == 0 ) return a; - float_raise( float_flag_invalid STATUS_VAR); - return float32_default_nan; - } - if ( aExp == 0 ) { - if ( aSig == 0 ) return float32_zero; - normalizeFloat32Subnormal( aSig, &aExp, &aSig ); - } - zExp = ( ( aExp - 0x7F )>>1 ) + 0x7E; - aSig = ( aSig | 0x00800000 )<<8; - zSig = estimateSqrt32( aExp, aSig ) + 2; - if ( ( zSig & 0x7F ) <= 5 ) { - if ( zSig < 2 ) { - zSig = 0x7FFFFFFF; - goto roundAndPack; - } - aSig >>= aExp & 1; - term = ( (bits64) zSig ) * zSig; - rem = ( ( (bits64) aSig )<<32 ) - term; - while ( (sbits64) rem < 0 ) { - --zSig; - rem += ( ( (bits64) zSig )<<1 ) | 1; - } - zSig |= ( rem != 0 ); - } - shift32RightJamming( zSig, 1, &zSig ); - roundAndPack: - return roundAndPackFloat32( 0, zExp, zSig STATUS_VAR ); - -} - -/*---------------------------------------------------------------------------- -| Returns 1 if the single-precision floating-point value `a' is equal to -| the corresponding value `b', and 0 otherwise. The comparison is performed -| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -int float32_eq( float32 a, float32 b STATUS_PARAM ) -{ - - if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) - || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) - ) { - if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) { - float_raise( float_flag_invalid STATUS_VAR); - } - return 0; - } - return ( float32_val(a) == float32_val(b) ) || - ( (bits32) ( ( float32_val(a) | float32_val(b) )<<1 ) == 0 ); - -} - -/*---------------------------------------------------------------------------- -| Returns 1 if the single-precision floating-point value `a' is less than -| or equal to the corresponding value `b', and 0 otherwise. The comparison -| is performed according to the IEC/IEEE Standard for Binary Floating-Point -| Arithmetic. -*----------------------------------------------------------------------------*/ - -int float32_le( float32 a, float32 b STATUS_PARAM ) -{ - flag aSign, bSign; - bits32 av, bv; - - if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) - || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) - ) { - float_raise( float_flag_invalid STATUS_VAR); - return 0; - } - aSign = extractFloat32Sign( a ); - bSign = extractFloat32Sign( b ); - av = float32_val(a); - bv = float32_val(b); - if ( aSign != bSign ) return aSign || ( (bits32) ( ( av | bv )<<1 ) == 0 ); - return ( av == bv ) || ( aSign ^ ( av < bv ) ); - -} - -/*---------------------------------------------------------------------------- -| Returns 1 if the single-precision floating-point value `a' is less than -| the corresponding value `b', and 0 otherwise. The comparison is performed -| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -int float32_lt( float32 a, float32 b STATUS_PARAM ) -{ - flag aSign, bSign; - bits32 av, bv; - - if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) - || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) - ) { - float_raise( float_flag_invalid STATUS_VAR); - return 0; - } - aSign = extractFloat32Sign( a ); - bSign = extractFloat32Sign( b ); - av = float32_val(a); - bv = float32_val(b); - if ( aSign != bSign ) return aSign && ( (bits32) ( ( av | bv )<<1 ) != 0 ); - return ( av != bv ) && ( aSign ^ ( av < bv ) ); - -} - -/*---------------------------------------------------------------------------- -| Returns 1 if the single-precision floating-point value `a' is equal to -| the corresponding value `b', and 0 otherwise. The invalid exception is -| raised if either operand is a NaN. Otherwise, the comparison is performed -| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -int float32_eq_signaling( float32 a, float32 b STATUS_PARAM ) -{ - bits32 av, bv; - - if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) - || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) - ) { - float_raise( float_flag_invalid STATUS_VAR); - return 0; - } - av = float32_val(a); - bv = float32_val(b); - return ( av == bv ) || ( (bits32) ( ( av | bv )<<1 ) == 0 ); - -} - -/*---------------------------------------------------------------------------- -| Returns 1 if the single-precision floating-point value `a' is less than or -| equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not -| cause an exception. Otherwise, the comparison is performed according to the -| IEC/IEEE Standard for Binary Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -int float32_le_quiet( float32 a, float32 b STATUS_PARAM ) -{ - flag aSign, bSign; - bits32 av, bv; - - if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) - || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) - ) { - if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) { - float_raise( float_flag_invalid STATUS_VAR); - } - return 0; - } - aSign = extractFloat32Sign( a ); - bSign = extractFloat32Sign( b ); - av = float32_val(a); - bv = float32_val(b); - if ( aSign != bSign ) return aSign || ( (bits32) ( ( av | bv )<<1 ) == 0 ); - return ( av == bv ) || ( aSign ^ ( av < bv ) ); - -} - -/*---------------------------------------------------------------------------- -| Returns 1 if the single-precision floating-point value `a' is less than -| the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an -| exception. Otherwise, the comparison is performed according to the IEC/IEEE -| Standard for Binary Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -int float32_lt_quiet( float32 a, float32 b STATUS_PARAM ) -{ - flag aSign, bSign; - bits32 av, bv; - - if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) - || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) - ) { - if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) { - float_raise( float_flag_invalid STATUS_VAR); - } - return 0; - } - aSign = extractFloat32Sign( a ); - bSign = extractFloat32Sign( b ); - av = float32_val(a); - bv = float32_val(b); - if ( aSign != bSign ) return aSign && ( (bits32) ( ( av | bv )<<1 ) != 0 ); - return ( av != bv ) && ( aSign ^ ( av < bv ) ); - -} - -/*---------------------------------------------------------------------------- -| Returns the result of converting the double-precision floating-point value -| `a' to the 32-bit two's complement integer format. The conversion is -| performed according to the IEC/IEEE Standard for Binary Floating-Point -| Arithmetic---which means in particular that the conversion is rounded -| according to the current rounding mode. If `a' is a NaN, the largest -| positive integer is returned. Otherwise, if the conversion overflows, the -| largest integer with the same sign as `a' is returned. -*----------------------------------------------------------------------------*/ - -int32 float64_to_int32( float64 a STATUS_PARAM ) -{ - flag aSign; - int16 aExp, shiftCount; - bits64 aSig; - - aSig = extractFloat64Frac( a ); - aExp = extractFloat64Exp( a ); - aSign = extractFloat64Sign( a ); - if ( ( aExp == 0x7FF ) && aSig ) aSign = 0; - if ( aExp ) aSig |= LIT64( 0x0010000000000000 ); - shiftCount = 0x42C - aExp; - if ( 0 < shiftCount ) shift64RightJamming( aSig, shiftCount, &aSig ); - return roundAndPackInt32( aSign, aSig STATUS_VAR ); - -} - -/*---------------------------------------------------------------------------- -| Returns the result of converting the double-precision floating-point value -| `a' to the 32-bit two's complement integer format. The conversion is -| performed according to the IEC/IEEE Standard for Binary Floating-Point -| Arithmetic, except that the conversion is always rounded toward zero. -| If `a' is a NaN, the largest positive integer is returned. Otherwise, if -| the conversion overflows, the largest integer with the same sign as `a' is -| returned. -*----------------------------------------------------------------------------*/ - -int32 float64_to_int32_round_to_zero( float64 a STATUS_PARAM ) -{ - flag aSign; - int16 aExp, shiftCount; - bits64 aSig, savedASig; - int32 z; - - aSig = extractFloat64Frac( a ); - aExp = extractFloat64Exp( a ); - aSign = extractFloat64Sign( a ); - if ( 0x41E < aExp ) { - if ( ( aExp == 0x7FF ) && aSig ) aSign = 0; - goto invalid; - } - else if ( aExp < 0x3FF ) { - if ( aExp || aSig ) STATUS(float_exception_flags) |= float_flag_inexact; - return 0; - } - aSig |= LIT64( 0x0010000000000000 ); - shiftCount = 0x433 - aExp; - savedASig = aSig; - aSig >>= shiftCount; - z = aSig; - if ( aSign ) z = - z; - if ( ( z < 0 ) ^ aSign ) { - invalid: - float_raise( float_flag_invalid STATUS_VAR); - return aSign ? (sbits32) 0x80000000 : 0x7FFFFFFF; - } - if ( ( aSig<>( - shiftCount ); - if ( (bits64) ( aSig<<( shiftCount & 63 ) ) ) { - STATUS(float_exception_flags) |= float_flag_inexact; - } - } - if ( aSign ) z = - z; - return z; - -} - -/*---------------------------------------------------------------------------- -| Returns the result of converting the double-precision floating-point value -| `a' to the single-precision floating-point format. The conversion is -| performed according to the IEC/IEEE Standard for Binary Floating-Point -| Arithmetic. -*----------------------------------------------------------------------------*/ - -float32 float64_to_float32( float64 a STATUS_PARAM ) -{ - flag aSign; - int16 aExp; - bits64 aSig; - bits32 zSig; - - aSig = extractFloat64Frac( a ); - aExp = extractFloat64Exp( a ); - aSign = extractFloat64Sign( a ); - if ( aExp == 0x7FF ) { - if ( aSig ) return commonNaNToFloat32( float64ToCommonNaN( a STATUS_VAR ) ); - return packFloat32( aSign, 0xFF, 0 ); - } - shift64RightJamming( aSig, 22, &aSig ); - zSig = aSig; - if ( aExp || zSig ) { - zSig |= 0x40000000; - aExp -= 0x381; - } - return roundAndPackFloat32( aSign, aExp, zSig STATUS_VAR ); - -} - -#ifdef FLOATX80 - -/*---------------------------------------------------------------------------- -| Returns the result of converting the double-precision floating-point value -| `a' to the extended double-precision floating-point format. The conversion -| is performed according to the IEC/IEEE Standard for Binary Floating-Point -| Arithmetic. -*----------------------------------------------------------------------------*/ - -floatx80 float64_to_floatx80( float64 a STATUS_PARAM ) -{ - flag aSign; - int16 aExp; - bits64 aSig; - - aSig = extractFloat64Frac( a ); - aExp = extractFloat64Exp( a ); - aSign = extractFloat64Sign( a ); - if ( aExp == 0x7FF ) { - if ( aSig ) return commonNaNToFloatx80( float64ToCommonNaN( a STATUS_VAR ) ); - return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); - } - if ( aExp == 0 ) { - if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 ); - normalizeFloat64Subnormal( aSig, &aExp, &aSig ); - } - return - packFloatx80( - aSign, aExp + 0x3C00, ( aSig | LIT64( 0x0010000000000000 ) )<<11 ); - -} - -#endif - -#ifdef FLOAT128 - -/*---------------------------------------------------------------------------- -| Returns the result of converting the double-precision floating-point value -| `a' to the quadruple-precision floating-point format. The conversion is -| performed according to the IEC/IEEE Standard for Binary Floating-Point -| Arithmetic. -*----------------------------------------------------------------------------*/ - -float128 float64_to_float128( float64 a STATUS_PARAM ) -{ - flag aSign; - int16 aExp; - bits64 aSig, zSig0, zSig1; - - aSig = extractFloat64Frac( a ); - aExp = extractFloat64Exp( a ); - aSign = extractFloat64Sign( a ); - if ( aExp == 0x7FF ) { - if ( aSig ) return commonNaNToFloat128( float64ToCommonNaN( a STATUS_VAR ) ); - return packFloat128( aSign, 0x7FFF, 0, 0 ); - } - if ( aExp == 0 ) { - if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 ); - normalizeFloat64Subnormal( aSig, &aExp, &aSig ); - --aExp; - } - shift128Right( aSig, 0, 4, &zSig0, &zSig1 ); - return packFloat128( aSign, aExp + 0x3C00, zSig0, zSig1 ); - -} - -#endif - -/*---------------------------------------------------------------------------- -| Rounds the double-precision floating-point value `a' to an integer, and -| returns the result as a double-precision floating-point value. The -| operation is performed according to the IEC/IEEE Standard for Binary -| Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -float64 float64_round_to_int( float64 a STATUS_PARAM ) -{ - flag aSign; - int16 aExp; - bits64 lastBitMask, roundBitsMask; - int8 roundingMode; - bits64 z; - - aExp = extractFloat64Exp( a ); - if ( 0x433 <= aExp ) { - if ( ( aExp == 0x7FF ) && extractFloat64Frac( a ) ) { - return propagateFloat64NaN( a, a STATUS_VAR ); - } - return a; - } - if ( aExp < 0x3FF ) { - if ( (bits64) ( float64_val(a)<<1 ) == 0 ) return a; - STATUS(float_exception_flags) |= float_flag_inexact; - aSign = extractFloat64Sign( a ); - switch ( STATUS(float_rounding_mode) ) { - case float_round_nearest_even: - if ( ( aExp == 0x3FE ) && extractFloat64Frac( a ) ) { - return packFloat64( aSign, 0x3FF, 0 ); - } - break; - case float_round_down: - return make_float64(aSign ? LIT64( 0xBFF0000000000000 ) : 0); - case float_round_up: - return make_float64( - aSign ? LIT64( 0x8000000000000000 ) : LIT64( 0x3FF0000000000000 )); - } - return packFloat64( aSign, 0, 0 ); - } - lastBitMask = 1; - lastBitMask <<= 0x433 - aExp; - roundBitsMask = lastBitMask - 1; - z = float64_val(a); - roundingMode = STATUS(float_rounding_mode); - if ( roundingMode == float_round_nearest_even ) { - z += lastBitMask>>1; - if ( ( z & roundBitsMask ) == 0 ) z &= ~ lastBitMask; - } - else if ( roundingMode != float_round_to_zero ) { - if ( extractFloat64Sign( make_float64(z) ) ^ ( roundingMode == float_round_up ) ) { - z += roundBitsMask; - } - } - z &= ~ roundBitsMask; - if ( z != float64_val(a) ) - STATUS(float_exception_flags) |= float_flag_inexact; - return make_float64(z); - -} - -float64 float64_trunc_to_int( float64 a STATUS_PARAM) -{ - int oldmode; - float64 res; - oldmode = STATUS(float_rounding_mode); - STATUS(float_rounding_mode) = float_round_to_zero; - res = float64_round_to_int(a STATUS_VAR); - STATUS(float_rounding_mode) = oldmode; - return res; -} - -/*---------------------------------------------------------------------------- -| Returns the result of adding the absolute values of the double-precision -| floating-point values `a' and `b'. If `zSign' is 1, the sum is negated -| before being returned. `zSign' is ignored if the result is a NaN. -| The addition is performed according to the IEC/IEEE Standard for Binary -| Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -static float64 addFloat64Sigs( float64 a, float64 b, flag zSign STATUS_PARAM ) -{ - int16 aExp, bExp, zExp; - bits64 aSig, bSig, zSig; - int16 expDiff; - - aSig = extractFloat64Frac( a ); - aExp = extractFloat64Exp( a ); - bSig = extractFloat64Frac( b ); - bExp = extractFloat64Exp( b ); - expDiff = aExp - bExp; - aSig <<= 9; - bSig <<= 9; - if ( 0 < expDiff ) { - if ( aExp == 0x7FF ) { - if ( aSig ) return propagateFloat64NaN( a, b STATUS_VAR ); - return a; - } - if ( bExp == 0 ) { - --expDiff; - } - else { - bSig |= LIT64( 0x2000000000000000 ); - } - shift64RightJamming( bSig, expDiff, &bSig ); - zExp = aExp; - } - else if ( expDiff < 0 ) { - if ( bExp == 0x7FF ) { - if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR ); - return packFloat64( zSign, 0x7FF, 0 ); - } - if ( aExp == 0 ) { - ++expDiff; - } - else { - aSig |= LIT64( 0x2000000000000000 ); - } - shift64RightJamming( aSig, - expDiff, &aSig ); - zExp = bExp; - } - else { - if ( aExp == 0x7FF ) { - if ( aSig | bSig ) return propagateFloat64NaN( a, b STATUS_VAR ); - return a; - } - if ( aExp == 0 ) return packFloat64( zSign, 0, ( aSig + bSig )>>9 ); - zSig = LIT64( 0x4000000000000000 ) + aSig + bSig; - zExp = aExp; - goto roundAndPack; - } - aSig |= LIT64( 0x2000000000000000 ); - zSig = ( aSig + bSig )<<1; - --zExp; - if ( (sbits64) zSig < 0 ) { - zSig = aSig + bSig; - ++zExp; - } - roundAndPack: - return roundAndPackFloat64( zSign, zExp, zSig STATUS_VAR ); - -} - -/*---------------------------------------------------------------------------- -| Returns the result of subtracting the absolute values of the double- -| precision floating-point values `a' and `b'. If `zSign' is 1, the -| difference is negated before being returned. `zSign' is ignored if the -| result is a NaN. The subtraction is performed according to the IEC/IEEE -| Standard for Binary Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -static float64 subFloat64Sigs( float64 a, float64 b, flag zSign STATUS_PARAM ) -{ - int16 aExp, bExp, zExp; - bits64 aSig, bSig, zSig; - int16 expDiff; - - aSig = extractFloat64Frac( a ); - aExp = extractFloat64Exp( a ); - bSig = extractFloat64Frac( b ); - bExp = extractFloat64Exp( b ); - expDiff = aExp - bExp; - aSig <<= 10; - bSig <<= 10; - if ( 0 < expDiff ) goto aExpBigger; - if ( expDiff < 0 ) goto bExpBigger; - if ( aExp == 0x7FF ) { - if ( aSig | bSig ) return propagateFloat64NaN( a, b STATUS_VAR ); - float_raise( float_flag_invalid STATUS_VAR); - return float64_default_nan; - } - if ( aExp == 0 ) { - aExp = 1; - bExp = 1; - } - if ( bSig < aSig ) goto aBigger; - if ( aSig < bSig ) goto bBigger; - return packFloat64( STATUS(float_rounding_mode) == float_round_down, 0, 0 ); - bExpBigger: - if ( bExp == 0x7FF ) { - if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR ); - return packFloat64( zSign ^ 1, 0x7FF, 0 ); - } - if ( aExp == 0 ) { - ++expDiff; - } - else { - aSig |= LIT64( 0x4000000000000000 ); - } - shift64RightJamming( aSig, - expDiff, &aSig ); - bSig |= LIT64( 0x4000000000000000 ); - bBigger: - zSig = bSig - aSig; - zExp = bExp; - zSign ^= 1; - goto normalizeRoundAndPack; - aExpBigger: - if ( aExp == 0x7FF ) { - if ( aSig ) return propagateFloat64NaN( a, b STATUS_VAR ); - return a; - } - if ( bExp == 0 ) { - --expDiff; - } - else { - bSig |= LIT64( 0x4000000000000000 ); - } - shift64RightJamming( bSig, expDiff, &bSig ); - aSig |= LIT64( 0x4000000000000000 ); - aBigger: - zSig = aSig - bSig; - zExp = aExp; - normalizeRoundAndPack: - --zExp; - return normalizeRoundAndPackFloat64( zSign, zExp, zSig STATUS_VAR ); - -} - -/*---------------------------------------------------------------------------- -| Returns the result of adding the double-precision floating-point values `a' -| and `b'. The operation is performed according to the IEC/IEEE Standard for -| Binary Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -float64 float64_add( float64 a, float64 b STATUS_PARAM ) -{ - flag aSign, bSign; - - aSign = extractFloat64Sign( a ); - bSign = extractFloat64Sign( b ); - if ( aSign == bSign ) { - return addFloat64Sigs( a, b, aSign STATUS_VAR ); - } - else { - return subFloat64Sigs( a, b, aSign STATUS_VAR ); - } - -} - -/*---------------------------------------------------------------------------- -| Returns the result of subtracting the double-precision floating-point values -| `a' and `b'. The operation is performed according to the IEC/IEEE Standard -| for Binary Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -float64 float64_sub( float64 a, float64 b STATUS_PARAM ) -{ - flag aSign, bSign; - - aSign = extractFloat64Sign( a ); - bSign = extractFloat64Sign( b ); - if ( aSign == bSign ) { - return subFloat64Sigs( a, b, aSign STATUS_VAR ); - } - else { - return addFloat64Sigs( a, b, aSign STATUS_VAR ); - } - -} - -/*---------------------------------------------------------------------------- -| Returns the result of multiplying the double-precision floating-point values -| `a' and `b'. The operation is performed according to the IEC/IEEE Standard -| for Binary Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -float64 float64_mul( float64 a, float64 b STATUS_PARAM ) -{ - flag aSign, bSign, zSign; - int16 aExp, bExp, zExp; - bits64 aSig, bSig, zSig0, zSig1; - - aSig = extractFloat64Frac( a ); - aExp = extractFloat64Exp( a ); - aSign = extractFloat64Sign( a ); - bSig = extractFloat64Frac( b ); - bExp = extractFloat64Exp( b ); - bSign = extractFloat64Sign( b ); - zSign = aSign ^ bSign; - if ( aExp == 0x7FF ) { - if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) { - return propagateFloat64NaN( a, b STATUS_VAR ); - } - if ( ( bExp | bSig ) == 0 ) { - float_raise( float_flag_invalid STATUS_VAR); - return float64_default_nan; - } - return packFloat64( zSign, 0x7FF, 0 ); - } - if ( bExp == 0x7FF ) { - if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR ); - if ( ( aExp | aSig ) == 0 ) { - float_raise( float_flag_invalid STATUS_VAR); - return float64_default_nan; - } - return packFloat64( zSign, 0x7FF, 0 ); - } - if ( aExp == 0 ) { - if ( aSig == 0 ) return packFloat64( zSign, 0, 0 ); - normalizeFloat64Subnormal( aSig, &aExp, &aSig ); - } - if ( bExp == 0 ) { - if ( bSig == 0 ) return packFloat64( zSign, 0, 0 ); - normalizeFloat64Subnormal( bSig, &bExp, &bSig ); - } - zExp = aExp + bExp - 0x3FF; - aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10; - bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11; - mul64To128( aSig, bSig, &zSig0, &zSig1 ); - zSig0 |= ( zSig1 != 0 ); - if ( 0 <= (sbits64) ( zSig0<<1 ) ) { - zSig0 <<= 1; - --zExp; - } - return roundAndPackFloat64( zSign, zExp, zSig0 STATUS_VAR ); - -} - -/*---------------------------------------------------------------------------- -| Returns the result of dividing the double-precision floating-point value `a' -| by the corresponding value `b'. The operation is performed according to -| the IEC/IEEE Standard for Binary Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -float64 float64_div( float64 a, float64 b STATUS_PARAM ) -{ - flag aSign, bSign, zSign; - int16 aExp, bExp, zExp; - bits64 aSig, bSig, zSig; - bits64 rem0, rem1; - bits64 term0, term1; - - aSig = extractFloat64Frac( a ); - aExp = extractFloat64Exp( a ); - aSign = extractFloat64Sign( a ); - bSig = extractFloat64Frac( b ); - bExp = extractFloat64Exp( b ); - bSign = extractFloat64Sign( b ); - zSign = aSign ^ bSign; - if ( aExp == 0x7FF ) { - if ( aSig ) return propagateFloat64NaN( a, b STATUS_VAR ); - if ( bExp == 0x7FF ) { - if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR ); - float_raise( float_flag_invalid STATUS_VAR); - return float64_default_nan; - } - return packFloat64( zSign, 0x7FF, 0 ); - } - if ( bExp == 0x7FF ) { - if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR ); - return packFloat64( zSign, 0, 0 ); - } - if ( bExp == 0 ) { - if ( bSig == 0 ) { - if ( ( aExp | aSig ) == 0 ) { - float_raise( float_flag_invalid STATUS_VAR); - return float64_default_nan; - } - float_raise( float_flag_divbyzero STATUS_VAR); - return packFloat64( zSign, 0x7FF, 0 ); - } - normalizeFloat64Subnormal( bSig, &bExp, &bSig ); - } - if ( aExp == 0 ) { - if ( aSig == 0 ) return packFloat64( zSign, 0, 0 ); - normalizeFloat64Subnormal( aSig, &aExp, &aSig ); - } - zExp = aExp - bExp + 0x3FD; - aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10; - bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11; - if ( bSig <= ( aSig + aSig ) ) { - aSig >>= 1; - ++zExp; - } - zSig = estimateDiv128To64( aSig, 0, bSig ); - if ( ( zSig & 0x1FF ) <= 2 ) { - mul64To128( bSig, zSig, &term0, &term1 ); - sub128( aSig, 0, term0, term1, &rem0, &rem1 ); - while ( (sbits64) rem0 < 0 ) { - --zSig; - add128( rem0, rem1, 0, bSig, &rem0, &rem1 ); - } - zSig |= ( rem1 != 0 ); - } - return roundAndPackFloat64( zSign, zExp, zSig STATUS_VAR ); - -} - -/*---------------------------------------------------------------------------- -| Returns the remainder of the double-precision floating-point value `a' -| with respect to the corresponding value `b'. The operation is performed -| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -float64 float64_rem( float64 a, float64 b STATUS_PARAM ) -{ - flag aSign, bSign, zSign; - int16 aExp, bExp, expDiff; - bits64 aSig, bSig; - bits64 q, alternateASig; - sbits64 sigMean; - - aSig = extractFloat64Frac( a ); - aExp = extractFloat64Exp( a ); - aSign = extractFloat64Sign( a ); - bSig = extractFloat64Frac( b ); - bExp = extractFloat64Exp( b ); - bSign = extractFloat64Sign( b ); - if ( aExp == 0x7FF ) { - if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) { - return propagateFloat64NaN( a, b STATUS_VAR ); - } - float_raise( float_flag_invalid STATUS_VAR); - return float64_default_nan; - } - if ( bExp == 0x7FF ) { - if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR ); - return a; - } - if ( bExp == 0 ) { - if ( bSig == 0 ) { - float_raise( float_flag_invalid STATUS_VAR); - return float64_default_nan; - } - normalizeFloat64Subnormal( bSig, &bExp, &bSig ); - } - if ( aExp == 0 ) { - if ( aSig == 0 ) return a; - normalizeFloat64Subnormal( aSig, &aExp, &aSig ); - } - expDiff = aExp - bExp; - aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<11; - bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11; - if ( expDiff < 0 ) { - if ( expDiff < -1 ) return a; - aSig >>= 1; - } - q = ( bSig <= aSig ); - if ( q ) aSig -= bSig; - expDiff -= 64; - while ( 0 < expDiff ) { - q = estimateDiv128To64( aSig, 0, bSig ); - q = ( 2 < q ) ? q - 2 : 0; - aSig = - ( ( bSig>>2 ) * q ); - expDiff -= 62; - } - expDiff += 64; - if ( 0 < expDiff ) { - q = estimateDiv128To64( aSig, 0, bSig ); - q = ( 2 < q ) ? q - 2 : 0; - q >>= 64 - expDiff; - bSig >>= 2; - aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q; - } - else { - aSig >>= 2; - bSig >>= 2; - } - do { - alternateASig = aSig; - ++q; - aSig -= bSig; - } while ( 0 <= (sbits64) aSig ); - sigMean = aSig + alternateASig; - if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) { - aSig = alternateASig; - } - zSign = ( (sbits64) aSig < 0 ); - if ( zSign ) aSig = - aSig; - return normalizeRoundAndPackFloat64( aSign ^ zSign, bExp, aSig STATUS_VAR ); - -} - -/*---------------------------------------------------------------------------- -| Returns the square root of the double-precision floating-point value `a'. -| The operation is performed according to the IEC/IEEE Standard for Binary -| Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -float64 float64_sqrt( float64 a STATUS_PARAM ) -{ - flag aSign; - int16 aExp, zExp; - bits64 aSig, zSig, doubleZSig; - bits64 rem0, rem1, term0, term1; - - aSig = extractFloat64Frac( a ); - aExp = extractFloat64Exp( a ); - aSign = extractFloat64Sign( a ); - if ( aExp == 0x7FF ) { - if ( aSig ) return propagateFloat64NaN( a, a STATUS_VAR ); - if ( ! aSign ) return a; - float_raise( float_flag_invalid STATUS_VAR); - return float64_default_nan; - } - if ( aSign ) { - if ( ( aExp | aSig ) == 0 ) return a; - float_raise( float_flag_invalid STATUS_VAR); - return float64_default_nan; - } - if ( aExp == 0 ) { - if ( aSig == 0 ) return float64_zero; - normalizeFloat64Subnormal( aSig, &aExp, &aSig ); - } - zExp = ( ( aExp - 0x3FF )>>1 ) + 0x3FE; - aSig |= LIT64( 0x0010000000000000 ); - zSig = estimateSqrt32( aExp, aSig>>21 ); - aSig <<= 9 - ( aExp & 1 ); - zSig = estimateDiv128To64( aSig, 0, zSig<<32 ) + ( zSig<<30 ); - if ( ( zSig & 0x1FF ) <= 5 ) { - doubleZSig = zSig<<1; - mul64To128( zSig, zSig, &term0, &term1 ); - sub128( aSig, 0, term0, term1, &rem0, &rem1 ); - while ( (sbits64) rem0 < 0 ) { - --zSig; - doubleZSig -= 2; - add128( rem0, rem1, zSig>>63, doubleZSig | 1, &rem0, &rem1 ); - } - zSig |= ( ( rem0 | rem1 ) != 0 ); - } - return roundAndPackFloat64( 0, zExp, zSig STATUS_VAR ); - -} - -/*---------------------------------------------------------------------------- -| Returns 1 if the double-precision floating-point value `a' is equal to the -| corresponding value `b', and 0 otherwise. The comparison is performed -| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -int float64_eq( float64 a, float64 b STATUS_PARAM ) -{ - bits64 av, bv; - - if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) - || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) - ) { - if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) { - float_raise( float_flag_invalid STATUS_VAR); - } - return 0; - } - av = float64_val(a); - bv = float64_val(b); - return ( av == bv ) || ( (bits64) ( ( av | bv )<<1 ) == 0 ); - -} - -/*---------------------------------------------------------------------------- -| Returns 1 if the double-precision floating-point value `a' is less than or -| equal to the corresponding value `b', and 0 otherwise. The comparison is -| performed according to the IEC/IEEE Standard for Binary Floating-Point -| Arithmetic. -*----------------------------------------------------------------------------*/ - -int float64_le( float64 a, float64 b STATUS_PARAM ) -{ - flag aSign, bSign; - bits64 av, bv; - - if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) - || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) - ) { - float_raise( float_flag_invalid STATUS_VAR); - return 0; - } - aSign = extractFloat64Sign( a ); - bSign = extractFloat64Sign( b ); - av = float64_val(a); - bv = float64_val(b); - if ( aSign != bSign ) return aSign || ( (bits64) ( ( av | bv )<<1 ) == 0 ); - return ( av == bv ) || ( aSign ^ ( av < bv ) ); - -} - -/*---------------------------------------------------------------------------- -| Returns 1 if the double-precision floating-point value `a' is less than -| the corresponding value `b', and 0 otherwise. The comparison is performed -| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -int float64_lt( float64 a, float64 b STATUS_PARAM ) -{ - flag aSign, bSign; - bits64 av, bv; - - if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) - || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) - ) { - float_raise( float_flag_invalid STATUS_VAR); - return 0; - } - aSign = extractFloat64Sign( a ); - bSign = extractFloat64Sign( b ); - av = float64_val(a); - bv = float64_val(b); - if ( aSign != bSign ) return aSign && ( (bits64) ( ( av | bv )<<1 ) != 0 ); - return ( av != bv ) && ( aSign ^ ( av < bv ) ); - -} - -/*---------------------------------------------------------------------------- -| Returns 1 if the double-precision floating-point value `a' is equal to the -| corresponding value `b', and 0 otherwise. The invalid exception is raised -| if either operand is a NaN. Otherwise, the comparison is performed -| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -int float64_eq_signaling( float64 a, float64 b STATUS_PARAM ) -{ - bits64 av, bv; - - if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) - || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) - ) { - float_raise( float_flag_invalid STATUS_VAR); - return 0; - } - av = float64_val(a); - bv = float64_val(b); - return ( av == bv ) || ( (bits64) ( ( av | bv )<<1 ) == 0 ); - -} - -/*---------------------------------------------------------------------------- -| Returns 1 if the double-precision floating-point value `a' is less than or -| equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not -| cause an exception. Otherwise, the comparison is performed according to the -| IEC/IEEE Standard for Binary Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -int float64_le_quiet( float64 a, float64 b STATUS_PARAM ) -{ - flag aSign, bSign; - bits64 av, bv; - - if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) - || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) - ) { - if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) { - float_raise( float_flag_invalid STATUS_VAR); - } - return 0; - } - aSign = extractFloat64Sign( a ); - bSign = extractFloat64Sign( b ); - av = float64_val(a); - bv = float64_val(b); - if ( aSign != bSign ) return aSign || ( (bits64) ( ( av | bv )<<1 ) == 0 ); - return ( av == bv ) || ( aSign ^ ( av < bv ) ); - -} - -/*---------------------------------------------------------------------------- -| Returns 1 if the double-precision floating-point value `a' is less than -| the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an -| exception. Otherwise, the comparison is performed according to the IEC/IEEE -| Standard for Binary Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -int float64_lt_quiet( float64 a, float64 b STATUS_PARAM ) -{ - flag aSign, bSign; - bits64 av, bv; - - if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) - || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) - ) { - if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) { - float_raise( float_flag_invalid STATUS_VAR); - } - return 0; - } - aSign = extractFloat64Sign( a ); - bSign = extractFloat64Sign( b ); - av = float64_val(a); - bv = float64_val(b); - if ( aSign != bSign ) return aSign && ( (bits64) ( ( av | bv )<<1 ) != 0 ); - return ( av != bv ) && ( aSign ^ ( av < bv ) ); - -} - -#ifdef FLOATX80 - -/*---------------------------------------------------------------------------- -| Returns the result of converting the extended double-precision floating- -| point value `a' to the 32-bit two's complement integer format. The -| conversion is performed according to the IEC/IEEE Standard for Binary -| Floating-Point Arithmetic---which means in particular that the conversion -| is rounded according to the current rounding mode. If `a' is a NaN, the -| largest positive integer is returned. Otherwise, if the conversion -| overflows, the largest integer with the same sign as `a' is returned. -*----------------------------------------------------------------------------*/ - -int32 floatx80_to_int32( floatx80 a STATUS_PARAM ) -{ - flag aSign; - int32 aExp, shiftCount; - bits64 aSig; - - aSig = extractFloatx80Frac( a ); - aExp = extractFloatx80Exp( a ); - aSign = extractFloatx80Sign( a ); - if ( ( aExp == 0x7FFF ) && (bits64) ( aSig<<1 ) ) aSign = 0; - shiftCount = 0x4037 - aExp; - if ( shiftCount <= 0 ) shiftCount = 1; - shift64RightJamming( aSig, shiftCount, &aSig ); - return roundAndPackInt32( aSign, aSig STATUS_VAR ); - -} - -/*---------------------------------------------------------------------------- -| Returns the result of converting the extended double-precision floating- -| point value `a' to the 32-bit two's complement integer format. The -| conversion is performed according to the IEC/IEEE Standard for Binary -| Floating-Point Arithmetic, except that the conversion is always rounded -| toward zero. If `a' is a NaN, the largest positive integer is returned. -| Otherwise, if the conversion overflows, the largest integer with the same -| sign as `a' is returned. -*----------------------------------------------------------------------------*/ - -int32 floatx80_to_int32_round_to_zero( floatx80 a STATUS_PARAM ) -{ - flag aSign; - int32 aExp, shiftCount; - bits64 aSig, savedASig; - int32 z; - - aSig = extractFloatx80Frac( a ); - aExp = extractFloatx80Exp( a ); - aSign = extractFloatx80Sign( a ); - if ( 0x401E < aExp ) { - if ( ( aExp == 0x7FFF ) && (bits64) ( aSig<<1 ) ) aSign = 0; - goto invalid; - } - else if ( aExp < 0x3FFF ) { - if ( aExp || aSig ) STATUS(float_exception_flags) |= float_flag_inexact; - return 0; - } - shiftCount = 0x403E - aExp; - savedASig = aSig; - aSig >>= shiftCount; - z = aSig; - if ( aSign ) z = - z; - if ( ( z < 0 ) ^ aSign ) { - invalid: - float_raise( float_flag_invalid STATUS_VAR); - return aSign ? (sbits32) 0x80000000 : 0x7FFFFFFF; - } - if ( ( aSig<>( - shiftCount ); - if ( (bits64) ( aSig<<( shiftCount & 63 ) ) ) { - STATUS(float_exception_flags) |= float_flag_inexact; - } - if ( aSign ) z = - z; - return z; - -} - -/*---------------------------------------------------------------------------- -| Returns the result of converting the extended double-precision floating- -| point value `a' to the single-precision floating-point format. The -| conversion is performed according to the IEC/IEEE Standard for Binary -| Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -float32 floatx80_to_float32( floatx80 a STATUS_PARAM ) -{ - flag aSign; - int32 aExp; - bits64 aSig; - - aSig = extractFloatx80Frac( a ); - aExp = extractFloatx80Exp( a ); - aSign = extractFloatx80Sign( a ); - if ( aExp == 0x7FFF ) { - if ( (bits64) ( aSig<<1 ) ) { - return commonNaNToFloat32( floatx80ToCommonNaN( a STATUS_VAR ) ); - } - return packFloat32( aSign, 0xFF, 0 ); - } - shift64RightJamming( aSig, 33, &aSig ); - if ( aExp || aSig ) aExp -= 0x3F81; - return roundAndPackFloat32( aSign, aExp, aSig STATUS_VAR ); - -} - -/*---------------------------------------------------------------------------- -| Returns the result of converting the extended double-precision floating- -| point value `a' to the double-precision floating-point format. The -| conversion is performed according to the IEC/IEEE Standard for Binary -| Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -float64 floatx80_to_float64( floatx80 a STATUS_PARAM ) -{ - flag aSign; - int32 aExp; - bits64 aSig, zSig; - - aSig = extractFloatx80Frac( a ); - aExp = extractFloatx80Exp( a ); - aSign = extractFloatx80Sign( a ); - if ( aExp == 0x7FFF ) { - if ( (bits64) ( aSig<<1 ) ) { - return commonNaNToFloat64( floatx80ToCommonNaN( a STATUS_VAR ) ); - } - return packFloat64( aSign, 0x7FF, 0 ); - } - shift64RightJamming( aSig, 1, &zSig ); - if ( aExp || aSig ) aExp -= 0x3C01; - return roundAndPackFloat64( aSign, aExp, zSig STATUS_VAR ); - -} - -#ifdef FLOAT128 - -/*---------------------------------------------------------------------------- -| Returns the result of converting the extended double-precision floating- -| point value `a' to the quadruple-precision floating-point format. The -| conversion is performed according to the IEC/IEEE Standard for Binary -| Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -float128 floatx80_to_float128( floatx80 a STATUS_PARAM ) -{ - flag aSign; - int16 aExp; - bits64 aSig, zSig0, zSig1; - - aSig = extractFloatx80Frac( a ); - aExp = extractFloatx80Exp( a ); - aSign = extractFloatx80Sign( a ); - if ( ( aExp == 0x7FFF ) && (bits64) ( aSig<<1 ) ) { - return commonNaNToFloat128( floatx80ToCommonNaN( a STATUS_VAR ) ); - } - shift128Right( aSig<<1, 0, 16, &zSig0, &zSig1 ); - return packFloat128( aSign, aExp, zSig0, zSig1 ); - -} - -#endif - -/*---------------------------------------------------------------------------- -| Rounds the extended double-precision floating-point value `a' to an integer, -| and returns the result as an extended quadruple-precision floating-point -| value. The operation is performed according to the IEC/IEEE Standard for -| Binary Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -floatx80 floatx80_round_to_int( floatx80 a STATUS_PARAM ) -{ - flag aSign; - int32 aExp; - bits64 lastBitMask, roundBitsMask; - int8 roundingMode; - floatx80 z; - - aExp = extractFloatx80Exp( a ); - if ( 0x403E <= aExp ) { - if ( ( aExp == 0x7FFF ) && (bits64) ( extractFloatx80Frac( a )<<1 ) ) { - return propagateFloatx80NaN( a, a STATUS_VAR ); - } - return a; - } - if ( aExp < 0x3FFF ) { - if ( ( aExp == 0 ) - && ( (bits64) ( extractFloatx80Frac( a )<<1 ) == 0 ) ) { - return a; - } - STATUS(float_exception_flags) |= float_flag_inexact; - aSign = extractFloatx80Sign( a ); - switch ( STATUS(float_rounding_mode) ) { - case float_round_nearest_even: - if ( ( aExp == 0x3FFE ) && (bits64) ( extractFloatx80Frac( a )<<1 ) - ) { - return - packFloatx80( aSign, 0x3FFF, LIT64( 0x8000000000000000 ) ); - } - break; - case float_round_down: - return - aSign ? - packFloatx80( 1, 0x3FFF, LIT64( 0x8000000000000000 ) ) - : packFloatx80( 0, 0, 0 ); - case float_round_up: - return - aSign ? packFloatx80( 1, 0, 0 ) - : packFloatx80( 0, 0x3FFF, LIT64( 0x8000000000000000 ) ); - } - return packFloatx80( aSign, 0, 0 ); - } - lastBitMask = 1; - lastBitMask <<= 0x403E - aExp; - roundBitsMask = lastBitMask - 1; - z = a; - roundingMode = STATUS(float_rounding_mode); - if ( roundingMode == float_round_nearest_even ) { - z.low += lastBitMask>>1; - if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask; - } - else if ( roundingMode != float_round_to_zero ) { - if ( extractFloatx80Sign( z ) ^ ( roundingMode == float_round_up ) ) { - z.low += roundBitsMask; - } - } - z.low &= ~ roundBitsMask; - if ( z.low == 0 ) { - ++z.high; - z.low = LIT64( 0x8000000000000000 ); - } - if ( z.low != a.low ) STATUS(float_exception_flags) |= float_flag_inexact; - return z; - -} - -/*---------------------------------------------------------------------------- -| Returns the result of adding the absolute values of the extended double- -| precision floating-point values `a' and `b'. If `zSign' is 1, the sum is -| negated before being returned. `zSign' is ignored if the result is a NaN. -| The addition is performed according to the IEC/IEEE Standard for Binary -| Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -static floatx80 addFloatx80Sigs( floatx80 a, floatx80 b, flag zSign STATUS_PARAM) -{ - int32 aExp, bExp, zExp; - bits64 aSig, bSig, zSig0, zSig1; - int32 expDiff; - - aSig = extractFloatx80Frac( a ); - aExp = extractFloatx80Exp( a ); - bSig = extractFloatx80Frac( b ); - bExp = extractFloatx80Exp( b ); - expDiff = aExp - bExp; - if ( 0 < expDiff ) { - if ( aExp == 0x7FFF ) { - if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR ); - return a; - } - if ( bExp == 0 ) --expDiff; - shift64ExtraRightJamming( bSig, 0, expDiff, &bSig, &zSig1 ); - zExp = aExp; - } - else if ( expDiff < 0 ) { - if ( bExp == 0x7FFF ) { - if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR ); - return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); - } - if ( aExp == 0 ) ++expDiff; - shift64ExtraRightJamming( aSig, 0, - expDiff, &aSig, &zSig1 ); - zExp = bExp; - } - else { - if ( aExp == 0x7FFF ) { - if ( (bits64) ( ( aSig | bSig )<<1 ) ) { - return propagateFloatx80NaN( a, b STATUS_VAR ); - } - return a; - } - zSig1 = 0; - zSig0 = aSig + bSig; - if ( aExp == 0 ) { - normalizeFloatx80Subnormal( zSig0, &zExp, &zSig0 ); - goto roundAndPack; - } - zExp = aExp; - goto shiftRight1; - } - zSig0 = aSig + bSig; - if ( (sbits64) zSig0 < 0 ) goto roundAndPack; - shiftRight1: - shift64ExtraRightJamming( zSig0, zSig1, 1, &zSig0, &zSig1 ); - zSig0 |= LIT64( 0x8000000000000000 ); - ++zExp; - roundAndPack: - return - roundAndPackFloatx80( - STATUS(floatx80_rounding_precision), zSign, zExp, zSig0, zSig1 STATUS_VAR ); - -} - -/*---------------------------------------------------------------------------- -| Returns the result of subtracting the absolute values of the extended -| double-precision floating-point values `a' and `b'. If `zSign' is 1, the -| difference is negated before being returned. `zSign' is ignored if the -| result is a NaN. The subtraction is performed according to the IEC/IEEE -| Standard for Binary Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -static floatx80 subFloatx80Sigs( floatx80 a, floatx80 b, flag zSign STATUS_PARAM ) -{ - int32 aExp, bExp, zExp; - bits64 aSig, bSig, zSig0, zSig1; - int32 expDiff; - floatx80 z; - - aSig = extractFloatx80Frac( a ); - aExp = extractFloatx80Exp( a ); - bSig = extractFloatx80Frac( b ); - bExp = extractFloatx80Exp( b ); - expDiff = aExp - bExp; - if ( 0 < expDiff ) goto aExpBigger; - if ( expDiff < 0 ) goto bExpBigger; - if ( aExp == 0x7FFF ) { - if ( (bits64) ( ( aSig | bSig )<<1 ) ) { - return propagateFloatx80NaN( a, b STATUS_VAR ); - } - float_raise( float_flag_invalid STATUS_VAR); - z.low = floatx80_default_nan_low; - z.high = floatx80_default_nan_high; - return z; - } - if ( aExp == 0 ) { - aExp = 1; - bExp = 1; - } - zSig1 = 0; - if ( bSig < aSig ) goto aBigger; - if ( aSig < bSig ) goto bBigger; - return packFloatx80( STATUS(float_rounding_mode) == float_round_down, 0, 0 ); - bExpBigger: - if ( bExp == 0x7FFF ) { - if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR ); - return packFloatx80( zSign ^ 1, 0x7FFF, LIT64( 0x8000000000000000 ) ); - } - if ( aExp == 0 ) ++expDiff; - shift128RightJamming( aSig, 0, - expDiff, &aSig, &zSig1 ); - bBigger: - sub128( bSig, 0, aSig, zSig1, &zSig0, &zSig1 ); - zExp = bExp; - zSign ^= 1; - goto normalizeRoundAndPack; - aExpBigger: - if ( aExp == 0x7FFF ) { - if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR ); - return a; - } - if ( bExp == 0 ) --expDiff; - shift128RightJamming( bSig, 0, expDiff, &bSig, &zSig1 ); - aBigger: - sub128( aSig, 0, bSig, zSig1, &zSig0, &zSig1 ); - zExp = aExp; - normalizeRoundAndPack: - return - normalizeRoundAndPackFloatx80( - STATUS(floatx80_rounding_precision), zSign, zExp, zSig0, zSig1 STATUS_VAR ); - -} - -/*---------------------------------------------------------------------------- -| Returns the result of adding the extended double-precision floating-point -| values `a' and `b'. The operation is performed according to the