/* Copyright (C) 2007-2008 The Android Open Source Project ** ** This software is licensed under the terms of the GNU General Public ** License version 2, as published by the Free Software Foundation, and ** may be copied, distributed, and modified under those terms. ** ** This program is distributed in the hope that it will be useful, ** but WITHOUT ANY WARRANTY; without even the implied warranty of ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ** GNU General Public License for more details. */ #include "qemu_file.h" #include "goldfish_nand_reg.h" #include "goldfish_nand.h" #include "android/utils/tempfile.h" #include "qemu_debug.h" #include "android/android.h" #define DEBUG 1 #if DEBUG # define D(...) VERBOSE_PRINT(init,__VA_ARGS__) # define D_ACTIVE VERBOSE_CHECK(init) # define T(...) VERBOSE_PRINT(nand_limits,__VA_ARGS__) # define T_ACTIVE VERBOSE_CHECK(nand_limits) #else # define D(...) ((void)0) # define D_ACTIVE 0 # define T(...) ((void)0) # define T_ACTIVE 0 #endif /* lseek uses 64-bit offsets on Darwin. */ /* prefer lseek64 on Linux */ #ifdef __APPLE__ # define llseek lseek #elif defined(__linux__) # define llseek lseek64 #endif #define XLOG xlog static void xlog( const char* format, ... ) { va_list args; va_start(args, format); fprintf(stderr, "NAND: "); vfprintf(stderr, format, args); va_end(args); } typedef struct { char* devname; size_t devname_len; char* data; int fd; uint32_t flags; uint32_t page_size; uint32_t extra_size; uint32_t erase_size; uint64_t size; } nand_dev; nand_threshold android_nand_write_threshold; nand_threshold android_nand_read_threshold; #ifdef CONFIG_NAND_THRESHOLD /* update a threshold, return 1 if limit is hit, 0 otherwise */ static void nand_threshold_update( nand_threshold* t, uint32_t len ) { if (t->counter < t->limit) { uint64_t avail = t->limit - t->counter; if (avail > len) avail = len; if (t->counter == 0) { T("%s: starting threshold counting to %lld", __FUNCTION__, t->limit); } t->counter += avail; if (t->counter >= t->limit) { /* threshold reach, send a signal to an external process */ T( "%s: sending signal %d to pid %d !", __FUNCTION__, t->signal, t->pid ); kill( t->pid, t->signal ); } } return; } #define NAND_UPDATE_READ_THRESHOLD(len) \ nand_threshold_update( &android_nand_read_threshold, (uint32_t)(len) ) #define NAND_UPDATE_WRITE_THRESHOLD(len) \ nand_threshold_update( &android_nand_write_threshold, (uint32_t)(len) ) #else /* !NAND_THRESHOLD */ #define NAND_UPDATE_READ_THRESHOLD(len) \ do {} while (0) #define NAND_UPDATE_WRITE_THRESHOLD(len) \ do {} while (0) #endif /* !NAND_THRESHOLD */ static nand_dev *nand_devs = NULL; static uint32_t nand_dev_count = 0; typedef struct { uint32_t base; // register state uint32_t dev; uint32_t addr_low; uint32_t addr_high; uint32_t transfer_size; uint32_t data; uint32_t result; } nand_dev_state; /* update this everytime you change the nand_dev_state structure */ #define NAND_DEV_STATE_SAVE_VERSION 1 #define QFIELD_STRUCT nand_dev_state QFIELD_BEGIN(nand_dev_state_fields) QFIELD_INT32(dev), QFIELD_INT32(addr_low), QFIELD_INT32(addr_high), QFIELD_INT32(transfer_size), QFIELD_INT32(data), QFIELD_INT32(result), QFIELD_END static void nand_dev_state_save(QEMUFile* f, void* opaque) { nand_dev_state* s = opaque; qemu_put_struct(f, nand_dev_state_fields, s); } static int nand_dev_state_load(QEMUFile* f, void* opaque, int version_id) { nand_dev_state* s = opaque; if (version_id != NAND_DEV_STATE_SAVE_VERSION) return -1; return qemu_get_struct(f, nand_dev_state_fields, s); } static int