/* Copyright (C) 2007-2008 The Android Open Source Project ** ** This software is licensed under the terms of the GNU General Public ** License version 2, as published by the Free Software Foundation, and ** may be copied, distributed, and modified under those terms. ** ** This program is distributed in the hope that it will be useful, ** but WITHOUT ANY WARRANTY; without even the implied warranty of ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ** GNU General Public License for more details. */ #include "qemu_file.h" #include "goldfish_device.h" #include "audio/audio.h" #include "qemu_debug.h" #include "android/globals.h" #define DEBUG 1 #if DEBUG # define D(...) VERBOSE_PRINT(audio,__VA_ARGS__) #else # define D(...) ((void)0) #endif extern void dprint(const char* fmt, ...); /* define USE_QEMU_AUDIO_IN to 1 to use QEMU's audio subsystem to * implement the audio input. if 0, this will try to read a .wav file * directly... */ #define USE_QEMU_AUDIO_IN 1 enum { /* audio status register */ AUDIO_INT_STATUS = 0x00, /* set this to enable IRQ */ AUDIO_INT_ENABLE = 0x04, /* set these to specify buffer addresses */ AUDIO_SET_WRITE_BUFFER_1 = 0x08, AUDIO_SET_WRITE_BUFFER_2 = 0x0C, /* set number of bytes in buffer to write */ AUDIO_WRITE_BUFFER_1 = 0x10, AUDIO_WRITE_BUFFER_2 = 0x14, /* true if audio input is supported */ AUDIO_READ_SUPPORTED = 0x18, /* buffer to use for audio input */ AUDIO_SET_READ_BUFFER = 0x1C, /* driver writes number of bytes to read */ AUDIO_START_READ = 0x20, /* number of bytes available in read buffer */ AUDIO_READ_BUFFER_AVAILABLE = 0x24, /* AUDIO_INT_STATUS bits */ /* this bit set when it is safe to write more bytes to the buffer */ AUDIO_INT_WRITE_BUFFER_1_EMPTY = 1U << 0, AUDIO_INT_WRITE_BUFFER_2_EMPTY = 1U << 1, AUDIO_INT_READ_BUFFER_FULL = 1U << 2, }; struct goldfish_audio_buff { uint32_t address; uint32_t length; uint8* data; uint32_t capacity; uint32_t offset; }; struct goldfish_audio_state { struct goldfish_device dev; // buffer flags uint32_t int_status; // irq enable mask for int_status uint32_t int_enable; #ifndef USE_QEMU_AUDIO_IN // address of the read buffer uint32_t read_buffer; // path to file or device to use for input const char* input_source; // true if input is a wav file int input_is_wav; // true if we need to convert stereo -> mono int input_is_stereo; // file descriptor to use for input int input_fd; #endif // number of bytes available in the read buffer int read_buffer_available; // set to 1 or 2 to indicate which buffer we are writing from, or zero if both buffers are empty int current_buffer; // current data to write struct goldfish_audio_buff out_buff1[1]; struct goldfish_audio_buff out_buff2[1]; struct goldfish_audio_buff in_buff[1]; // for QEMU sound output QEMUSoundCard card; SWVoiceOut *voice; #if USE_QEMU_AUDIO_IN SWVoiceIn* voicein; #endif }; static void goldfish_audio_buff_init( struct goldfish_audio_buff* b ) { b->address = 0; b->length = 0; b->data = NULL; b->capacity = 0; b->offset = 0; } static void goldfish_audio_buff_reset( struct goldfish_audio_buff* b ) { b->offset = 0; b->length = 0; } static uint32_t goldfish_audio_buff_length( struct goldfish_audio_buff* b ) { return b->length; } static void goldfish_audio_buff_ensure( struct goldfish_audio_buff* b, uint32_t size ) { if (b->capacity < size) { b->data = qemu_realloc(b->data, size); b->capacity = size; } } static void goldfish_audio_buff_set_address( struct goldfish_audio_buff* b, uint32_t addr ) { b->address = addr; } static void goldfish_audio_buff_set_length( struct goldfish_audio_buff* b, uint32_t len ) { b->length = len; b->offset = 0; goldfish_audio_buff_ensure(b, len); } static void goldfish_audio_buff_read( struct goldfish_audio_buff* b ) { cpu_physical_memory_read(b->address, b->data, b->length); } static void goldfish_audio_buff_write( struct goldfish_audio_buff* b ) { cpu_physical_memory_write(b->address, b->data, b->length); } static int goldfish_audio_buff_send( struct goldfish_audio_buff* b, int free, struct goldfish_audio_state* s ) { int ret, write = b->length; if (write > free) write = free; ret = AUD_write(s->voice, b->data + b->offset, write); b->offset += ret; b->length -= ret; return ret; } static int goldfish_audio_buff_available( struct goldfish_audio_buff* b ) { return b->length - b->offset; } static int goldfish_audio_buff_recv( struct goldfish_audio_buff* b, int avail, struct goldfish_audio_state* s ) { int missing = b->length - b->offset; int avail2 = (avail > missing) ? missing : avail; int read; read = AUD_read(s->voicein, b->data + b->offset, avail2 ); if (read == 0) return 0; if (avail2 > 0) D("%s: AUD_read(%d) returned %d", __FUNCTION__, avail2, read); cpu_physical_memory_write( b->address + b->offset, b->data, read ); b->offset += read; return read; } static void goldfish_audio_buff_put( struct goldfish_audio_buff* b, QEMUFile* f ) { qemu_put_be32(f, b->address ); qemu_put_be32(f, b->length ); qemu_put_be32(f, b->offset ); qemu_put_buffer(f, b->data, b->length ); } static void goldfish_audio_buff_get( struct goldfish_audio_buff* b, QEMUFile* f ) { b->address = qemu_get_be32(f); b->length = qemu_get_be32(f); b->offset = qemu_get_be32(f); goldfish_audio_buff_ensure(b, b->length); qemu_get_buffer(f, b->data, b->length); } /* update this whenever you change the goldfish_audio_state structure */ #define AUDIO_STATE_SAVE_VERSION 2 #define QFIELD_STRUCT struct goldfish_audio_state QFIELD_BEGIN(audio_state_fields) QFIELD_INT32(int_status), QFIELD_INT32(int_enable), QFIELD_INT32(read_buffer_available), QFIELD_INT32(current_buffer), QFIELD_END static void audio_state_save( QEMUFile* f, void* opaque ) { struct goldfish_audio_state* s = opaque; qemu_put_struct(f, audio_state_fields, s); goldfish_audio_buff_put (s->out_buff1, f); goldfish_audio_buff_put (s->out_buff2, f); goldfish_audio_buff_put (s->in_buff, f); } static int audio_state_load( QEMUFile* f, void* opaque, int version_id ) { struct goldfish_audio_state* s = opaque; int ret; if (version_id != AUDIO_STATE_SAVE_VERSION) return -1; ret = qemu_get_struct(f, audio_state_fields, s); if (!ret) { goldfish_audio_buff_get( s->out_buff1, f ); goldfish_audio_buff_get( s->out_buff2, f ); goldfish_audio_buff_get (s->in_buff, f); } return ret; } static void enable_audio(struct goldfish_audio_state *s, int enable) { // enable or disable the output voice if (s->voice != NULL) { AUD_set_active_out(s->voice, (enable & (AUDIO_INT_WRITE_BUFFER_1_EMPTY | AUDIO_INT_WRITE_BUFFER_2_EMPTY)) != 0); goldfish_audio_buff_reset( s->out_buff1 ); goldfish_audio_buff_reset( s->out_buff2 ); } if (s->voicein) { AUD_set_active_in (s->voicein, (enable & AUDIO_INT_READ_BUFFER_FULL) != 0); goldfish_audio_buff_reset( s->in_buff ); } s->current_buffer = 0; } #if USE_QEMU_AUDIO_IN static void start_read(struct goldfish_audio_state *s, uint32_t count) { //printf( "... goldfish audio start_read, count=%d\n", count ); goldfish_audio_buff_set_length( s->in_buff, count ); s->read_buffer_available = count; } #else static void start_read(struct goldfish_audio_state *s, uint32_t count) { uint8 wav_header[44]; int result; if (!s->input_source) return; if (s->input_fd < 0) { s->input_fd = open(s->input_source, O_BINARY | O_RDONLY); if (s->input_fd < 0) { fprintf(stderr, "goldfish_audio could not open %s for audio input\n", s->input_source); s->input_source = NULL; // set to to avoid endless retries return; } // skip WAV header if we have a WAV file if (s->input_is_wav) { if (read(s->input_fd, wav_header, sizeof(wav_header)) != sizeof(wav_header)) { fprintf(stderr, "goldfish_audio could not read WAV file header %s\n", s->input_source); s->input_fd = -1; s->input_source = NULL; // set to to avoid endless retries return; } // is the WAV file