IEC/IEEE -| Standard for Binary Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -floatx80 floatx80_add( floatx80 a, floatx80 b STATUS_PARAM ) -{ - flag aSign, bSign; - - aSign = extractFloatx80Sign( a ); - bSign = extractFloatx80Sign( b ); - if ( aSign == bSign ) { - return addFloatx80Sigs( a, b, aSign STATUS_VAR ); - } - else { - return subFloatx80Sigs( a, b, aSign STATUS_VAR ); - } - -} - -/*---------------------------------------------------------------------------- -| Returns the result of subtracting the extended double-precision floating- -| point values `a' and `b'. The operation is performed according to the -| IEC/IEEE Standard for Binary Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -floatx80 floatx80_sub( floatx80 a, floatx80 b STATUS_PARAM ) -{ - flag aSign, bSign; - - aSign = extractFloatx80Sign( a ); - bSign = extractFloatx80Sign( b ); - if ( aSign == bSign ) { - return subFloatx80Sigs( a, b, aSign STATUS_VAR ); - } - else { - return addFloatx80Sigs( a, b, aSign STATUS_VAR ); - } - -} - -/*---------------------------------------------------------------------------- -| Returns the result of multiplying the extended double-precision floating- -| point values `a' and `b'. The operation is performed according to the -| IEC/IEEE Standard for Binary Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -floatx80 floatx80_mul( floatx80 a, floatx80 b STATUS_PARAM ) -{ - flag aSign, bSign, zSign; - int32 aExp, bExp, zExp; - bits64 aSig, bSig, zSig0, zSig1; - floatx80 z; - - aSig = extractFloatx80Frac( a ); - aExp = extractFloatx80Exp( a ); - aSign = extractFloatx80Sign( a ); - bSig = extractFloatx80Frac( b ); - bExp = extractFloatx80Exp( b ); - bSign = extractFloatx80Sign( b ); - zSign = aSign ^ bSign; - if ( aExp == 0x7FFF ) { - if ( (bits64) ( aSig<<1 ) - || ( ( bExp == 0x7FFF ) && (bits64) ( bSig<<1 ) ) ) { - return propagateFloatx80NaN( a, b STATUS_VAR ); - } - if ( ( bExp | bSig ) == 0 ) goto invalid; - return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); - } - if ( bExp == 0x7FFF ) { - if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR ); - if ( ( aExp | aSig ) == 0 ) { - invalid: - float_raise( float_flag_invalid STATUS_VAR); - z.low = floatx80_default_nan_low; - z.high = floatx80_default_nan_high; - return z; - } - return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); - } - if ( aExp == 0 ) { - if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 ); - normalizeFloatx80Subnormal( aSig, &aExp, &aSig ); - } - if ( bExp == 0 ) { - if ( bSig == 0 ) return packFloatx80( zSign, 0, 0 ); - normalizeFloatx80Subnormal( bSig, &bExp, &bSig ); - } - zExp = aExp + bExp - 0x3FFE; - mul64To128( aSig, bSig, &zSig0, &zSig1 ); - if ( 0 < (sbits64) zSig0 ) { - shortShift128Left( zSig0, zSig1, 1, &zSig0, &zSig1 ); - --zExp; - } - return - roundAndPackFloatx80( - STATUS(floatx80_rounding_precision), zSign, zExp, zSig0, zSig1 STATUS_VAR ); - -} - -/*---------------------------------------------------------------------------- -| Returns the result of dividing the extended double-precision floating-point -| value `a' by the corresponding value `b'. The operation is performed -| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -floatx80 floatx80_div( floatx80 a, floatx80 b STATUS_PARAM ) -{ - flag aSign, bSign, zSign; - int32 aExp, bExp, zExp; - bits64 aSig, bSig, zSig0, zSig1; - bits64 rem0, rem1, rem2, term0, term1, term2; - floatx80 z; - - aSig = extractFloatx80Frac( a ); - aExp = extractFloatx80Exp( a ); - aSign = extractFloatx80Sign( a ); - bSig = extractFloatx80Frac( b ); - bExp = extractFloatx80Exp( b ); - bSign = extractFloatx80Sign( b ); - zSign = aSign ^ bSign; - if ( aExp == 0x7FFF ) { - if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR ); - if ( bExp == 0x7FFF ) { - if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR ); - goto invalid; - } - return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); - } - if ( bExp == 0x7FFF ) { - if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR ); - return packFloatx80( zSign, 0, 0 ); - } - if ( bExp == 0 ) { - if ( bSig == 0 ) { - if ( ( aExp | aSig ) == 0 ) { - invalid: - float_raise( float_flag_invalid STATUS_VAR); - z.low = floatx80_default_nan_low; - z.high = floatx80_default_nan_high; - return z; - } - float_raise( float_flag_divbyzero STATUS_VAR); - return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); - } - normalizeFloatx80Subnormal( bSig, &bExp, &bSig ); - } - if ( aExp == 0 ) { - if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 ); - normalizeFloatx80Subnormal( aSig, &aExp, &aSig ); - } - zExp = aExp - bExp + 0x3FFE; - rem1 = 0; - if ( bSig <= aSig ) { - shift128Right( aSig, 0, 1, &aSig, &rem1 ); - ++zExp; - } - zSig0 = estimateDiv128To64( aSig, rem1, bSig ); - mul64To128( bSig, zSig0, &term0, &term1 ); - sub128( aSig, rem1, term0, term1, &rem0, &rem1 ); - while ( (sbits64) rem0 < 0 ) { - --zSig0; - add128( rem0, rem1, 0, bSig, &rem0, &rem1 ); - } - zSig1 = estimateDiv128To64( rem1, 0, bSig ); - if ( (bits64) ( zSig1<<1 ) <= 8 ) { - mul64To128( bSig, zSig1, &term1, &term2 ); - sub128( rem1, 0, term1, term2, &rem1, &rem2 ); - while ( (sbits64) rem1 < 0 ) { - --zSig1; - add128( rem1, rem2, 0, bSig, &rem1, &rem2 ); - } - zSig1 |= ( ( rem1 | rem2 ) != 0 ); - } - return - roundAndPackFloatx80( - STATUS(floatx80_rounding_precision), zSign, zExp, zSig0, zSig1 STATUS_VAR ); - -} - -/*---------------------------------------------------------------------------- -| Returns the remainder of the extended double-precision floating-point value -| `a' with respect to the corresponding value `b'. The operation is performed -| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -floatx80 floatx80_rem( floatx80 a, floatx80 b STATUS_PARAM ) -{ - flag aSign, bSign, zSign; - int32 aExp, bExp, expDiff; - bits64 aSig0, aSig1, bSig; - bits64 q, term0, term1, alternateASig0, alternateASig1; - floatx80 z; - - aSig0 = extractFloatx80Frac( a ); - aExp = extractFloatx80Exp( a ); - aSign = extractFloatx80Sign( a ); - bSig = extractFloatx80Frac( b ); - bExp = extractFloatx80Exp( b ); - bSign = extractFloatx80Sign( b ); - if ( aExp == 0x7FFF ) { - if ( (bits64) ( aSig0<<1 ) - || ( ( bExp == 0x7FFF ) && (bits64) ( bSig<<1 ) ) ) { - return propagateFloatx80NaN( a, b STATUS_VAR ); - } - goto invalid; - } - if ( bExp == 0x7FFF ) { - if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR ); - return a; - } - if ( bExp == 0 ) { - if ( bSig == 0 ) { - invalid: - float_raise( float_flag_invalid STATUS_VAR); - z.low = floatx80_default_nan_low; - z.high = floatx80_default_nan_high; - return z; - } - normalizeFloatx80Subnormal( bSig, &bExp, &bSig ); - } - if ( aExp == 0 ) { - if ( (bits64) ( aSig0<<1 ) == 0 ) return a; - normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 ); - } - bSig |= LIT64( 0x8000000000000000 ); - zSign = aSign; - expDiff = aExp - bExp; - aSig1 = 0; - if ( expDiff < 0 ) { - if ( expDiff < -1 ) return a; - shift128Right( aSig0, 0, 1, &aSig0, &aSig1 ); - expDiff = 0; - } - q = ( bSig <= aSig0 ); - if ( q ) aSig0 -= bSig; - expDiff -= 64; - while ( 0 < expDiff ) { - q = estimateDiv128To64( aSig0, aSig1, bSig ); - q = ( 2 < q ) ? q - 2 : 0; - mul64To128( bSig, q, &term0, &term1 ); - sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 ); - shortShift128Left( aSig0, aSig1, 62, &aSig0, &aSig1 ); - expDiff -= 62; - } - expDiff += 64; - if ( 0 < expDiff ) { - q = estimateDiv128To64( aSig0, aSig1, bSig ); - q = ( 2 < q ) ? q - 2 : 0; - q >>= 64 - expDiff; - mul64To128( bSig, q<<( 64 - expDiff ), &term0, &term1 ); - sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 ); - shortShift128Left( 0, bSig, 64 - expDiff, &term0, &term1 ); - while ( le128( term0, term1, aSig0, aSig1 ) ) { - ++q; - sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 ); - } - } - else { - term1 = 0; - term0 = bSig; - } - sub128( term0, term1, aSig0, aSig1, &alternateASig0, &alternateASig1 ); - if ( lt128( alternateASig0, alternateASig1, aSig0, aSig1 ) - || ( eq128( alternateASig0, alternateASig1, aSig0, aSig1 ) - && ( q & 1 ) ) - ) { - aSig0 = alternateASig0; - aSig1 = alternateASig1; - zSign = ! zSign; - } - return - normalizeRoundAndPackFloatx80( - 80, zSign, bExp + expDiff, aSig0, aSig1 STATUS_VAR ); - -} - -/*---------------------------------------------------------------------------- -| Returns the square root of the extended double-precision floating-point -| value `a'. The operation is performed according to the IEC/IEEE Standard -| for Binary Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -floatx80 floatx80_sqrt( floatx80 a STATUS_PARAM ) -{ - flag aSign; - int32 aExp, zExp; - bits64 aSig0, aSig1, zSig0, zSig1, doubleZSig0; - bits64 rem0, rem1, rem2, rem3, term0, term1, term2, term3; - floatx80 z; - - aSig0 = extractFloatx80Frac( a ); - aExp = extractFloatx80Exp( a ); - aSign = extractFloatx80Sign( a ); - if ( aExp == 0x7FFF ) { - if ( (bits64) ( aSig0<<1 ) ) return propagateFloatx80NaN( a, a STATUS_VAR ); - if ( ! aSign ) return a; - goto invalid; - } - if ( aSign ) { - if ( ( aExp | aSig0 ) == 0 ) return a; - invalid: - float_raise( float_flag_invalid STATUS_VAR); - z.low = floatx80_default_nan_low; - z.high = floatx80_default_nan_high; - return z; - } - if ( aExp == 0 ) { - if ( aSig0 == 0 ) return packFloatx80( 0, 0, 0 ); - normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 ); - } - zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFF; - zSig0 = estimateSqrt32( aExp, aSig0>>32 ); - shift128Right( aSig0, 0, 2 + ( aExp & 1 ), &aSig0, &aSig1 ); - zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 ); - doubleZSig0 = zSig0<<1; - mul64To128( zSig0, zSig0, &term0, &term1 ); - sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 ); - while ( (sbits64) rem0 < 0 ) { - --zSig0; - doubleZSig0 -= 2; - add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 ); - } - zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 ); - if ( ( zSig1 & LIT64( 0x3FFFFFFFFFFFFFFF ) ) <= 5 ) { - if ( zSig1 == 0 ) zSig1 = 1; - mul64To128( doubleZSig0, zSig1, &term1, &term2 ); - sub128( rem1, 0, term1, term2, &rem1, &rem2 ); - mul64To128( zSig1, zSig1, &term2, &term3 ); - sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 ); - while ( (sbits64) rem1 < 0 ) { - --zSig1; - shortShift128Left( 0, zSig1, 1, &term2, &term3 ); - term3 |= 1; - term2 |= doubleZSig0; - add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 ); - } - zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 ); - } - shortShift128Left( 0, zSig1, 1, &zSig0, &zSig1 ); - zSig0 |= doubleZSig0; - return - roundAndPackFloatx80( - STATUS(floatx80_rounding_precision), 0, zExp, zSig0, zSig1 STATUS_VAR ); - -} - -/*---------------------------------------------------------------------------- -| Returns 1 if the extended double-precision floating-point value `a' is -| equal to the corresponding value `b', and 0 otherwise. The comparison is -| performed according to the IEC/IEEE Standard for Binary Floating-Point -| Arithmetic. -*----------------------------------------------------------------------------*/ - -int floatx80_eq( floatx80 a, floatx80 b STATUS_PARAM ) -{ - - if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) - && (bits64) ( extractFloatx80Frac( a )<<1 ) ) - || ( ( extractFloatx80Exp( b ) == 0x7FFF ) - && (bits64) ( extractFloatx80Frac( b )<<1 ) ) - ) { - if ( floatx80_is_signaling_nan( a ) - || floatx80_is_signaling_nan( b ) ) { - float_raise( float_flag_invalid STATUS_VAR); - } - return 0; - } - return - ( a.low == b.low ) - && ( ( a.high == b.high ) - || ( ( a.low == 0 ) - && ( (bits16) ( ( a.high | b.high )<<1 ) == 0 ) ) - ); - -} - -/*---------------------------------------------------------------------------- -| Returns 1 if the extended double-precision floating-point value `a' is -| less than or equal to the corresponding value `b', and 0 otherwise. The -| comparison is performed according to the IEC/IEEE Standard for Binary -| Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -int floatx80_le( floatx80 a, floatx80 b STATUS_PARAM ) -{ - flag aSign, bSign; - - if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) - && (bits64) ( extractFloatx80Frac( a )<<1 ) ) - || ( ( extractFloatx80Exp( b ) == 0x7FFF ) - && (bits64) ( extractFloatx80Frac( b )<<1 ) ) - ) { - float_raise( float_flag_invalid STATUS_VAR); - return 0; - } - aSign = extractFloatx80Sign( a ); - bSign = extractFloatx80Sign( b ); - if ( aSign != bSign ) { - return - aSign - || ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) - == 0 ); - } - return - aSign ? le128( b.high, b.low, a.high, a.low ) - : le128( a.high, a.low, b.high, b.low ); - -} - -/*---------------------------------------------------------------------------- -| Returns 1 if the extended double-precision floating-point value `a' is -| less than the corresponding value `b', and 0 otherwise. The comparison -| is performed according to the IEC/IEEE Standard for Binary Floating-Point -| Arithmetic. -*----------------------------------------------------------------------------*/ - -int floatx80_lt( floatx80 a, floatx80 b STATUS_PARAM ) -{ - flag aSign, bSign; - - if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) - && (bits64) ( extractFloatx80Frac( a )<<1 ) ) - || ( ( extractFloatx80Exp( b ) == 0x7FFF ) - && (bits64) ( extractFloatx80Frac( b )<<1 ) ) - ) { - float_raise( float_flag_invalid STATUS_VAR); - return 0; - } - aSign = extractFloatx80Sign( a ); - bSign = extractFloatx80Sign( b ); - if ( aSign != bSign ) { - return - aSign - && ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) - != 0 ); - } - return - aSign ? lt128( b.high, b.low, a.high, a.low ) - : lt128( a.high, a.low, b.high, b.low ); - -} - -/*---------------------------------------------------------------------------- -| Returns 1 if the extended double-precision floating-point value `a' is equal -| to the corresponding value `b', and 0 otherwise. The invalid exception is -| raised if either operand is a NaN. Otherwise, the comparison is performed -| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -int floatx80_eq_signaling( floatx80 a, floatx80 b STATUS_PARAM ) -{ - - if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) - && (bits64) ( extractFloatx80Frac( a )<<1 ) ) - || ( ( extractFloatx80Exp( b ) == 0x7FFF ) - && (bits64) ( extractFloatx80Frac( b )<<1 ) ) - ) { - float_raise( float_flag_invalid STATUS_VAR); - return 0; - } - return - ( a.low == b.low ) - && ( ( a.high == b.high ) - || ( ( a.low == 0 ) - && ( (bits16) ( ( a.high | b.high )<<1 ) == 0 ) ) - ); - -} - -/*---------------------------------------------------------------------------- -| Returns 1 if the extended double-precision floating-point value `a' is less -| than or equal to the