do_read(int fd, void* buf, size_t size) { int ret; do { ret = read(fd, buf, size); } while (ret < 0 && errno == EINTR); return ret; } static int do_write(int fd, const void* buf, size_t size) { int ret; do { ret = write(fd, buf, size); } while (ret < 0 && errno == EINTR); return ret; } static uint32_t nand_dev_read_file(nand_dev *dev, uint32_t data, uint64_t addr, uint32_t total_len) { uint32_t len = total_len; size_t read_len = dev->erase_size; int eof = 0; NAND_UPDATE_READ_THRESHOLD(total_len); lseek(dev->fd, addr, SEEK_SET); while(len > 0) { if(read_len < dev->erase_size) { memset(dev->data, 0xff, dev->erase_size); read_len = dev->erase_size; eof = 1; } if(len < read_len) read_len = len; if(!eof) { read_len = do_read(dev->fd, dev->data, read_len); } cpu_memory_rw_debug(cpu_single_env, data, dev->data, read_len, 1); data += read_len; len -= read_len; } return total_len; } static uint32_t nand_dev_write_file(nand_dev *dev, uint32_t data, uint64_t addr, uint32_t total_len) { uint32_t len = total_len; size_t write_len = dev->erase_size; int ret; NAND_UPDATE_WRITE_THRESHOLD(total_len); lseek(dev->fd, addr, SEEK_SET); while(len > 0) { if(len < write_len) write_len = len; cpu_memory_rw_debug(cpu_single_env, data, dev->data, write_len, 0); ret = do_write(dev->fd, dev->data, write_len); if(ret < write_len) { XLOG("nand_dev_write_file, write failed: %s\n", strerror(errno)); break; } data += write_len; len -= write_len; } return total_len - len; } static uint32_t nand_dev_erase_file(nand_dev *dev, uint64_t addr, uint32_t total_len) { uint32_t len = total_len; size_t write_len = dev->erase_size; int ret; lseek(dev->fd, addr, SEEK_SET); memset(dev->data, 0xff, dev->erase_size); while(len > 0) { if(len < write_len) write_len = len; ret = do_write(dev->fd, dev->data, write_len); if(ret < write_len) { XLOG( "nand_dev_write_file, write failed: %s\n", strerror(errno)); break; } len -= write_len; } return total_len - len; } /* this is a huge hack required to make the PowerPC emulator binary usable * on Mac OS X. If you define this function as 'static', the emulated kernel * will panic when attempting to mount the /data partition. * * worse, if you do *not* define the function as static on Linux-x86, the * emulated kernel will also panic !? * * I still wonder if this is a compiler bug, or due to some nasty thing the * emulator does with CPU registers during execution of the translated code. */ #if !(defined __APPLE__ && defined __powerpc__) static #endif uint32_t nand_dev_do_cmd(nand_dev_state *s, uint32_t cmd) { uint32_t size; uint64_t addr; nand_dev *dev; addr = s->addr_low | ((uint64_t)s->addr_high << 32); size = s->transfer_size; if(s->dev >= nand_dev_count) return 0; dev = nand_devs + s->dev; switch(cmd) { case NAND_CMD_GET_DEV_NAME: if(size > dev->devname_len) size = dev->devname_len; cpu_memory_rw_debug(cpu_single_env, s->data, dev->devname, size, 1); return size; case NAND_CMD_READ: if(addr >= dev->size) return 0; if(size + addr > dev->size) size = dev->size - addr; if(dev->fd >= 0) return nand_dev_read_file(dev, s->data, addr, size); cpu_memory_rw_debug(cpu_single_env,s->data, &dev->data[addr], size, 1); return size; case NAND_CMD_WRITE: if(dev->flags & NAND_DEV_FLAG_READ_ONLY) return 0; if(addr >= dev->size) return 0; if(size + addr > dev->size) size = dev->size - addr; if(dev->fd >= 0) return nand_dev_write_file(dev, s->data, addr, size); cpu_memory_rw_debug(cpu_single_env,s->data, &dev->data[addr], size, 0); return size; case NAND_CMD_ERASE: if(dev->flags & NAND_DEV_FLAG_READ_ONLY) return 