/* Copyright (C) 2007-2008 The Android Open Source Project ** ** This software is licensed under the terms of the GNU General Public ** License version 2, as published by the Free Software Foundation, and ** may be copied, distributed, and modified under those terms. ** ** This program is distributed in the hope that it will be useful, ** but WITHOUT ANY WARRANTY; without even the implied warranty of ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ** GNU General Public License for more details. */ #include "qemu_file.h" #include "goldfish_device.h" #include "audio/audio.h" #include "qemu_debug.h" #include "android/globals.h" #define DEBUG 1 #if DEBUG # define D(...) VERBOSE_PRINT(audio,__VA_ARGS__) #else # define D(...) ((void)0) #endif extern void dprint(const char* fmt, ...); /* define USE_QEMU_AUDIO_IN to 1 to use QEMU's audio subsystem to * implement the audio input. if 0, this will try to read a .wav file * directly... */ #define USE_QEMU_AUDIO_IN 1 enum { /* audio status register */ AUDIO_INT_STATUS = 0x00, /* set this to enable IRQ */ AUDIO_INT_ENABLE = 0x04, /* set these to specify buffer addresses */ AUDIO_SET_WRITE_BUFFER_1 = 0x08, AUDIO_SET_WRITE_BUFFER_2 = 0x0C, /* set number of bytes in buffer to write */ AUDIO_WRITE_BUFFER_1 = 0x10, AUDIO_WRITE_BUFFER_2 = 0x14, /* true if audio input is supported */ AUDIO_READ_SUPPORTED = 0x18, /* buffer to use for audio input */ AUDIO_SET_READ_BUFFER = 0x1C, /* driver writes number of bytes to read */ AUDIO_START_READ = 0x20, /* number of bytes available in read buffer */ AUDIO_READ_BUFFER_AVAILABLE = 0x24, /* AUDIO_INT_STATUS bits */ /* this bit set when it is safe to write more bytes to the buffer */ AUDIO_INT_WRITE_BUFFER_1_EMPTY = 1U << 0, AUDIO_INT_WRITE_BUFFER_2_EMPTY = 1U << 1, AUDIO_INT_READ_BUFFER_FULL = 1U << 2, }; struct goldfish_audio_state { struct goldfish_device dev; // pointers to our two write buffers uint32_t buffer_1, buffer_2; uint32_t read_buffer; // buffer flags uint32_t int_status; // irq enable mask for int_status uint32_t int_enable; #if USE_QEMU_AUDIO_IN uint32_t read_pos; uint32_t read_size; #else // path to file or device to use for input const char* input_source; // true if input is a wav file int input_is_wav; // true if we need to convert stereo -> mono int input_is_stereo; // file descriptor to use for input int input_fd; #endif // number of bytes available in the read buffer int read_buffer_available; // set to 1 or 2 to indicate which buffer we are writing from, or zero if both buffers are empty int current_buffer; // current data to write uint8* data_1; uint32_t data_1_length; uint8* data_2; uint32_t data_2_length; // for QEMU sound output QEMUSoundCard card; SWVoiceOut *voice; #if USE_QEMU_AUDIO_IN SWVoiceIn* voicein; #endif }; /* update this whenever you change the goldfish_audio_state structure */ #define AUDIO_STATE_SAVE_VERSION 1 #define QFIELD_STRUCT struct goldfish_audio_state QFIELD_BEGIN(audio_state_fields) QFIELD_INT32(buffer_1), QFIELD_INT32(buffer_2), QFIELD_INT32(read_buffer), QFIELD_INT32(int_status), QFIELD_INT32(int_enable), #if USE_QEMU_AUDIO_IN QFIELD_INT32(read_pos), QFIELD_INT32(read_size), #endif QFIELD_INT32(read_buffer_available), QFIELD_INT32(current_buffer), QFIELD_INT32(data_1_length), QFIELD_INT32(data_2_length), QFIELD_END