corresponding value `b', and 0 otherwise. Quiet NaNs -| do not cause an exception. Otherwise, the comparison is performed according -| to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -int floatx80_le_quiet( floatx80 a, floatx80 b STATUS_PARAM ) -{ - flag aSign, bSign; - - if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) - && (bits64) ( extractFloatx80Frac( a )<<1 ) ) - || ( ( extractFloatx80Exp( b ) == 0x7FFF ) - && (bits64) ( extractFloatx80Frac( b )<<1 ) ) - ) { - if ( floatx80_is_signaling_nan( a ) - || floatx80_is_signaling_nan( b ) ) { - float_raise( float_flag_invalid STATUS_VAR); - } - return 0; - } - aSign = extractFloatx80Sign( a ); - bSign = extractFloatx80Sign( b ); - if ( aSign != bSign ) { - return - aSign - || ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) - == 0 ); - } - return - aSign ? le128( b.high, b.low, a.high, a.low ) - : le128( a.high, a.low, b.high, b.low ); - -} - -/*---------------------------------------------------------------------------- -| Returns 1 if the extended double-precision floating-point value `a' is less -| than the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause -| an exception. Otherwise, the comparison is performed according to the -| IEC/IEEE Standard for Binary Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -int floatx80_lt_quiet( floatx80 a, floatx80 b STATUS_PARAM ) -{ - flag aSign, bSign; - - if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) - && (bits64) ( extractFloatx80Frac( a )<<1 ) ) - || ( ( extractFloatx80Exp( b ) == 0x7FFF ) - && (bits64) ( extractFloatx80Frac( b )<<1 ) ) - ) { - if ( floatx80_is_signaling_nan( a ) - || floatx80_is_signaling_nan( b ) ) { - float_raise( float_flag_invalid STATUS_VAR); - } - return 0; - } - aSign = extractFloatx80Sign( a ); - bSign = extractFloatx80Sign( b ); - if ( aSign != bSign ) { - return - aSign - && ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) - != 0 ); - } - return - aSign ? lt128( b.high, b.low, a.high, a.low ) - : lt128( a.high, a.low, b.high, b.low ); - -} - -#endif - -#ifdef FLOAT128 - -/*---------------------------------------------------------------------------- -| Returns the result of converting the quadruple-precision floating-point -| value `a' to the 32-bit two's complement integer format. The conversion -| is performed according to the IEC/IEEE Standard for Binary Floating-Point -| Arithmetic---which means in particular that the conversion is rounded -| according to the current rounding mode. If `a' is a NaN, the largest -| positive integer is returned. Otherwise, if the conversion overflows, the -| largest integer with the same sign as `a' is returned. -*----------------------------------------------------------------------------*/ - -int32 float128_to_int32( float128 a STATUS_PARAM ) -{ - flag aSign; - int32 aExp, shiftCount; - bits64 aSig0, aSig1; - - aSig1 = extractFloat128Frac1( a ); - aSig0 = extractFloat128Frac0( a ); - aExp = extractFloat128Exp( a ); - aSign = extractFloat128Sign( a ); - if ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) aSign = 0; - if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 ); - aSig0 |= ( aSig1 != 0 ); - shiftCount = 0x4028 - aExp; - if ( 0 < shiftCount ) shift64RightJamming( aSig0, shiftCount, &aSig0 ); - return roundAndPackInt32( aSign, aSig0 STATUS_VAR ); - -} - -/*---------------------------------------------------------------------------- -| Returns the result of converting the quadruple-precision floating-point -| value `a' to the 32-bit two's complement integer format. The conversion -| is performed according to the IEC/IEEE Standard for Binary Floating-Point -| Arithmetic, except that the conversion is always rounded toward zero. If -| `a' is a NaN, the largest positive integer is returned. Otherwise, if the -| conversion overflows, the largest integer with the same sign as `a' is -| returned. -*----------------------------------------------------------------------------*/ - -int32 float128_to_int32_round_to_zero( float128 a STATUS_PARAM ) -{ - flag aSign; - int32 aExp, shiftCount; - bits64 aSig0, aSig1, savedASig; - int32 z; - - aSig1 = extractFloat128Frac1( a ); - aSig0 = extractFloat128Frac0( a ); - aExp = extractFloat128Exp( a ); - aSign = extractFloat128Sign( a ); - aSig0 |= ( aSig1 != 0 ); - if ( 0x401E < aExp ) { - if ( ( aExp == 0x7FFF ) && aSig0 ) aSign = 0; - goto invalid; - } - else if ( aExp < 0x3FFF ) { - if ( aExp || aSig0 ) STATUS(float_exception_flags) |= float_flag_inexact; - return 0; - } - aSig0 |= LIT64( 0x0001000000000000 ); - shiftCount = 0x402F - aExp; - savedASig = aSig0; - aSig0 >>= shiftCount; - z = aSig0; - if ( aSign ) z = - z; - if ( ( z < 0 ) ^ aSign ) { - invalid: - float_raise( float_flag_invalid STATUS_VAR); - return aSign ? (sbits32) 0x80000000 : 0x7FFFFFFF; - } - if ( ( aSig0<>( ( - shiftCount ) & 63 ) ); - if ( (bits64) ( aSig1<>( - shiftCount ); - if ( aSig1 - || ( shiftCount && (bits64) ( aSig0<<( shiftCount & 63 ) ) ) ) { - STATUS(float_exception_flags) |= float_flag_inexact; - } - } - if ( aSign ) z = - z; - return z; - -} - -/*---------------------------------------------------------------------------- -| Returns the result of converting the quadruple-precision floating-point -| value `a' to the single-precision floating-point format. The conversion -| is performed according to the IEC/IEEE Standard for Binary Floating-Point -| Arithmetic. -*----------------------------------------------------------------------------*/ - -float32 float128_to_float32( float128 a STATUS_PARAM ) -{ - flag aSign; - int32 aExp; - bits64 aSig0, aSig1; - bits32 zSig; - - aSig1 = extractFloat128Frac1( a ); - aSig0 = extractFloat128Frac0( a ); - aExp = extractFloat128Exp( a ); - aSign = extractFloat128Sign( a ); - if ( aExp == 0x7FFF ) { - if ( aSig0 | aSig1 ) { - return commonNaNToFloat32( float128ToCommonNaN( a STATUS_VAR ) ); - } - return packFloat32( aSign, 0xFF, 0 ); - } - aSig0 |= ( aSig1 != 0 ); - shift64RightJamming( aSig0, 18, &aSig0 ); - zSig = aSig0; - if ( aExp || zSig ) { - zSig |= 0x40000000; - aExp -= 0x3F81; - } - return roundAndPackFloat32( aSign, aExp, zSig STATUS_VAR ); - -} - -/*---------------------------------------------------------------------------- -| Returns the result of converting the quadruple-precision floating-point -| value `a' to the double-precision floating-point format. The conversion -| is performed according to the IEC/IEEE Standard for Binary Floating-Point -| Arithmetic. -*----------------------------------------------------------------------------*/ - -float64 float128_to_float64( float128 a STATUS_PARAM ) -{ - flag aSign; - int32 aExp; - bits64 aSig0, aSig1; - - aSig1 = extractFloat128Frac1( a ); - aSig0 = extractFloat128Frac0( a ); - aExp = extractFloat128Exp( a ); - aSign = extractFloat128Sign( a ); - if ( aExp == 0x7FFF ) { - if ( aSig0 | aSig1 ) { - return commonNaNToFloat64( float128ToCommonNaN( a STATUS_VAR ) ); - } - return packFloat64( aSign, 0x7FF, 0 ); - } - shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 ); - aSig0 |= ( aSig1 != 0 ); - if ( aExp || aSig0 ) { - aSig0 |= LIT64( 0x4000000000000000 ); - aExp -= 0x3C01; - } - return roundAndPackFloat64( aSign, aExp, aSig0 STATUS_VAR ); - -} - -#ifdef FLOATX80 - -/*---------------------------------------------------------------------------- -| Returns the result of converting the quadruple-precision floating-point -| value `a' to the extended double-precision floating-point format. The -| conversion is performed according to the IEC/IEEE Standard for Binary -| Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -floatx80 float128_to_floatx80( float128 a STATUS_PARAM ) -{ - flag aSign; - int32 aExp; - bits64 aSig0, aSig1; - - aSig1 = extractFloat128Frac1( a ); - aSig0 = extractFloat128Frac0( a ); - aExp = extractFloat128Exp( a ); - aSign = extractFloat128Sign( a ); - if ( aExp == 0x7FFF ) { - if ( aSig0 | aSig1 ) { - return commonNaNToFloatx80( float128ToCommonNaN( a STATUS_VAR ) ); - } - return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); - } - if ( aExp == 0 ) { - if ( ( aSig0 | aSig1 ) == 0 ) return packFloatx80( aSign, 0, 0 ); - normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); - } - else { - aSig0 |= LIT64( 0x0001000000000000 ); - } - shortShift128Left( aSig0, aSig1, 15, &aSig0, &aSig1 ); - return roundAndPackFloatx80( 80, aSign, aExp, aSig0, aSig1 STATUS_VAR ); - -} - -#endif - -/*---------------------------------------------------------------------------- -| Rounds the quadruple-precision floating-point value `a' to an integer, and -| returns the result as a quadruple-precision floating-point value. The -| operation is performed according to the IEC/IEEE Standard for Binary -| Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -float128 float128_round_to_int( float128 a STATUS_PARAM ) -{ - flag aSign; - int32 aExp; - bits64 lastBitMask, roundBitsMask; - int8 roundingMode; - float128 z; - - aExp = extractFloat128Exp( a ); - if ( 0x402F <= aExp ) { - if ( 0x406F <= aExp ) { - if ( ( aExp == 0x7FFF ) - && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) - ) { - return propagateFloat128NaN( a, a STATUS_VAR ); - } - return a; - } - lastBitMask = 1; - lastBitMask = ( lastBitMask<<( 0x406E - aExp ) )<<1; - roundBitsMask = lastBitMask - 1; - z = a; - roundingMode = STATUS(float_rounding_mode); - if ( roundingMode == float_round_nearest_even ) { - if ( lastBitMask ) { - add128( z.high, z.low, 0, lastBitMask>>1, &z.high, &z.low ); - if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask; - } - else { - if ( (sbits64) z.low < 0 ) { - ++z.high; - if ( (bits64) ( z.low<<1 ) == 0 ) z.high &= ~1; - } - } - } - else if ( roundingMode != float_round_to_zero ) { - if ( extractFloat128Sign( z ) - ^ ( roundingMode == float_round_up ) ) { - add128( z.high, z.low, 0, roundBitsMask, &z.high, &z.low ); - } - } - z.low &= ~ roundBitsMask; - } - else { - if ( aExp < 0x3FFF ) { - if ( ( ( (bits64) ( a.high<<1 ) ) | a.low ) == 0 ) return a; - STATUS(float_exception_flags) |= float_flag_inexact; - aSign = extractFloat128Sign( a ); - switch ( STATUS(float_rounding_mode) ) { - case float_round_nearest_even: - if ( ( aExp == 0x3FFE ) - && ( extractFloat128Frac0( a ) - | extractFloat128Frac1( a ) ) - ) { - return packFloat128( aSign, 0x3FFF, 0, 0 ); - } - break; - case float_round_down: - return - aSign ? packFloat128( 1, 0x3FFF, 0, 0 ) - : packFloat128( 0, 0, 0, 0 ); - case float_round_up: - return - aSign ? packFloat128( 1, 0, 0, 0 ) - : packFloat128( 0, 0x3FFF, 0, 0 ); - } - return packFloat128( aSign, 0, 0, 0 ); - } - lastBitMask = 1; - lastBitMask <<= 0x402F - aExp; - roundBitsMask = lastBitMask - 1; - z.low = 0; - z.high = a.high; - roundingMode = STATUS(float_rounding_mode); - if ( roundingMode == float_round_nearest_even ) { - z.high += lastBitMask>>1; - if ( ( ( z.high & roundBitsMask ) | a.low ) == 0 ) { - z.high &= ~ lastBitMask; - } - } - else if ( roundingMode != float_round_to_zero ) { - if ( extractFloat128Sign( z ) - ^ ( roundingMode == float_round_up ) ) { - z.high |= ( a.low != 0 ); - z.high += roundBitsMask; - } - } - z.high &= ~ roundBitsMask; - } - if ( ( z.low != a.low ) || ( z.high != a.high ) ) { - STATUS(float_exception_flags) |= float_flag_inexact; - } - return z; - -} - -/*---------------------------------------------------------------------------- -| Returns the result of adding the absolute values of the quadruple-precision -| floating-point values `a' and `b'. If `zSign' is 1, the sum is negated -| before being returned. `zSign' is ignored if the result is a NaN. -| The addition is performed according to the IEC/IEEE Standard for Binary -| Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -static float128 addFloat128Sigs( float128 a, float128 b, flag zSign STATUS_PARAM) -{ - int32 aExp, bExp, zExp; - bits64 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2; - int32 expDiff; - - aSig1 = extractFloat128Frac1( a ); - aSig0 = extractFloat128Frac0( a ); - aExp = extractFloat128Exp( a ); - bSig1 = extractFloat128Frac1( b ); - bSig0 = extractFloat128Frac0( b ); - bExp = extractFloat128Exp( b ); - expDiff = aExp - bExp; - if ( 0 < expDiff ) { - if ( aExp == 0x7FFF ) { - if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, b STATUS_VAR ); - return a; - } - if ( bExp == 0 ) { - --expDiff; - } - else { - bSig0 |= LIT64( 0x0001000000000000 ); - } - shift128ExtraRightJamming( - bSig0, bSig1, 0, expDiff, &bSig0, &bSig1, &zSig2 ); - zExp = aExp; - } - else if ( expDiff < 0 ) { - if ( bExp == 0x7FFF ) { - if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR ); - return packFloat128( zSign, 0x7FFF, 0, 0 ); - } - if ( aExp == 0 ) { - ++expDiff; - } - else { - aSig0 |= LIT64( 0x0001000000000000 ); - } - shift128ExtraRightJamming( - aSig0, aSig1, 0, - expDiff, &aSig0, &aSig1, &zSig2 ); - zExp = bExp; - } - else { - if ( aExp == 0x7FFF ) { - if ( aSig0 | aSig1 | bSig0 | bSig1 ) { - return propagateFloat128NaN( a, b STATUS_VAR ); - } - return a; - } - add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 ); - if ( aExp == 0 ) return packFloat128( zSign, 0, zSig0, zSig1 ); - zSig2 = 0; - zSig0 |= LIT64( 0x0002000000000000 ); - zExp = aExp; - goto shiftRight1; - } - aSig0 |= LIT64( 0x0001000000000000 ); - add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 ); - --zExp; - if ( zSig0 < LIT64( 0x0002000000000000 ) ) goto roundAndPack; - ++zExp; - shiftRight1: - shift128ExtraRightJamming( - zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 ); - roundAndPack: - return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 STATUS_VAR ); - -} - -/*---------------------------------------------------------------------------- -| Returns the result of subtracting the absolute values of the quadruple- -| precision floating-point values `a' and `b'. If `zSign' is 1, the -| difference is negated before being returned. `zSign' is ignored if the -| result is a NaN. The subtraction is performed according to the IEC/IEEE -| Standard for Binary Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -static float128 subFloat128Sigs( float128 a, float128 b, flag zSign STATUS_PARAM) -{ - int32 aExp, bExp, zExp; - bits64 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1; - int32 expDiff; - float128 z; - - aSig1 = extractFloat128Frac1( a ); - aSig0 = extractFloat128Frac0( a ); - aExp = extractFloat128Exp( a ); - bSig1 = extractFloat128Frac1( b ); - bSig0 = extractFloat128Frac0( b ); - bExp = extractFloat128Exp( b ); - expDiff = aExp - bExp; - shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 ); - shortShift128Left( bSig0, bSig1, 14, &bSig0, &bSig1 ); - if ( 0 < expDiff ) goto aExpBigger; - if ( expDiff < 0 ) goto bExpBigger; - if ( aExp == 0x7FFF ) { - if ( aSig0 | aSig1 | bSig0 | bSig1 ) { - return propagateFloat128NaN( a, b STATUS_VAR ); - } - float_raise( float_flag_invalid STATUS_VAR); - z.low = float128_default_nan_low; - z.high = float128_default_nan_high; - return z; - } - if ( aExp == 0 ) { - aExp = 1; - bExp = 1; - } - if ( bSig0 < aSig0 ) goto aBigger; - if ( aSig0 < bSig0 ) goto bBigger; - if ( bSig1 < aSig1 ) goto aBigger; - if ( aSig1 < bSig1 ) goto bBigger; - return packFloat128( STATUS(float_rounding_mode) == float_round_down, 0, 0, 0 ); - bExpBigger: - if ( bExp == 0x7FFF ) { - if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR ); - return packFloat128( zSign ^ 1, 0x7FFF, 0, 0 ); - } - if ( aExp == 0 ) { - ++expDiff; - } - else { - aSig0 |= LIT64( 0x4000000000000000 ); - } - shift128RightJamming( aSig0, aSig1, - expDiff, &aSig0, &aSig1 ); - bSig0 |= LIT64( 0x4000000000000000 ); - bBigger: - sub128( bSig0, bSig1, aSig0, aSig1, &zSig0, &zSig1 ); - zExp = bExp; - zSign ^= 1; - goto normalizeRoundAndPack; - aExpBigger: - if ( aExp == 0x7FFF ) { - if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, b STATUS_VAR ); - return a; - } - if ( bExp == 0 ) { - --expDiff; - } - else { - bSig0 |= LIT64( 0x4000000000000000 ); - } - shift128RightJamming( bSig0, bSig1, expDiff, &bSig0, &bSig1 ); - aSig0 |= LIT64( 0x4000000000000000 ); - aBigger: - sub128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 ); - zExp = aExp; - normalizeRoundAndPack: - --zExp; - return normalizeRoundAndPackFloat128( zSign, zExp - 14, zSig0, zSig1 STATUS_VAR ); - -} - -/*---------------------------------------------------------------------------- -| Returns the result of adding the quadruple-precision floating-point values -| `a' and `b'. The operation is performed according to the IEC/IEEE Standard -| for Binary Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -float128 float128_add( float128 a, float128 b STATUS_PARAM ) -{ - flag aSign, bSign; - - aSign = extractFloat128Sign( a ); - bSign = extractFloat128Sign( b ); - if ( aSign == bSign ) { - return addFloat128Sigs( a, b, aSign STATUS_VAR ); - } - else { - return subFloat128Sigs( a, b, aSign STATUS_VAR ); - } - -} - -/*---------------------------------------------------------------------------- -| Returns the result of subtracting the quadruple-precision floating-point -| values `a' and `b'. The operation is performed according to the IEC/IEEE -| Standard for Binary Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -float128 float128_sub( float128 a, float128 b STATUS_PARAM ) -{ - flag aSign, bSign; - - aSign = extractFloat128Sign( a ); - bSign = extractFloat128Sign( b ); - if ( aSign == bSign ) { - return subFloat128Sigs( a, b, aSign STATUS_VAR ); - } - else { - return addFloat128Sigs( a, b, aSign STATUS_VAR ); - } - -} - -/*---------------------------------------------------------------------------- -| Returns the result of multiplying the quadruple-precision floating-point -| values `a' and `b'. The operation is performed according to the IEC/IEEE -| Standard for Binary Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -float128 float128_mul( float128 a, float128 b STATUS_PARAM ) -{ - flag aSign, bSign, zSign; - int32 aExp, bExp, zExp; - bits64 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2, zSig3; - float128 z; - - aSig1 = extractFloat128Frac1( a ); - aSig0 = extractFloat128Frac0( a ); - aExp = extractFloat128Exp( a ); - aSign = extractFloat128Sign( a ); - bSig1 = extractFloat128Frac1( b ); - bSig0 = extractFloat128Frac0( b ); - bExp = extractFloat128Exp( b ); - bSign = extractFloat128Sign( b ); - zSign = aSign ^ bSign; - if ( aExp == 0x7FFF ) { - if ( ( aSig0 | aSig1 ) - || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) { - return propagateFloat128NaN( a, b STATUS_VAR ); - } - if ( ( bExp | bSig0 | bSig1 ) == 0 ) goto invalid; - return packFloat128( zSign, 0x7FFF, 0, 0 ); - } - if ( bExp == 0x7FFF ) { - if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR ); - if ( ( aExp | aSig0 | aSig1 ) == 0 ) { - invalid: - float_raise( float_flag_invalid STATUS_VAR); - z.low = float128_default_nan_low; - z.high = float128_default_nan_high; - return z; - } - return packFloat128( zSign, 0x7FFF, 0, 0 ); - } - if ( aExp == 0 ) { - if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 ); - normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); - } - if ( bExp == 0 ) { - if ( ( bSig0 | bSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 ); - normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 ); - } - zExp = aExp + bExp - 0x4000; - aSig0 |= LIT64( 0x0001000000000000 ); - shortShift128Left( bSig0, bSig1, 16, &bSig0, &bSig1 ); - mul128To256( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1, &zSig2, &zSig3 ); - add128( zSig0, zSig1, aSig0, aSig1, &zSig0, &zSig1 ); - zSig2 |= ( zSig3 != 0 ); - if ( LIT64( 0x0002000000000000 ) <= zSig0 ) { - shift128ExtraRightJamming( - zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 ); - ++zExp; - } - return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 STATUS_VAR ); - -} - -/*---------------------------------------------------------------------------- -| Returns the result of dividing the quadruple-precision floating-point value -| `a' by the corresponding value `b'. The operation is performed according to -| the IEC/IEEE Standard for Binary Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -float128 float128_div( float128 a, float128 b STATUS_PARAM ) -{ - flag aSign, bSign, zSign; - int32 aExp, bExp, zExp; - bits64 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2; - bits64 rem0, rem1, rem2, rem3, term0, term1, term2, term3; - float128 z; - - aSig1 = extractFloat128Frac1( a ); - aSig0 = extractFloat128Frac0( a ); - aExp = extractFloat128Exp( a ); - aSign = extractFloat128Sign( a ); - bSig1 = extractFloat128Frac1( b ); - bSig0 = extractFloat128Frac0( b ); - bExp = extractFloat128Exp( b ); - bSign = extractFloat128Sign( b ); - zSign = aSign ^ bSign; - if ( aExp == 0x7FFF ) { - if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, b STATUS_VAR ); - if ( bExp == 0x7FFF ) { - if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR ); - goto invalid; - } - return packFloat128( zSign, 0x7FFF, 0, 0 ); - } - if ( bExp == 0x7FFF ) { - if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR ); - return packFloat128( zSign, 0, 0, 0 ); - } - if ( bExp == 0 ) { - if ( ( bSig0 | bSig1 ) == 0 ) { - if ( ( aExp | aSig0 | aSig1 ) == 0 ) { - invalid: - float_raise( float_flag_invalid STATUS_VAR); - z.low = float128_default_nan_low; - z.high = float128_default_nan_high; - return z; - } - float_raise( float_flag_divbyzero STATUS_VAR); - return packFloat128( zSign, 0x7FFF, 0, 0 ); - } - normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 ); - } - if ( aExp == 0 ) { - if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 ); - normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); - } - zExp = aExp - bExp + 0x3FFD; - shortShift128Left( - aSig0 | LIT64( 0x0001000000000000 ), aSig1, 15, &aSig0, &aSig1 ); - shortShift128Left( - bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 ); - if ( le128( bSig0, bSig1, aSig0, aSig1 ) ) { - shift128Right( aSig0, aSig1, 1, &aSig0, &aSig1 ); - ++zExp; - } - zSig0 = estimateDiv128To64( aSig0, aSig1, bSig0 ); - mul128By64To192( bSig0, bSig1, zSig0, &term0, &term1, &term2 ); - sub192( aSig0, aSig1, 0, term0, term1, term2, &rem0, &rem1, &rem2 ); - while ( (sbits64) rem0 < 0 ) { - --zSig0; - add192( rem0, rem1, rem2, 0, bSig0, bSig1, &rem0, &rem1, &rem2 ); - } - zSig1 = estimateDiv128To64( rem1, rem2, bSig0 ); - if ( ( zSig1 & 0x3FFF ) <= 4 ) { - mul128By64To192( bSig0, bSig1, zSig1, &term1, &term2, &term3 ); - sub192( rem1, rem2, 0, term1, term2, term3, &rem1, &rem2, &rem3 ); - while ( (sbits64) rem1 < 0 ) { - --zSig1; - add192( rem1, rem2, rem3, 0, bSig0, bSig1, &rem1, &rem2, &rem3 ); - } - zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 ); - } - shift128ExtraRightJamming( zSig0, zSig1, 0, 15, &zSig0, &zSig1, &zSig2 ); - return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 STATUS_VAR ); - -} - -/*---------------------------------------------------------------------------- -| Returns the remainder of the quadruple-precision floating-point value `a' -| with respect to the corresponding value `b'. The operation is performed -| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -float128 float128_rem( float128 a, float128 b STATUS_PARAM ) -{ - flag aSign, bSign, zSign; - int32 aExp, bExp, expDiff; - bits64 aSig0, aSig1, bSig0, bSig1, q, term0, term1, term2; - bits64 allZero, alternateASig0, alternateASig1, sigMean1; - sbits64 sigMean0; - float128 z; - - aSig1 = extractFloat128Frac1( a ); - aSig0 = extractFloat128Frac0( a ); - aExp = extractFloat128Exp( a ); - aSign = extractFloat128Sign( a ); - bSig1 = extractFloat128Frac1( b ); - bSig0 = extractFloat128Frac0( b ); - bExp = extractFloat128Exp( b ); - bSign = extractFloat128Sign( b ); - if ( aExp == 0x7FFF ) { - if ( ( aSig0 | aSig1 ) - || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) { - return propagateFloat128NaN( a, b STATUS_VAR ); - } - goto invalid; - } - if ( bExp == 0x7FFF ) { - if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR ); - return a; - } - if ( bExp == 0 ) { - if ( ( bSig0 | bSig1 ) == 0 ) { - invalid: - float_raise( float_flag_invalid STATUS_VAR); - z.low = float128_default_nan_low; - z.high = float128_default_nan_high; - return z; - } - normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 ); - } - if ( aExp == 0 ) { - if ( ( aSig0 | aSig1 ) == 0 ) return a; - normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); - } - expDiff = aExp - bExp; - if ( expDiff < -1 ) return a; - shortShift128Left( - aSig0 | LIT64( 0x0001000000000000 ), - aSig1, - 15 - ( expDiff < 0 ), - &aSig0, - &aSig1 - ); - shortShift128Left( - bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 ); - q = le128( bSig0, bSig1, aSig0, aSig1 ); - if ( q ) sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 ); - expDiff -= 64; - while ( 0 < expDiff ) { - q = estimateDiv128To64( aSig0, aSig1, bSig0 ); - q = ( 4 < q ) ? q - 4 : 0; - mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 ); - shortShift192Left( term0, term1, term2, 61, &term1, &term2, &allZero ); - shortShift128Left( aSig0, aSig1, 61, &aSig0, &allZero ); - sub128( aSig0, 0, term1, term2, &aSig0, &aSig1 ); - expDiff -= 61; - } - if ( -64 < expDiff ) { - q = estimateDiv128To64( aSig0, aSig1, bSig0 ); - q = ( 4 < q ) ? q - 4 : 0; - q >>= - expDiff; - shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 ); - expDiff += 52; - if ( expDiff < 0 ) { - shift128Right( aSig0, aSig1, - expDiff, &aSig0, &aSig1 ); - } - else { - shortShift128Left( aSig0, aSig1, expDiff, &aSig0, &aSig1 ); - } - mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 ); - sub128( aSig0, aSig1, term1, term2, &aSig0, &aSig1 ); - } - else { - shift128Right( aSig0, aSig1, 12, &aSig0, &aSig1 ); - shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 ); - } - do { - alternateASig0 = aSig0; - alternateASig1 = aSig1; - ++q; - sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 ); - } while ( 0 <= (sbits64) aSig0 ); - add128( - aSig0, aSig1, alternateASig0, alternateASig1, &sigMean0, &sigMean1 ); - if ( ( sigMean0 < 0 ) - || ( ( ( sigMean0 | sigMean1 ) == 0 ) && ( q & 1 ) ) ) { - aSig0 = alternateASig0; - aSig1 = alternateASig1; - } - zSign = ( (sbits64) aSig0 < 0 ); - if ( zSign ) sub128( 0, 0, aSig0, aSig1, &aSig0, &aSig1 ); - return - normalizeRoundAndPackFloat128( aSign ^ zSign, bExp - 4, aSig0, aSig1 STATUS_VAR ); - -} - -/*---------------------------------------------------------------------------- -| Returns the square root of the quadruple-precision floating-point value `a'. -| The operation is performed according to the IEC/IEEE Standard for Binary -| Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -float128 float128_sqrt( float128 a STATUS_PARAM ) -{ - flag aSign; - int32 aExp, zExp; - bits64 aSig0, aSig1, zSig0, zSig1, zSig2, doubleZSig0; - bits64 rem0, rem1, rem2, rem3, term0, term1, term2, term3; - float128 z; - - aSig1 = extractFloat128Frac1( a ); - aSig0 = extractFloat128Frac0( a ); - aExp = extractFloat128Exp( a ); - aSign = extractFloat128Sign( a ); - if ( aExp == 0x7FFF ) { - if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, a STATUS_VAR ); - if ( ! aSign ) return a; - goto invalid; - } - if ( aSign ) { - if ( ( aExp | aSig0 | aSig1 ) == 0 ) return a; - invalid: - float_raise( float_flag_invalid STATUS_VAR); - z.low = float128_default_nan_low; - z.high = float128_default_nan_high; - return z; - } - if ( aExp == 0 ) { - if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( 0, 0, 0, 0 ); - normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); - } - zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFE; - aSig0 |= LIT64( 0x0001000000000000 ); - zSig0 = estimateSqrt32( aExp, aSig0>>17 ); - shortShift128Left( aSig0, aSig1, 13 - ( aExp & 1 ), &aSig0, &aSig1 ); - zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 ); - doubleZSig0 = zSig0<<1; - mul64To128( zSig0, zSig0, &term0, &term1 ); - sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 ); - while ( (sbits64) rem0 < 0 ) { - --zSig0; - doubleZSig0 -= 2; - add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 ); - } - zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 ); - if ( ( zSig1 & 0x1FFF ) <= 5 ) { - if ( zSig1 == 0 ) zSig1 = 1; - mul64To128( doubleZSig0, zSig1, &term1, &term2 ); - sub128( rem1, 0, term1, term2, &rem1, &rem2 ); - mul64To128( zSig1, zSig1, &term2, &term3 ); - sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 ); - while ( (sbits64) rem1 < 0 ) { - --zSig1; - shortShift128Left( 0, zSig1, 1, &term2, &term3 ); - term3 |= 1; - term2 |= doubleZSig0; - add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 ); - } - zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 ); - } - shift128ExtraRightJamming( zSig0, zSig1, 0, 14, &zSig0, &zSig1, &zSig2 ); - return roundAndPackFloat128( 0, zExp, zSig0, zSig1, zSig2 STATUS_VAR ); - -} - -/*---------------------------------------------------------------------------- -| Returns 1 if the quadruple-precision floating-point value `a' is equal to -| the corresponding value `b', and 0 otherwise. The comparison is performed -| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -int float128_eq( float128 a, float128 b STATUS_PARAM ) -{ - - if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) - && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) - || ( ( extractFloat128Exp( b ) == 0x7FFF ) - && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) - ) { - if ( float128_is_signaling_nan( a ) - || float128_is_signaling_nan( b ) ) { - float_raise( float_flag_invalid STATUS_VAR); - } - return 