0; if(addr >= dev->size) return 0; if(size + addr > dev->size) size = dev->size - addr; if(dev->fd >= 0) return nand_dev_erase_file(dev, addr, size); memset(&dev->data[addr], 0xff, size); return size; case NAND_CMD_BLOCK_BAD_GET: // no bad block support return 0; case NAND_CMD_BLOCK_BAD_SET: if(dev->flags & NAND_DEV_FLAG_READ_ONLY) return 0; return 0; default: cpu_abort(cpu_single_env, "nand_dev_do_cmd: Bad command %x\n", cmd); return 0; } } /* I/O write */ static void nand_dev_write(void *opaque, target_phys_addr_t offset, uint32_t value) { nand_dev_state *s = (nand_dev_state *)opaque; switch (offset) { case NAND_DEV: s->dev = value; if(s->dev >= nand_dev_count) { cpu_abort(cpu_single_env, "nand_dev_write: Bad dev %x\n", value); } break; case NAND_ADDR_HIGH: s->addr_high = value; break; case NAND_ADDR_LOW: s->addr_low = value; break; case NAND_TRANSFER_SIZE: s->transfer_size = value; break; case NAND_DATA: s->data = value; break; case NAND_COMMAND: s->result = nand_dev_do_cmd(s, value); break; default: cpu_abort(cpu_single_env, "nand_dev_write: Bad offset %x\n", offset); break; } } /* I/O read */ static uint32_t nand_dev_read(void *opaque, target_phys_addr_t offset) { nand_dev_state *s = (nand_dev_state *)opaque; nand_dev *dev; switch (offset) { case NAND_VERSION: return NAND_VERSION_CURRENT; case NAND_NUM_DEV: return nand_dev_count; case NAND_RESULT: return s->result; } if(s->dev >= nand_dev_count) return 0; dev = nand_devs + s->dev; switch (offset) { case NAND_DEV_FLAGS: return dev->flags; case NAND_DEV_NAME_LEN: return dev->devname_len; case NAND_DEV_PAGE_SIZE: return dev->page_size; case NAND_DEV_EXTRA_SIZE: return dev->extra_size; case NAND_DEV_ERASE_SIZE: return dev->erase_size; case NAND_DEV_SIZE_LOW: return (uint32_t)dev->size; case NAND_DEV_SIZE_HIGH: return (uint32_t)(dev->size >> 32); default: cpu_abort(cpu_single_env, "nand_dev_read: Bad offset %x\n", offset); return 0; } } static CPUReadMemoryFunc *nand_dev_readfn[] = { nand_dev_read, nand_dev_read, nand_dev_read }; static CPUWriteMemoryFunc *nand_dev_writefn[] = { nand_dev_write, nand_dev_write, nand_dev_write }; /* initialize the QFB device */ void nand_dev_init(uint32_t base) { int iomemtype; static int instance_id = 0; nand_dev_state *s; s = (nand_dev_state *)qemu_mallocz(sizeof(nand_dev_state)); iomemtype = cpu_register_io_memory(nand_dev_readfn, nand_dev_writefn, s); cpu_register_physical_memory(base, 0x00000fff, iomemtype); s->base = base; register_savevm( "nand_dev", instance_id++, NAND_DEV_STATE_SAVE_VERSION, nand_dev_state_save, nand_dev_state_load, s); } static int arg_match(const char *a, const char *b, size_t b_len) { while(*a && b_len--) { if(*a++ != *b++) return 0; } return b_len == 0; } void nand_add_dev(const char *arg) { uint64_t dev_size = 0; const char *next_arg; const char *value; size_t arg_len, value_len; nand_dev *new_devs, *dev; char *devname = NULL; size_t devname_len = 0; char *initfilename = NULL; char *rwfilename = NULL; int initfd = -1; int rwfd = -1; int read_only = 0; int pad; ssize_t read_size; uint32_t page_size = 2048; uint32_t extra_size = 64; uint32_t erase_pages = 64; while(arg) { next_arg = strchr(arg, ','); value = strchr(arg, '='); if(next_arg != NULL) { arg_len = next_arg - arg; next_arg++; if(value >= next_arg) value = NULL; } else arg_len = strlen(arg); if(value != NULL) { size_t new_arg_len = value - arg; value_len = arg_len - new_arg_len - 1; arg_len = new_arg_len; value++; } else value_len = 0; if(devname == NULL) { if(value != NULL) goto bad_arg_and_value; devname_len = arg_len; devname = malloc(arg_len); if(devname == NULL) goto out_of_memory; memcpy(devname, arg, arg_len); } else if(value == NULL) { if(arg_match("readonly", arg, arg_len)) { read_only = 1; } else { XLOG("bad arg: %.