static void audio_state_save( QEMUFile* f, void* opaque ) { struct goldfish_audio_state* s = opaque; qemu_put_struct(f, audio_state_fields, s); /* we can't write data_1 and data_2 directly */ qemu_put_be32( f, s->data_1 - phys_ram_base ); qemu_put_be32( f, s->data_2 - phys_ram_base ); } static int audio_state_load( QEMUFile* f, void* opaque, int version_id ) { struct goldfish_audio_state* s = opaque; int ret; if (version_id != AUDIO_STATE_SAVE_VERSION) return -1; ret = qemu_get_struct(f, audio_state_fields, s); if (!ret) { s->data_1 = qemu_get_be32(f) + phys_ram_base; s->data_2 = qemu_get_be32(f) + phys_ram_base; } return -1; } static void enable_audio(struct goldfish_audio_state *s, int enable) { // enable or disable the output voice if (s->voice != NULL) AUD_set_active_out(s->voice, (enable & (AUDIO_INT_WRITE_BUFFER_1_EMPTY | AUDIO_INT_WRITE_BUFFER_2_EMPTY)) != 0); if (s->voicein) AUD_set_active_in (s->voicein, (enable & AUDIO_INT_READ_BUFFER_FULL) != 0); // reset buffer information s->data_1_length = 0; s->data_2_length = 0; s->current_buffer = 0; s->read_pos = 0; } #if USE_QEMU_AUDIO_IN static void start_read(struct goldfish_audio_state *s, uint32_t count) { //printf( "... goldfish audio start_read, count=%d\n", count ); s->read_size = count; s->read_buffer_available = 0; s->read_pos = 0; } #else static void start_read(struct goldfish_audio_state *s, uint32_t count) { uint8 wav_header[44]; int result; if (!s->input_source) return; if (s->input_fd < 0) { s->input_fd = open(s->input_source, O_BINARY | O_RDONLY); if (s->input_fd < 0) { fprintf(stderr, "goldfish_audio could not open %s for audio input\n", s->input_source); s->input_source = NULL; // set to to avoid endless retries return; } // skip WAV header if we have a WAV file if (s->input_is_wav) { if (read(s->input_fd, wav_header, sizeof(wav_header)) != sizeof(wav_header)) { fprintf(stderr, "goldfish_audio could not read WAV file header %s\n", s->input_source); s->input_fd = -1; s->input_source = NULL; // set to to avoid endless retries return; } // is the WAV file stereo? s->input_is_stereo = (wav_header[22] == 2); } else { // assume input from an audio device is stereo s->input_is_stereo = 1; } } uint8* buffer = (uint8*)phys_ram_base + s->read_buffer; if (s->input_is_stereo) { // need to read twice as much data count *= 2; } try_again: result = read(s->input_fd, buffer, count); if (result == 0 && s->input_is_wav) { // end of file, so seek back to the beginning lseek(s->input_fd, sizeof(wav_header), SEEK_SET); goto try_again; } if (result > 0 && s->input_is_stereo) { // we need to convert stereo to mono uint8* src = (uint8*)buffer; uint8* dest = src; int count = result/2; while (count-- > 0) { int sample1 = src[0] | (src[1] << 8); int sample2 = src[2] | (src[3] << 8); int sample = (sample1 + sample2) >> 1; dst[0] = (uint8_t) sample; dst[1] = (uint8_t)(sample >> 8); src += 4; dst += 2; } // we reduced the number of bytes by 2 result /= 2; } s->read_buffer_available = (result > 0 ? result : 0); s->int_status |= AUDIO_INT_READ_BUFFER_FULL; goldfish_device_set_irq(&s->dev, 0, (s->int_status & s->int_enable)); } #endif static uint32_t goldfish_audio_read(void *opaque, target_phys_addr_t offset) { uint32_t ret; struct goldfish_audio_state *s = opaque; offset -= s->dev.base; switch(offset) { case AUDIO_INT_STATUS: // return current buffer status flags ret = s->int_status & s->int_enable; if(ret) { goldfish_device_set_irq(&s->dev, 0, 0); } return ret; case AUDIO_READ_SUPPORTED: #if USE_QEMU_AUDIO_IN D("%s: AUDIO_READ_SUPPORTED returns %d", __FUNCTION__, (s->voicein != NULL)); return (s->voicein != NULL); #else return (s->input_source ? 