stereo? s->input_is_stereo = (wav_header[22] == 2); } else { // assume input from an audio device is stereo s->input_is_stereo = 1; } } uint8* buffer = (uint8*)phys_ram_base + s->read_buffer; if (s->input_is_stereo) { // need to read twice as much data count *= 2; } try_again: result = read(s->input_fd, buffer, count); if (result == 0 && s->input_is_wav) { // end of file, so seek back to the beginning lseek(s->input_fd, sizeof(wav_header), SEEK_SET); goto try_again; } if (result > 0 && s->input_is_stereo) { // we need to convert stereo to mono uint8* src = (uint8*)buffer; uint8* dest = src; int count = result/2; while (count-- > 0) { int sample1 = src[0] | (src[1] << 8); int sample2 = src[2] | (src[3] << 8); int sample = (sample1 + sample2) >> 1; dst[0] = (uint8_t) sample; dst[1] = (uint8_t)(sample >> 8); src += 4; dst += 2; } // we reduced the number of bytes by 2 result /= 2; } s->read_buffer_available = (result > 0 ? result : 0); s->int_status |= AUDIO_INT_READ_BUFFER_FULL; goldfish_device_set_irq(&s->dev, 0, (s->int_status & s->int_enable)); } #endif static uint32_t goldfish_audio_read(void *opaque, target_phys_addr_t offset) { uint32_t ret; struct goldfish_audio_state *s = opaque; switch(offset) { case AUDIO_INT_STATUS: // return current buffer status flags ret = s->int_status & s->int_enable; if(ret) { goldfish_device_set_irq(&s->dev, 0, 0); } return ret; case AUDIO_READ_SUPPORTED: #if USE_QEMU_AUDIO_IN D("%s: AUDIO_READ_SUPPORTED returns %d", __FUNCTION__, (s->voicein != NULL)); return (s->voicein != NULL); #else return (s->input_source ? 1 : 0); #endif case AUDIO_READ_BUFFER_AVAILABLE: D("%s: AUDIO_READ_BUFFER_AVAILABLE returns %d", __FUNCTION__, s->read_buffer_available); goldfish_audio_buff_write( s->in_buff ); return s->read_buffer_available; default: cpu_abort (cpu_single_env, "goldfish_audio_read: Bad offset %x\n", offset); return 0; } } static void goldfish_audio_write(void *opaque, target_phys_addr_t offset, uint32_t val) { struct goldfish_audio_state *s = opaque; switch(offset) { case AUDIO_INT_ENABLE: /* enable buffer empty interrupts */ D("%s: AUDIO_INT_ENABLE %d", __FUNCTION__, val ); enable_audio(s, val); s->int_enable = val; s->int_status = (AUDIO_INT_WRITE_BUFFER_1_EMPTY | AUDIO_INT_WRITE_BUFFER_2_EMPTY); goldfish_device_set_irq(&s->dev, 0, (s->int_status & s->int_enable)); break; case AUDIO_SET_WRITE_BUFFER_1: /* save pointer to buffer 1 */ D( "%s: AUDIO_SET_WRITE_BUFFER_1 %08x", __FUNCTION__, val); goldfish_audio_buff_set_address( s->out_buff1, val ); break; case AUDIO_SET_WRITE_BUFFER_2: /* save pointer to buffer 2 */ D( "%s: AUDIO_SET_WRITE_BUFFER_2 %08x", __FUNCTION__, val); goldfish_audio_buff_set_address( s->out_buff2, val ); break; case AUDIO_WRITE_BUFFER_1: /* record that data in buffer 1 is ready to write */ //D( "%s: AUDIO_WRITE_BUFFER_1 %08x", __FUNCTION__, val); if (s->current_buffer == 0) s->current_buffer = 1; goldfish_audio_buff_set_length( s->out_buff1, val ); goldfish_audio_buff_read( s->out_buff1 ); s->int_status &= ~AUDIO_INT_WRITE_BUFFER_1_EMPTY; break; case AUDIO_WRITE_BUFFER_2: /* record that data in buffer 2 is ready to write */ //D( "%s: AUDIO_WRITE_BUFFER_2 %08x", __FUNCTION__, val); if (s->current_buffer == 0) s->current_buffer = 2; goldfish_audio_buff_set_length( s->out_buff2, val ); goldfish_audio_buff_read( s->out_buff2 ); s->int_status &= ~AUDIO_INT_WRITE_BUFFER_2_EMPTY; break; case AUDIO_SET_READ_BUFFER: /* save pointer to the read buffer */ goldfish_audio_buff_set_address( s->in_buff, val ); D( "%s: AUDIO_SET_READ_BUFFER %08x", __FUNCTION__, val ); break; case AUDIO_START_READ: D( "%s: AUDIO_START_READ %d", __FUNCTION__, val ); start_read(s, val); s->int_status &= ~AUDIO_INT_READ_BUFFER_FULL; goldfish_device_set_irq(&s->dev, 0, (s->int_status & s->int_enable)); break; default: cpu_abort (cpu_single_env, "goldfish_audio_write: Bad offset %x\n", offset); } } static void goldfish_audio_callback(void *opaque, int free) { struct goldfish_audio_state *s = opaque; int new_status = 0; /* loop until free is zero or both buffers are empty */ while (free && s->current_buffer) { /* write data in buffer 1 */ while (free && s->current_buffer == 1) { int written = goldfish_audio_buff_send( s->out_buff1, free, s ); if (written) { D("%s: sent %5d bytes to audio output (buffer 1)", __FUNCTION__, written); free -= written; if (goldfish_audio_buff_length( s->out_buff1 ) == 0) { new_status |= AUDIO_INT_WRITE_BUFFER_1_EMPTY; s->current_buffer = (goldfish_audio_buff_length( s->out_buff2 ) ? 2 : 0); } } else { break; } } /* write data in buffer 2 */ while (free && s->current_buffer == 2) { int written = goldfish_audio_buff_send( s->out_buff2, free, s ); if (written) { D("%s: sent %5d bytes to audio output (buffer 2)", __FUNCTION__, written); free -= written; if (goldfish_audio_buff_length( s->out_buff2 ) == 0) { new_status |= AUDIO_INT_WRITE_BUFFER_2_EMPTY; s->current_buffer = (goldfish_audio_buff_length( s->out_buff1 ) ? 1 : 0); } } else { break; } } } if (new_status && new_status != s->int_status) { s->int_status |= new_status; goldfish_device_set_irq(&s->dev, 0, (s->int_status & s->int_enable)); } } #if USE_QEMU_AUDIO_IN static void goldfish_audio_in_callback(void *opaque, int avail) { struct goldfish_audio_state *s = opaque; int new_status = 0; if (goldfish_audio_buff_available( s->in_buff ) == 0 ) return; while (avail > 0) { int read = goldfish_audio_buff_recv( s->in_buff, avail, s ); if (read == 0) break; avail -= read; if (goldfish_audio_buff_available( s->in_buff) == 0) { new_status |= AUDIO_INT_READ_BUFFER_FULL; D("%s: AUDIO_INT_READ_BUFFER_FULL available=%d", __FUNCTION__, goldfish_audio_buff_length( s->in_buff )); break; } } if (new_status && new_status != s->int_status) { s->int_status |= new_status; goldfish_device_set_irq(&s->dev, 0, (s->int_status & s->int_enable)); } } #endif /* USE_QEMU_AUDIO_IN */ static CPUReadMemoryFunc *goldfish_audio_readfn[] = { goldfish_audio_read, goldfish_audio_read, goldfish_audio_read }; static CPUWriteMemoryFunc *goldfish_audio_writefn[] = { goldfish_audio_write, goldfish_audio_write, goldfish_audio_write }; void goldfish_audio_init(uint32_t base, int id, const char* input_source) { struct goldfish_audio_state *s; struct audsettings as; /* nothing to do if no audio input and output */ if (!android_hw->hw_audioOutput && !android_hw->hw_audioInput) return; s = (struct goldfish_audio_state *)qemu_mallocz(sizeof(*s)); s->dev.name = "goldfish_audio"; s->dev.id = id; s->dev.base = base; s->dev.size = 0x1000; s->dev.irq_count = 1; #ifndef USE_QEMU_AUDIO_IN s->input_fd = -1; if (input_source) { s->input_source = input_source; char* extension = strrchr(input_source, '.'); if (extension && strcasecmp(extension, ".wav") == 0) { s->input_is_wav = 1; } } #endif AUD_register_card( "goldfish_audio", &s->card); as.freq = 44100; as.nchannels = 2; as.fmt = AUD_FMT_S16; as.endianness = AUDIO_HOST_ENDIANNESS; if (android_hw->hw_audioOutput) { s->voice = AUD_open_out ( &s->card, NULL, "goldfish_audio", s, goldfish_audio_callback, &as ); if (!s->voice) { dprint("warning: opening audio output failed\n"); return; } } #if USE_QEMU_AUDIO_IN as.freq = 8000; as.nchannels = 1; as.fmt = AUD_FMT_S16; as.endianness = AUDIO_HOST_ENDIANNESS; if (android_hw->hw_audioInput) { s->voicein = AUD_open_in ( &s->card, NULL, "goldfish_audio_in", s, goldfish_audio_in_callback, &as ); if (!s->voicein) { dprint("warning: opening audio input failed\n"); } } #endif goldfish_audio_buff_init( s->out_buff1 ); goldfish_audio_buff_init( s->out_buff2 ); goldfish_audio_buff_init( s->in_buff ); goldfish_device_add(&s->dev, goldfish_audio_readfn, goldfish_audio_writefn, s); register_savevm( "audio_state", 0, AUDIO_STATE_SAVE_VERSION, audio_state_save, audio_state_load, s ); }