*s\n", arg_len, arg); exit(1); } } else { if(arg_match("size", arg, arg_len)) { char *ep; dev_size = strtoull(value, &ep, 0); if(ep != value + value_len) goto bad_arg_and_value; } else if(arg_match("pagesize", arg, arg_len)) { char *ep; page_size = strtoul(value, &ep, 0); if(ep != value + value_len) goto bad_arg_and_value; } else if(arg_match("extrasize", arg, arg_len)) { char *ep; extra_size = strtoul(value, &ep, 0); if(ep != value + value_len) goto bad_arg_and_value; } else if(arg_match("erasepages", arg, arg_len)) { char *ep; erase_pages = strtoul(value, &ep, 0); if(ep != value + value_len) goto bad_arg_and_value; } else if(arg_match("initfile", arg, arg_len)) { initfilename = malloc(value_len + 1); if(initfilename == NULL) goto out_of_memory; memcpy(initfilename, value, value_len); initfilename[value_len] = '\0'; } else if(arg_match("file", arg, arg_len)) { rwfilename = malloc(value_len + 1); if(rwfilename == NULL) goto out_of_memory; memcpy(rwfilename, value, value_len); rwfilename[value_len] = '\0'; } else { goto bad_arg_and_value; } } arg = next_arg; } if (rwfilename == NULL) { /* we create a temporary file to store everything */ TempFile* tmp = tempfile_create(); if (tmp == NULL) { XLOG("could not create temp file for %.*s NAND disk image: %s", devname_len, devname, strerror(errno)); exit(1); } rwfilename = (char*) tempfile_path(tmp); if (VERBOSE_CHECK(init)) dprint( "mapping '%.*s' NAND image to %s", devname_len, devname, rwfilename); } if(rwfilename) { rwfd = open(rwfilename, O_BINARY | (read_only ? O_RDONLY : O_RDWR)); if(rwfd < 0 && read_only) { XLOG("could not open file %s, %s\n", rwfilename, strerror(errno)); exit(1); } /* this could be a writable temporary file. use atexit_close_fd to ensure * that it is properly cleaned up at exit on Win32 */ if (!read_only) atexit_close_fd(rwfd); } if(initfilename) { initfd = open(initfilename, O_BINARY | O_RDONLY); if(initfd < 0) { XLOG("could not open file %s, %s\n", initfilename, strerror(errno)); exit(1); } if(dev_size == 0) { dev_size = lseek(initfd, 0, SEEK_END); lseek(initfd, 0, SEEK_SET); } } new_devs = realloc(nand_devs, sizeof(nand_devs[0]) * (nand_dev_count + 1)); if(new_devs == NULL) goto out_of_memory; nand_devs = new_devs; dev = &new_devs[nand_dev_count]; dev->page_size = page_size; dev->extra_size = extra_size; dev->erase_size = erase_pages * (page_size + extra_size); pad = dev_size % dev->erase_size; if (pad != 0) { dev_size += (dev->erase_size - pad); D("rounding devsize up to a full eraseunit, now %llx\n", dev_size); } dev->devname = devname; dev->devname_len = devname_len; dev->size = dev_size; dev->data = malloc(dev->erase_size); if(dev->data == NULL) goto out_of_memory; dev->flags = read_only ? NAND_DEV_FLAG_READ_ONLY : 0; if (initfd >= 0) { do { read_size = do_read(initfd, dev->data, dev->erase_size); if(read_size < 0) { XLOG("could not read file %s, %s\n", initfilename, strerror(errno)); exit(1); } if(do_write(rwfd, dev->data, read_size) != read_size) { XLOG("could not write file %s, %s\n", initfilename, strerror(errno)); exit(1); } } while(read_size == dev->erase_size); close(initfd); } dev->fd = rwfd; nand_dev_count++; return; out_of_memory: XLOG("out of memory\n"); exit(1); bad_arg_and_value: XLOG("bad arg: %.*s=%.*s\n", arg_len, arg, value_len, value); exit(1); }