1 : 0); #endif case AUDIO_READ_BUFFER_AVAILABLE: D("%s: AUDIO_READ_BUFFER_AVAILABLE returns %d", __FUNCTION__, s->read_buffer_available); return s->read_buffer_available; default: cpu_abort (cpu_single_env, "goldfish_audio_read: Bad offset %x\n", offset); return 0; } } static void goldfish_audio_write(void *opaque, target_phys_addr_t offset, uint32_t val) { struct goldfish_audio_state *s = opaque; offset -= s->dev.base; switch(offset) { case AUDIO_INT_ENABLE: /* enable buffer empty interrupts */ D("%s: AUDIO_INT_ENABLE %d", __FUNCTION__, val ); enable_audio(s, val); s->int_enable = val; s->int_status = (AUDIO_INT_WRITE_BUFFER_1_EMPTY | AUDIO_INT_WRITE_BUFFER_2_EMPTY); goldfish_device_set_irq(&s->dev, 0, (s->int_status & s->int_enable)); break; case AUDIO_SET_WRITE_BUFFER_1: /* save pointer to buffer 1 */ s->buffer_1 = val; break; case AUDIO_SET_WRITE_BUFFER_2: /* save pointer to buffer 2 */ s->buffer_2 = val; break; case AUDIO_WRITE_BUFFER_1: /* record that data in buffer 1 is ready to write */ if (s->current_buffer == 0) s->current_buffer = 1; s->data_1 = phys_ram_base + s->buffer_1; s->data_1_length = val; s->int_status &= ~AUDIO_INT_WRITE_BUFFER_1_EMPTY; break; case AUDIO_WRITE_BUFFER_2: /* record that data in buffer 2 is ready to write */ if (s->current_buffer == 0) s->current_buffer = 2; s->data_2 = phys_ram_base + s->buffer_2; s->data_2_length = val; s->int_status &= ~AUDIO_INT_WRITE_BUFFER_2_EMPTY; break; case AUDIO_SET_READ_BUFFER: /* save pointer to the read buffer */ s->read_buffer = val; D( "%s: AUDIO_SET_READ_BUFFER %p", __FUNCTION__, (void*)val ); break; case AUDIO_START_READ: D( "%s: AUDIO_START_READ %d", __FUNCTION__, val ); start_read(s, val); s->int_status &= ~AUDIO_INT_READ_BUFFER_FULL; goldfish_device_set_irq(&s->dev, 0, (s->int_status & s->int_enable)); break; default: cpu_abort (cpu_single_env, "goldfish_audio_write: Bad offset %x\n", offset); } } static void goldfish_audio_callback(void *opaque, int free) { struct goldfish_audio_state *s = opaque; int new_status = 0; /* loop until free is zero or both buffers are empty */ while (free && s->current_buffer) { /* write data in buffer 1 */ while (free && s->current_buffer == 1) { int write = s->data_1_length; if (write > free) write = free; int written = AUD_write(s->voice, s->data_1, write); if (written) { D("%s: sent %d bytes to audio output", __FUNCTION__, write); s->data_1 += written; s->data_1_length -= written; free -= written; if (s->data_1_length == 0) { new_status |= AUDIO_INT_WRITE_BUFFER_1_EMPTY; s->current_buffer = (s->data_2_length ? 2 : 0); } } else { break; } } /* write data in buffer 2 */ while (free && s->current_buffer == 2) { int write = s->data_2_length; if (write > free) write = free; int written = AUD_write(s->voice, s->data_2, write); if (written) { D("%s: sent %d bytes to audio output", __FUNCTION__, write); s->data_2 += written; s->data_2_length -= written; free -= written; if (s->data_2_length == 0) { new_status |= AUDIO_INT_WRITE_BUFFER_2_EMPTY; s->current_buffer = (s->data_1_length ? 