0; - } - return - ( a.low == b.low ) - && ( ( a.high == b.high ) - || ( ( a.low == 0 ) - && ( (bits64) ( ( a.high | b.high )<<1 ) == 0 ) ) - ); - -} - -/*---------------------------------------------------------------------------- -| Returns 1 if the quadruple-precision floating-point value `a' is less than -| or equal to the corresponding value `b', and 0 otherwise. The comparison -| is performed according to the IEC/IEEE Standard for Binary Floating-Point -| Arithmetic. -*----------------------------------------------------------------------------*/ - -int float128_le( float128 a, float128 b STATUS_PARAM ) -{ - flag aSign, bSign; - - if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) - && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) - || ( ( extractFloat128Exp( b ) == 0x7FFF ) - && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) - ) { - float_raise( float_flag_invalid STATUS_VAR); - return 0; - } - aSign = extractFloat128Sign( a ); - bSign = extractFloat128Sign( b ); - if ( aSign != bSign ) { - return - aSign - || ( ( ( (bits64) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) - == 0 ); - } - return - aSign ? le128( b.high, b.low, a.high, a.low ) - : le128( a.high, a.low, b.high, b.low ); - -} - -/*---------------------------------------------------------------------------- -| Returns 1 if the quadruple-precision floating-point value `a' is less than -| the corresponding value `b', and 0 otherwise. The comparison is performed -| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -int float128_lt( float128 a, float128 b STATUS_PARAM ) -{ - flag aSign, bSign; - - if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) - && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) - || ( ( extractFloat128Exp( b ) == 0x7FFF ) - && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) - ) { - float_raise( float_flag_invalid STATUS_VAR); - return 0; - } - aSign = extractFloat128Sign( a ); - bSign = extractFloat128Sign( b ); - if ( aSign != bSign ) { - return - aSign - && ( ( ( (bits64) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) - != 0 ); - } - return - aSign ? lt128( b.high, b.low, a.high, a.low ) - : lt128( a.high, a.low, b.high, b.low ); - -} - -/*---------------------------------------------------------------------------- -| Returns 1 if the quadruple-precision floating-point value `a' is equal to -| the corresponding value `b', and 0 otherwise. The invalid exception is -| raised if either operand is a NaN. Otherwise, the comparison is performed -| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -int float128_eq_signaling( float128 a, float128 b STATUS_PARAM ) -{ - - if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) - && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) - || ( ( extractFloat128Exp( b ) == 0x7FFF ) - && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) - ) { - float_raise( float_flag_invalid STATUS_VAR); - return 0; - } - return - ( a.low == b.low ) - && ( ( a.high == b.high ) - || ( ( a.low == 0 ) - && ( (bits64) ( ( a.high | b.high )<<1 ) == 0 ) ) - ); - -} - -/*---------------------------------------------------------------------------- -| Returns 1 if the quadruple-precision floating-point value `a' is less than -| or equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not -| cause an exception. Otherwise, the comparison is performed according to the -| IEC/IEEE Standard for Binary Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -int float128_le_quiet( float128 a, float128 b STATUS_PARAM ) -{ - flag aSign, bSign; - - if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) - && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) - || ( ( extractFloat128Exp( b ) == 0x7FFF ) - && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) - ) { - if ( float128_is_signaling_nan( a ) - || float128_is_signaling_nan( b ) ) { - float_raise( float_flag_invalid STATUS_VAR); - } - return 0; - } - aSign = extractFloat128Sign( a ); - bSign = extractFloat128Sign( b ); - if ( aSign != bSign ) { - return - aSign - || ( ( ( (bits64) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) - == 0 ); - } - return - aSign ? le128( b.high, b.low, a.high, a.low ) - : le128( a.high, a.low, b.high, b.low ); - -} - -/*---------------------------------------------------------------------------- -| Returns 1 if the quadruple-precision floating-point value `a' is less than -| the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an -| exception. Otherwise, the comparison is performed according to the IEC/IEEE -| Standard for Binary Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -int float128_lt_quiet( float128 a, float128 b STATUS_PARAM ) -{ - flag aSign, bSign; - - if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) - && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) - || ( ( extractFloat128Exp( b ) == 0x7FFF ) - && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) - ) { - if ( float128_is_signaling_nan( a ) - || float128_is_signaling_nan( b ) ) { - float_raise( float_flag_invalid STATUS_VAR); - } - return 0; - } - aSign = extractFloat128Sign( a ); - bSign = extractFloat128Sign( b ); - if ( aSign != bSign ) { - return - aSign - && ( ( ( (bits64) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) - != 0 ); - } - return - aSign ? lt128( b.high, b.low, a.high, a.low ) - : lt128( a.high, a.low, b.high, b.low ); - -} - -#endif - -/* misc functions */ -float32 uint32_to_float32( unsigned int a STATUS_PARAM ) -{ - return int64_to_float32(a STATUS_VAR); -} - -float64 uint32_to_float64( unsigned int a STATUS_PARAM ) -{ - return int64_to_float64(a STATUS_VAR); -} - -unsigned int float32_to_uint32( float32 a STATUS_PARAM ) -{ - int64_t v; - unsigned int res; - - v = float32_to_int64(a STATUS_VAR); - if (v < 0) { - res = 0; - float_raise( float_flag_invalid STATUS_VAR); - } else if (v > 0xffffffff) { - res = 0xffffffff; - float_raise( float_flag_invalid STATUS_VAR); - } else { - res = v; - } - return res; -} - -unsigned int float32_to_uint32_round_to_zero( float32 a STATUS_PARAM ) -{ - int64_t v; - unsigned int res; - - v = float32_to_int64_round_to_zero(a STATUS_VAR); - if (v < 0) { - res = 0; - float_raise( float_flag_invalid STATUS_VAR); - } else if (v > 0xffffffff) { - res = 0xffffffff; - float_raise( float_flag_invalid STATUS_VAR); - } else { - res = v; - } - return res; -} - -unsigned int float64_to_uint32( float64 a STATUS_PARAM ) -{ - int64_t v; - unsigned int res; - - v = float64_to_int64(a STATUS_VAR); - if (v < 0) { - res = 0; - float_raise( float_flag_invalid STATUS_VAR); - } else if (v > 0xffffffff) { - res = 0xffffffff; - float_raise( float_flag_invalid STATUS_VAR); - } else { - res = v; - } - return res; -} - -unsigned int float64_to_uint32_round_to_zero( float64 a STATUS_PARAM ) -{ - int64_t v; - unsigned int res; - - v = float64_to_int64_round_to_zero(a STATUS_VAR); - if (v < 0) { - res = 0; - float_raise( float_flag_invalid STATUS_VAR); - } else if (v > 0xffffffff) { - res = 0xffffffff; - float_raise( float_flag_invalid STATUS_VAR); - } else { - res = v; - } - return res; -} - -/* FIXME: This looks broken. */ -uint64_t float64_to_uint64 (float64 a STATUS_PARAM) -{ - int64_t v; - - v = float64_val(int64_to_float64(INT64_MIN STATUS_VAR)); - v += float64_val(a); - v = float64_to_int64(make_float64(v) STATUS_VAR); - - return v - INT64_MIN; -} - -uint64_t float64_to_uint64_round_to_zero (float64 a STATUS_PARAM) -{ - int64_t v; - - v = float64_val(int64_to_float64(INT64_MIN STATUS_VAR)); - v += float64_val(a); - v = float64_to_int64_round_to_zero(make_float64(v) STATUS_VAR); - - return v - INT64_MIN; -} - -#define COMPARE(s, nan_exp) \ -INLINE int float ## s ## _compare_internal( float ## s a, float ## s b, \ - int is_quiet STATUS_PARAM ) \ -{ \ - flag aSign, bSign; \ - bits ## s av, bv; \ - \ - if (( ( extractFloat ## s ## Exp( a ) == nan_exp ) && \ - extractFloat ## s ## Frac( a ) ) || \ - ( ( extractFloat ## s ## Exp( b ) == nan_exp ) && \ - extractFloat ## s ## Frac( b ) )) { \ - if (!is_quiet || \ - float ## s ## _is_signaling_nan( a ) || \ - float ## s ## _is_signaling_nan( b ) ) { \ - float_raise( float_flag_invalid STATUS_VAR); \ - } \ - return float_relation_unordered; \ - } \ - aSign = extractFloat ## s ## Sign( a ); \ - bSign = extractFloat ## s ## Sign( b ); \ - av = float ## s ## _val(a); \ - bv = float ## s ## _val(b); \ - if ( aSign != bSign ) { \ - if ( (bits ## s) ( ( av | bv )<<1 ) == 0 ) { \ - /* zero case */ \ - return float_relation_equal; \ - } else { \ - return 1 - (2 * aSign); \ - } \ - } else { \ - if (av == bv) { \ - return float_relation_equal; \ - } else { \ - return 1 - 2 * (aSign ^ ( av < bv )); \ - } \ - } \ -} \ - \ -int float ## s ## _compare( float ## s a, float ## s b STATUS_PARAM ) \ -{ \ - return float ## s ## _compare_internal(a, b, 0 STATUS_VAR); \ -} \ - \ -int float ## s ## _compare_quiet( float ## s a, float ## s b STATUS_PARAM ) \ -{ \ - return float ## s ## _compare_internal(a, b, 1 STATUS_VAR); \ -} - -COMPARE(32, 0xff) -COMPARE(64, 0x7ff) - -INLINE int float128_compare_internal( float128 a, float128 b, - int is_quiet STATUS_PARAM ) -{ - flag aSign, bSign; - - if (( ( extractFloat128Exp( a ) == 0x7fff ) && - ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) || - ( ( extractFloat128Exp( b ) == 0x7fff ) && - ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )) { - if (!is_quiet || - float128_is_signaling_nan( a ) || - float128_is_signaling_nan( b ) ) { - float_raise( float_flag_invalid STATUS_VAR); - } - return float_relation_unordered; - } - aSign = extractFloat128Sign( a ); - bSign = extractFloat128Sign( b ); - if ( aSign != bSign ) { - if ( ( ( ( a.high | b.high )<<1 ) | a.low | b.low ) == 0 ) { - /* zero case */ - return float_relation_equal; - } else { - return 1 - (2 * aSign); - } - } else { - if (a.low == b.low && a.high == b.high) { - return float_relation_equal; - } else { - return 1 - 2 * (aSign ^ ( lt128( a.high, a.low, b.high, b.low ) )); - } - } -} - -int float128_compare( float128 a, float128 b STATUS_PARAM ) -{ - return float128_compare_internal(a, b, 0 STATUS_VAR); -} - -int float128_compare_quiet( float128 a, float128 b STATUS_PARAM ) -{ - return float128_compare_internal(a, b, 1 STATUS_VAR); -} - -/* Multiply A by 2 raised to the power N. */ -float32 float32_scalbn( float32 a, int n STATUS_PARAM ) -{ - flag aSign; - int16 aExp; - bits32 aSig; - - aSig = extractFloat32Frac( a ); - aExp = extractFloat32Exp( a ); - aSign = extractFloat32Sign( a ); - - if ( aExp == 0xFF ) { - return a; - } - aExp += n; - return roundAndPackFloat32( aSign, aExp, aSig STATUS_VAR ); -} - -float64 float64_scalbn( float64 a, int n STATUS_PARAM ) -{ - flag aSign; - int16 aExp; - bits64 aSig; - - aSig = extractFloat64Frac( a ); - aExp = extractFloat64Exp( a ); - aSign = extractFloat64Sign( a ); - - if ( aExp == 0x7FF ) { - return a; - } - aExp += n; - return roundAndPackFloat64( aSign, aExp, aSig STATUS_VAR ); -} - -#ifdef FLOATX80 -floatx80 floatx80_scalbn( floatx80 a, int n STATUS_PARAM ) -{ - flag aSign; - int16 aExp; - bits64 aSig; - - aSig = extractFloatx80Frac( a ); - aExp = extractFloatx80Exp( a ); - aSign = extractFloatx80Sign( a ); - - if ( aExp == 0x7FF ) { - return a; - } - aExp += n; - return roundAndPackFloatx80( STATUS(floatx80_rounding_precision), - aSign, aExp, aSig, 0 STATUS_VAR ); -} -#endif - -#ifdef FLOAT128 -float128 float128_scalbn( float128 a, int n STATUS_PARAM ) -{ - flag aSign; - int32 aExp; - bits64 aSig0, aSig1; - - aSig1 = extractFloat128Frac1( a ); - aSig0 = extractFloat128Frac0( a ); - aExp = extractFloat128Exp( a ); - aSign = extractFloat128Sign( a ); - if ( aExp == 0x7FFF ) { - return a; - } - aExp += n; - return roundAndPackFloat128( aSign, aExp, aSig0, aSig1, 0 STATUS_VAR ); - -} -#endif diff --git a/fpu/softfloat.h b/fpu/softfloat.h deleted file mode 100644 index 5f95d06..0000000 --- a/fpu/softfloat.h +++ /dev/null @@ -1,444 +0,0 @@ -/*============================================================================ - -This C header file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic -Package, Release 2b. - -Written by John R. Hauser. This work was made possible in part by the -International Computer Science Institute, located at Suite 600, 1947 Center -Street, Berkeley, California 94704. Funding was partially provided by the -National Science Foundation under grant MIP-9311980. The original version -of this code was written as part of a project to build a fixed-point vector -processor in collaboration with the University of California at Berkeley, -overseen by Profs. Nelson Morgan and John Wawrzynek. More information -is available through the Web page `http://www.cs.berkeley.edu/~jhauser/ -arithmetic/SoftFloat.html'. - -THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has -been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES -RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS -AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES, -COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE -EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE -INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR -OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE. - -Derivative works are acceptable, even for commercial purposes, so long as -(1) the source code for the derivative work includes prominent notice that -the work is derivative, and (2) the source code includes prominent notice with -these four paragraphs for those parts of this code that are retained. - -=============================================================================*/ - -#ifndef SOFTFLOAT_H -#define SOFTFLOAT_H - -#if defined(HOST_SOLARIS) && defined(NEEDS_LIBSUNMATH) -#include -#endif - -#include -#include "config.h" - -/*---------------------------------------------------------------------------- -| Each of the following `typedef's defines the most convenient type that holds -| integers of at least as many bits as specified. For example, `uint8' should -| be the most convenient type that can hold unsigned integers of as many as -| 8 bits. The `flag' type must be able to hold either a 0 or 1. For most -| implementations of C, `flag', `uint8', and `int8' should all be `typedef'ed -| to the same as `int'. -*----------------------------------------------------------------------------*/ -typedef uint8_t flag; -typedef uint8_t uint8; -typedef int8_t int8; -typedef int uint16; -typedef int int16; -typedef unsigned int uint32; -typedef signed int int32; -typedef uint64_t uint64; -typedef int64_t int64; - -/*---------------------------------------------------------------------------- -| Each of the following `typedef's defines a type that holds integers -| of _exactly_ the number