1 : 0); } } else { break; } } } if (new_status && new_status != s->int_status) { s->int_status |= new_status; goldfish_device_set_irq(&s->dev, 0, (s->int_status & s->int_enable)); } } #if USE_QEMU_AUDIO_IN static void goldfish_audio_in_callback(void *opaque, int avail) { struct goldfish_audio_state *s = opaque; int new_status = 0; if (s->read_pos >= s->read_size) return; if (0 && s->read_size > 0) D("%s: in %d (pos=%d size=%d)", __FUNCTION__, avail, s->read_pos, s->read_size ); while (avail > 0) { int pos = s->read_pos; int missing = s->read_size - pos; uint8* buffer = (uint8*)phys_ram_base + s->read_buffer + pos; int read; int avail2 = (avail > missing) ? missing : avail; read = AUD_read(s->voicein, buffer, avail2); if (read == 0) break; if (avail2 > 0) D("%s: AUD_read(%d) returned %d", __FUNCTION__, avail2, read); s->read_buffer_available += read; avail -= read; pos += read; if (pos == s->read_size) { new_status |= AUDIO_INT_READ_BUFFER_FULL; D("%s: AUDIO_INT_READ_BUFFER_FULL available=%d", __FUNCTION__, s->read_buffer_available); } s->read_pos = pos; } if (new_status && new_status != s->int_status) { s->int_status |= new_status; goldfish_device_set_irq(&s->dev, 0, (s->int_status & s->int_enable)); } } #endif /* USE_QEMU_AUDIO_IN */ static CPUReadMemoryFunc *goldfish_audio_readfn[] = { goldfish_audio_read, goldfish_audio_read, goldfish_audio_read }; static CPUWriteMemoryFunc *goldfish_audio_writefn[] = { goldfish_audio_write, goldfish_audio_write, goldfish_audio_write }; void goldfish_audio_init(uint32_t base, int id, const char* input_source) { struct goldfish_audio_state *s; audsettings_t as; /* nothing to do if no audio input and output */ if (!android_hw->hw_audioOutput && !android_hw->hw_audioInput) return; s = (struct goldfish_audio_state *)qemu_mallocz(sizeof(*s)); s->dev.name = "goldfish_audio"; s->dev.id = id; s->dev.base = base; s->dev.size = 0x1000; s->dev.irq_count = 1; #ifndef USE_QEMU_AUDIO_IN s->input_fd = -1; if (input_source) { s->input_source = input_source; char* extension = strrchr(input_source, '.'); if (extension && strcasecmp(extension, ".wav") == 0) { s->input_is_wav = 1; } } #endif AUD_register_card( &glob_audio_state, "goldfish_audio", &s->card); as.freq = 44100; as.nchannels = 2; as.fmt = AUD_FMT_S16; as.endianness = AUDIO_HOST_ENDIANNESS; if (android_hw->hw_audioOutput) { s->voice = AUD_open_out ( &s->card, s->voice, "goldfish_audio", s, goldfish_audio_callback, &as ); if (!s->voice) { dprint("warning: opening audio output failed\n"); return; } } #if USE_QEMU_AUDIO_IN as.freq = 8000; as.nchannels = 1; as.fmt = AUD_FMT_S16; as.endianness = AUDIO_HOST_ENDIANNESS; if (android_hw->hw_audioInput) { s->voicein = AUD_open_in ( &s->card, NULL, "goldfish_audio_in", s, goldfish_audio_in_callback, &as ); if (!s->voicein) { dprint("warning: opening audio input failed\n"); } } #endif goldfish_device_add(&s->dev, goldfish_audio_readfn, goldfish_audio_writefn, s); register_savevm( "audio_state", 0, AUDIO_STATE_SAVE_VERSION, audio_state_save, audio_state_load, s ); }