of bits specified. For instance, for most -| implementation of C, `bits16' and `sbits16' should be `typedef'ed to -| `unsigned short int' and `signed short int' (or `short int'), respectively. -*----------------------------------------------------------------------------*/ -typedef uint8_t bits8; -typedef int8_t sbits8; -typedef uint16_t bits16; -typedef int16_t sbits16; -typedef uint32_t bits32; -typedef int32_t sbits32; -typedef uint64_t bits64; -typedef int64_t sbits64; - -#define LIT64( a ) a##LL -#define INLINE static inline - -/*---------------------------------------------------------------------------- -| The macro `FLOATX80' must be defined to enable the extended double-precision -| floating-point format `floatx80'. If this macro is not defined, the -| `floatx80' type will not be defined, and none of the functions that either -| input or output the `floatx80' type will be defined. The same applies to -| the `FLOAT128' macro and the quadruple-precision format `float128'. -*----------------------------------------------------------------------------*/ -#ifdef CONFIG_SOFTFLOAT -/* bit exact soft float support */ -#define FLOATX80 -#define FLOAT128 -#else -/* native float support */ -#if (defined(__i386__) || defined(__x86_64__)) && !defined(_BSD) -#define FLOATX80 -#endif -#endif /* !CONFIG_SOFTFLOAT */ - -#define STATUS_PARAM , float_status *status -#define STATUS(field) status->field -#define STATUS_VAR , status - -/*---------------------------------------------------------------------------- -| Software IEC/IEEE floating-point ordering relations -*----------------------------------------------------------------------------*/ -enum { - float_relation_less = -1, - float_relation_equal = 0, - float_relation_greater = 1, - float_relation_unordered = 2 -}; - -#ifdef CONFIG_SOFTFLOAT -/*---------------------------------------------------------------------------- -| Software IEC/IEEE floating-point types. -*----------------------------------------------------------------------------*/ -/* Use structures for soft-float types. This prevents accidentally mixing - them with native int/float types. A sufficiently clever compiler and - sane ABI should be able to see though these structs. However - x86/gcc 3.x seems to struggle a bit, so leave them disabled by default. */ -//#define USE_SOFTFLOAT_STRUCT_TYPES -#ifdef USE_SOFTFLOAT_STRUCT_TYPES -typedef struct { - uint32_t v; -} float32; -/* The cast ensures an error if the wrong type is passed. */ -#define float32_val(x) (((float32)(x)).v) -#define make_float32(x) __extension__ ({ float32 f32_val = {x}; f32_val; }) -typedef struct { - uint64_t v; -} float64; -#define float64_val(x) (((float64)(x)).v) -#define make_float64(x) __extension__ ({ float64 f64_val = {x}; f64_val; }) -#else -typedef uint32_t float32; -typedef uint64_t float64; -#define float32_val(x) (x) -#define float64_val(x) (x) -#define make_float32(x) (x) -#define make_float64(x) (x) -#endif -#ifdef FLOATX80 -typedef struct { - uint64_t low; - uint16_t high; -} floatx80; -#endif -#ifdef FLOAT128 -typedef struct { -#ifdef WORDS_BIGENDIAN - uint64_t high, low; -#else - uint64_t low, high; -#endif -} float128; -#endif - -/*---------------------------------------------------------------------------- -| Software IEC/IEEE floating-point underflow tininess-detection mode. -*----------------------------------------------------------------------------*/ -enum { - float_tininess_after_rounding = 0, - float_tininess_before_rounding = 1 -}; - -/*---------------------------------------------------------------------------- -| Software IEC/IEEE floating-point rounding mode. -*----------------------------------------------------------------------------*/ -enum { - float_round_nearest_even = 0, - float_round_down = 1, - float_round_up = 2, - float_round_to_zero = 3 -}; - -/*---------------------------------------------------------------------------- -| Software IEC/IEEE floating-point exception flags. -*----------------------------------------------------------------------------*/ -enum { - float_flag_invalid = 1, - float_flag_divbyzero = 4, - float_flag_overflow = 8, - float_flag_underflow = 16, - float_flag_inexact = 32 -}; - -typedef struct float_status { - signed char float_detect_tininess; - signed char float_rounding_mode; - signed char float_exception_flags; -#ifdef FLOATX80 - signed char floatx80_rounding_precision; -#endif -} float_status; - -void set_float_rounding_mode(int val STATUS_PARAM); -void set_float_exception_flags(int val STATUS_PARAM); -INLINE int get_float_exception_flags(float_status *status) -{ - return STATUS(float_exception_flags); -} -#ifdef FLOATX80 -void set_floatx80_rounding_precision(int val STATUS_PARAM); -#endif - -/*---------------------------------------------------------------------------- -| Routine to raise any or all of the software IEC/IEEE floating-point -| exception flags. -*----------------------------------------------------------------------------*/ -void float_raise( int8 flags STATUS_PARAM); - -/*---------------------------------------------------------------------------- -| Software IEC/IEEE integer-to-floating-point conversion routines. -*----------------------------------------------------------------------------*/ -float32 int32_to_float32( int STATUS_PARAM ); -float64 int32_to_float64( int STATUS_PARAM ); -float32 uint32_to_float32( unsigned int STATUS_PARAM ); -float64 uint32_to_float64( unsigned int STATUS_PARAM ); -#ifdef FLOATX80 -floatx80 int32_to_floatx80( int STATUS_PARAM ); -#endif -#ifdef FLOAT128 -float128 int32_to_float128( int STATUS_PARAM ); -#endif -float32 int64_to_float32( int64_t STATUS_PARAM ); -float32 uint64_to_float32( uint64_t STATUS_PARAM ); -float64 int64_to_float64( int64_t STATUS_PARAM ); -float64 uint64_to_float64( uint64_t STATUS_PARAM ); -#ifdef FLOATX80 -floatx80 int64_to_floatx80( int64_t STATUS_PARAM ); -#endif -#ifdef FLOAT128 -float128 int64_to_float128( int64_t STATUS_PARAM ); -#endif - -/*---------------------------------------------------------------------------- -| Software IEC/IEEE single-precision conversion routines. -*----------------------------------------------------------------------------*/ -int float32_to_int32( float32 STATUS_PARAM ); -int float32_to_int32_round_to_zero( float32 STATUS_PARAM ); -unsigned int float32_to_uint32( float32 STATUS_PARAM ); -unsigned int float32_to_uint32_round_to_zero( float32 STATUS_PARAM ); -int64_t float32_to_int64( float32 STATUS_PARAM ); -int64_t float32_to_int64_round_to_zero( float32 STATUS_PARAM ); -float64 float32_to_float64( float32 STATUS_PARAM ); -#ifdef FLOATX80 -floatx80 float32_to_floatx80( float32 STATUS_PARAM ); -#endif -#ifdef FLOAT128 -float128 float32_to_float128( float32 STATUS_PARAM ); -#endif - -/*---------------------------------------------------------------------------- -| Software IEC/IEEE single-precision operations. -*----------------------------------------------------------------------------*/ -float32 float32_round_to_int( float32 STATUS_PARAM ); -float32 float32_add( float32, float32 STATUS_PARAM ); -float32 float32_sub( float32, float32 STATUS_PARAM ); -float32 float32_mul( float32, float32 STATUS_PARAM ); -float32 float32_div( float32, float32 STATUS_PARAM ); -float32 float32_rem( float32, float32 STATUS_PARAM ); -float32 float32_sqrt( float32 STATUS_PARAM ); -int float32_eq( float32, float32 STATUS_PARAM ); -int float32_le( float32, float32 STATUS_PARAM ); -int float32_lt( float32, float32 STATUS_PARAM ); -int float32_eq_signaling( float32, float32 STATUS_PARAM ); -int float32_le_quiet( float32, float32 STATUS_PARAM ); -int float32_lt_quiet( float32, float32 STATUS_PARAM ); -int float32_compare( float32, float32 STATUS_PARAM ); -int float32_compare_quiet( float32, float32 STATUS_PARAM ); -int float32_is_nan( float32 ); -int float32_is_signaling_nan( float32 ); -float32 float32_scalbn( float32, int STATUS_PARAM ); - -INLINE float32 float32_abs(float32 a) -{ - return make_float32(float32_val(a) & 0x7fffffff); -} - -INLINE float32 float32_chs(float32 a) -{ - return make_float32(float32_val(a) ^ 0x80000000); -} - -#define float32_zero make_float32(0) - -/*---------------------------------------------------------------------------- -| Software IEC/IEEE double-precision conversion routines. -*----------------------------------------------------------------------------*/ -int float64_to_int32( float64 STATUS_PARAM ); -int float64_to_int32_round_to_zero( float64 STATUS_PARAM ); -unsigned int float64_to_uint32( float64 STATUS_PARAM ); -unsigned int float64_to_uint32_round_to_zero( float64 STATUS_PARAM ); -int64_t float64_to_int64( float64 STATUS_PARAM ); -int64_t float64_to_int64_round_to_zero( float64 STATUS_PARAM ); -uint64_t float64_to_uint64 (float64 a STATUS_PARAM); -uint64_t float64_to_uint64_round_to_zero (float64 a STATUS_PARAM); -float32 float64_to_float32( float64 STATUS_PARAM ); -#ifdef FLOATX80 -floatx80 float64_to_floatx80( float64 STATUS_PARAM ); -#endif -#ifdef FLOAT128 -float128 float64_to_float128( float64 STATUS_PARAM ); -#endif - -/*---------------------------------------------------------------------------- -| Software IEC/IEEE double-precision operations. -*----------------------------------------------------------------------------*/ -float64 float64_round_to_int( float64 STATUS_PARAM ); -float64 float64_trunc_to_int( float64 STATUS_PARAM ); -float64 float64_add( float64, float64 STATUS_PARAM ); -float64 float64_sub( float64, float64 STATUS_PARAM ); -float64 float64_mul( float64, float64 STATUS_PARAM ); -float64 float64_div( float64, float64 STATUS_PARAM ); -float64 float64_rem( float64, float64 STATUS_PARAM ); -float64 float64_sqrt( float64 STATUS_PARAM ); -int float64_eq( float64, float64 STATUS_PARAM ); -int float64_le( float64, float64 STATUS_PARAM ); -int float64_lt( float64, float64 STATUS_PARAM ); -int float64_eq_signaling( float64, float64 STATUS_PARAM ); -int float64_le_quiet( float64, float64 STATUS_PARAM ); -int float64_lt_quiet( float64, float64 STATUS_PARAM ); -int float64_compare( float64, float64 STATUS_PARAM ); -int float64_compare_quiet( float64, float64 STATUS_PARAM ); -int float64_is_nan( float64 a ); -int float64_is_signaling_nan( float64 ); -float64 float64_scalbn( float64, int STATUS_PARAM ); - -INLINE float64 float64_abs(float64 a) -{ - return make_float64(float64_val(a) & 0x7fffffffffffffffLL); -} - -INLINE float64 float64_chs(float64 a) -{ - return make_float64(float64_val(a) ^ 0x8000000000000000LL); -} - -#define float64_zero make_float64(0) - -#ifdef FLOATX80 - -/*---------------------------------------------------------------------------- -| Software IEC/IEEE extended double-precision conversion routines. -*----------------------------------------------------------------------------*/ -int floatx80_to_int32( floatx80 STATUS_PARAM ); -int floatx80_to_int32_round_to_zero( floatx80 STATUS_PARAM ); -int64_t floatx80_to_int64( floatx80 STATUS_PARAM ); -int64_t floatx80_to_int64_round_to_zero( floatx80 STATUS_PARAM ); -float32 floatx80_to_float32( floatx80 STATUS_PARAM ); -float64 floatx80_to_float64( floatx80 STATUS_PARAM ); -#ifdef FLOAT128 -float128 floatx80_to_float128( floatx80 STATUS_PARAM ); -#endif - -/*---------------------------------------------------------------------------- -| Software IEC/IEEE extended double-precision operations. -*----------------------------------------------------------------------------*/ -floatx80 floatx80_round_to_int( floatx80 STATUS_PARAM ); -floatx80 floatx80_add( floatx80, floatx80 STATUS_PARAM ); -floatx80 floatx80_sub( floatx80, floatx80 STATUS_PARAM ); -floatx80 floatx80_mul( floatx80, floatx80 STATUS_PARAM ); -floatx80 floatx80_div( floatx80, floatx80 STATUS_PARAM ); -floatx80 floatx80_rem( floatx80, floatx80 STATUS_PARAM ); -floatx80 floatx80_sqrt( floatx80 STATUS_PARAM ); -int floatx80_eq( floatx80, floatx80 STATUS_PARAM ); -int floatx80_le( floatx80, floatx80 STATUS_PARAM ); -int floatx80_lt( floatx80, floatx80 STATUS_PARAM ); -int floatx80_eq_signaling( floatx80, floatx80 STATUS_PARAM ); -int floatx80_le_quiet( floatx80, floatx80 STATUS_PARAM ); -int floatx80_lt_quiet( floatx80, floatx80 STATUS_PARAM ); -int floatx80_is_nan( floatx80 ); -int floatx80_is_signaling_nan( floatx80 ); -floatx80 floatx80_scalbn( floatx80, int STATUS_PARAM ); - -INLINE floatx80 floatx80_abs(floatx80 a) -{ - a.high &= 0x7fff; - return a; -} - -INLINE floatx80 floatx80_chs(floatx80 a) -{ - a.high ^= 0x8000; - return a; -} - -#endif - -#ifdef FLOAT128 - -/*---------------------------------------------------------------------------- -| Software IEC/IEEE quadruple-precision conversion routines. -*----------------------------------------------------------------------------*/ -int float128_to_int32( float128 STATUS_PARAM ); -int float128_to_int32_round_to_zero( float128 STATUS_PARAM ); -int64_t float128_to_int64( float128 STATUS_PARAM ); -int64_t float128_to_int64_round_to_zero( float128 STATUS_PARAM ); -float32 float128_to_float32( float128 STATUS_PARAM ); -float64 float128_to_float64( float128 STATUS_PARAM ); -#ifdef FLOATX80 -floatx80 float128_to_floatx80( float128 STATUS_PARAM ); -#endif - -/*---------------------------------------------------------------------------- -| Software IEC/IEEE quadruple-precision operations. -*----------------------------------------------------------------------------*/ -float128 float128_round_to_int( float128 STATUS_PARAM ); -float128 float128_add( float128, float128 STATUS_PARAM ); -float128 float128_sub( float128, float128 STATUS_PARAM ); -float128 float128_mul( float128, float128 STATUS_PARAM ); -float128 float128_div( float128, float128 STATUS_PARAM ); -float128 float128_rem( float128, float128 STATUS_PARAM ); -float128 float128_sqrt( float128 STATUS_PARAM ); -int float128_eq( float128, float128 STATUS_PARAM ); -int float128_le( float128, float128 STATUS_PARAM ); -int float128_lt( float128, float128 STATUS_PARAM ); -int float128_eq_signaling( float128, float128 STATUS_PARAM ); -int float128_le_quiet( float128, float128 STATUS_PARAM ); -int float128_lt_quiet( float128, float128 STATUS_PARAM ); -int float128_compare( float128, float128 STATUS_PARAM ); -int float128_compare_quiet( float128, float128 STATUS_PARAM ); -int float128_is_nan( float128 ); -int float128_is_signaling_nan( float128 ); -float128 float128_scalbn( float128, int STATUS_PARAM ); - -INLINE float128 float128_abs(float128 a) -{ - a.high &= 0x7fffffffffffffffLL; - return a; -} - -INLINE float128 float128_chs(float128 a) -{ - a.high ^= 0x8000000000000000LL; - return a; -} - -#endif - -#else /* CONFIG_SOFTFLOAT */ - -#include "softfloat-native.h" - -#endif /* !CONFIG_SOFTFLOAT */ - -#endif /* !SOFTFLOAT_H */ -- cgit v1.1