/* * Software MMU support * * Copyright (c) 2003 Fabrice Bellard * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu-timer.h" #define DATA_SIZE (1 << SHIFT) #if DATA_SIZE == 8 #define SUFFIX q #define USUFFIX q #define DATA_TYPE uint64_t #elif DATA_SIZE == 4 #define SUFFIX l #define USUFFIX l #define DATA_TYPE uint32_t #elif DATA_SIZE == 2 #define SUFFIX w #define USUFFIX uw #define DATA_TYPE uint16_t #elif DATA_SIZE == 1 #define SUFFIX b #define USUFFIX ub #define DATA_TYPE uint8_t #else #error unsupported data size #endif #ifdef SOFTMMU_CODE_ACCESS #define READ_ACCESS_TYPE 2 #define ADDR_READ addr_code #else #define READ_ACCESS_TYPE 0 #define ADDR_READ addr_read #endif #if defined(CONFIG_MEMCHECK) && !defined(OUTSIDE_JIT) && !defined(SOFTMMU_CODE_ACCESS) /* * Support for memory access checker. * We need to instrument __ldx/__stx_mmu routines implemented in this file with * callbacks to access validation routines implemented by the memory checker. * Note that (at least for now) we don't do that instrumentation for memory * addressing the code (SOFTMMU_CODE_ACCESS controls that). Also, we don't want * to instrument code that is used by emulator itself (OUTSIDE_JIT controls * that). */ #define CONFIG_MEMCHECK_MMU #include "memcheck/memcheck_api.h" #endif // CONFIG_MEMCHECK && !OUTSIDE_JIT && !SOFTMMU_CODE_ACCESS static DATA_TYPE glue(glue(slow_ld, SUFFIX), MMUSUFFIX)(target_ulong addr, int mmu_idx, void *retaddr); static inline DATA_TYPE glue(io_read, SUFFIX)(target_phys_addr_t physaddr, target_ulong addr, void *retaddr) { DATA_TYPE res; int index; index = (physaddr >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); physaddr = (physaddr & TARGET_PAGE_MASK) + addr; env->mem_io_pc = (unsigned long)retaddr; if (index > (IO_MEM_NOTDIRTY >> IO_MEM_SHIFT) && !can_do_io(env)) { cpu_io_recompile(env, retaddr); } env->mem_io_vaddr = addr; #if SHIFT <= 2 res = io_mem_read[index][SHIFT](io_mem_opaque[index], physaddr); #else #ifdef TARGET_WORDS_BIGENDIAN res = (uint64_t)io_mem_read[index][2](io_mem_opaque[index], physaddr) << 32; res |= io_mem_read[index][2](io_mem_opaque[index], physaddr + 4); #else res = io_mem_read[index][2](io_mem_opaque[index], physaddr); res |= (uint64_t)io_mem_read[index][2](io_mem_opaque[index], physaddr + 4) << 32; #endif #endif /* SHIFT > 2 */ return res; } /* handle all cases except unaligned access which span two pages */ DATA_TYPE REGPARM glue(glue(__ld, SUFFIX), MMUSUFFIX)(target_ulong addr, int mmu_idx) { DATA_TYPE res; int index; target_ulong tlb_addr; target_phys_addr_t ioaddr; unsigned long addend; void *retaddr; #ifdef CONFIG_MEMCHECK_MMU int invalidate_cache = 0; #endif // CONFIG_MEMCHECK_MMU /* test if there is match for unaligned or IO access */ /* XXX: could done more in memory macro in a non portable way */ index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); redo: tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ; if ((addr & TARGET_PAGE_MASK) == (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { if (tlb_addr & ~TARGET_PAGE_MASK) { /* IO access */ if ((addr & (DATA_SIZE - 1)) != 0) goto do_unaligned_access; retaddr = GETPC(); ioaddr = env->iotlb[mmu_idx][index]; res = glue(io_read, SUFFIX)(ioaddr, addr, retaddr); } else if (((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1) >= TARGET_PAGE_SIZE) { /* This is not I/O access: do access verification. */ #ifdef CONFIG_MEMCHECK_MMU /* We only validate access to the guest's user space, for which * mmu_idx is set to 1. */ if (memcheck_instrument_mmu && mmu_idx == 1 && memcheck_validate_ld(addr, DATA_SIZE, (target_ulong)(ptrdiff_t)GETPC())) { /* Memory read breaks page boundary. So, if required, we * must invalidate two caches in TLB. */ invalidate_cache = 2; } #endif // CONFIG_MEMCHECK_MMU /* slow unaligned access (it spans two pages or IO) */ do_unaligned_access: retaddr = GETPC(); #ifdef ALIGNED_ONLY do_unaligned_access(addr, READ_ACCESS_TYPE, mmu_idx, retaddr); #endif res = glue(glue(slow_ld, SUFFIX), MMUSUFFIX)(addr, mmu_idx, retaddr); } else { #ifdef CONFIG_MEMCHECK_MMU /* We only validate access to the guest's user space, for which * mmu_idx is set to 1. */ if (memcheck_instrument_mmu && mmu_idx == 1) { invalidate_cache = memcheck_validate_ld(addr, DATA_SIZE, (target_ulong)(ptrdiff_t)GETPC()); } #endif // CONFIG_MEMCHECK_MMU /* unaligned/aligned access in the same page */ #ifdef ALIGNED_ONLY if ((addr & (DATA_SIZE - 1)) != 0) { retaddr = GETPC(); do_unaligned_access(addr, READ_ACCESS_TYPE, mmu_idx, retaddr); } #endif addend = env->tlb_table[mmu_idx][index].addend; res = glue(glue(ld, USUFFIX), _raw)((uint8_t *)(long)(addr+addend)); } #ifdef CONFIG_MEMCHECK_MMU if (invalidate_cache) { /* Accessed memory is under memchecker control. We must invalidate * containing page(s) in order to make sure that next access to them * will invoke _ld/_st_mmu. */ env->tlb_table[mmu_idx][index].addr_read ^= TARGET_PAGE_MASK; env->tlb_table[mmu_idx][index].addr_write ^= TARGET_PAGE_MASK; if ((invalidate_cache == 2) && (index < CPU_TLB_SIZE)) { // Read crossed page boundaris. Invalidate second cache too. env->tlb_table[mmu_idx][index + 1].addr_read ^= TARGET_PAGE_MASK; env->tlb_table[mmu_idx][index + 1].addr_write ^= TARGET_PAGE_MASK; } } #endif // CONFIG_MEMCHECK_MMU } else { /* the page is not in the TLB : fill it */ retaddr = GETPC(); #ifdef ALIGNED_ONLY if ((addr & (DATA_SIZE - 1)) != 0) do_unaligned_access(addr, READ_ACCESS_TYPE, mmu_idx, retaddr); #endif tlb_fill(addr, READ_ACCESS_TYPE, mmu_idx, retaddr); goto redo; } return res; } /* handle all unaligned cases */ static DATA_TYPE glue(glue(slow_ld, SUFFIX), MMUSUFFIX)(target_ulong addr, int mmu_idx, void *retaddr) { DATA_TYPE res, res1, res2; int index, shift; target_phys_addr_t ioaddr; unsigned long addend; target_ulong tlb_addr, addr1, addr2; index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); redo: tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ; if ((addr & TARGET_PAGE_MASK) == (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { if (tlb_addr & ~TARGET_PAGE_MASK) { /* IO access */ if ((addr & (DATA_SIZE - 1)) != 0) goto do_unaligned_access; ioaddr = env->iotlb[mmu_idx][index]; res = glue(io_read, SUFFIX)(ioaddr, addr, retaddr); } else if (((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1) >= TARGET_PAGE_SIZE) { do_unaligned_access: /* slow unaligned access (it spans two pages) */ addr1 = addr & ~(DATA_SIZE - 1); addr2 = addr1 + DATA_SIZE; res1 = glue(glue(slow_ld, SUFFIX), MMUSUFFIX)(addr1, mmu_idx, retaddr); res2 = glue(glue(slow_ld, SUFFIX), MMUSUFFIX)(addr2, mmu_idx, retaddr); shift = (addr & (DATA_SIZE - 1)) * 8; #ifdef TARGET_WORDS_BIGENDIAN res = (res1 << shift) | (res2 >> ((DATA_SIZE * 8) - shift)); #else res = (res1 >> shift) | (res2 << ((DATA_SIZE * 8) - shift)); #endif res = (DATA_TYPE)res; } else { /* unaligned/aligned access in the same page */ addend = env->tlb_table[mmu_idx][index].addend; res = glue(glue(ld, USUFFIX), _raw)((uint8_t *)(long)(addr+addend)); } } else { /* the page is not in the TLB : fill it */ tlb_fill(addr, READ_ACCESS_TYPE, mmu_idx, retaddr); goto redo; } return res; } #ifndef SOFTMMU_CODE_ACCESS static void glue(glue(slow_st, SUFFIX), MMUSUFFIX)(target_ulong addr, DATA_TYPE val, int mmu_idx, void *retaddr); static inline void glue(io_write, SUFFIX)(target_phys_addr_t physaddr, DATA_TYPE val, target_ulong addr, void *retaddr) { int index; index = (physaddr >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); physaddr = (physaddr & TARGET_PAGE_MASK) + addr; if (index > (IO_MEM_NOTDIRTY >> IO_MEM_SHIFT) && !can_do_io(env)) { cpu_io_recompile(env, retaddr); } env->mem_io_vaddr = addr; env->mem_io_pc = (unsigned long)retaddr; #if SHIFT <= 2 io_mem_write[index][SHIFT](io_mem_opaque[index], physaddr, val); #else #ifdef TARGET_WORDS_BIGENDIAN io_mem_write[index][2](io_mem_opaque[index], physaddr, val >> 32); io_mem_write[index][2](io_mem_opaque[index], physaddr + 4, val); #else io_mem_write[index][2](io_mem_opaque[index], physaddr, val); io_mem_write[index][2](io_mem_opaque[index], physaddr + 4, val >> 32); #endif #endif /* SHIFT > 2 */ } void REGPARM glue(glue(__st, SUFFIX), MMUSUFFIX)(target_ulong addr, DATA_TYPE val, int mmu_idx) { target_phys_addr_t ioaddr; unsigned long addend; target_ulong tlb_addr; void *retaddr; int index; #ifdef CONFIG_MEMCHECK_MMU int invalidate_cache = 0; #endif // CONFIG_MEMCHECK_MMU index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); redo: tlb_addr = env->tlb_table[mmu_idx][index].addr_write; if ((addr & TARGET_PAGE_MASK) == (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { if (tlb_addr & ~TARGET_PAGE_MASK) { /* IO access */ if ((addr & (DATA_SIZE - 1)) != 0) goto do_unaligned_access; retaddr = GETPC(); ioaddr = env->iotlb[mmu_idx][index]; glue(io_write, SUFFIX)(ioaddr, val, addr, retaddr); } else if (((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1) >= TARGET_PAGE_SIZE) { /* This is not I/O access: do access verification. */ #ifdef CONFIG_MEMCHECK_MMU /* We only validate access to the guest's user space, for which * mmu_idx is set to 1. */ if (memcheck_instrument_mmu && mmu_idx == 1 && memcheck_validate_st(addr, DATA_SIZE, (uint64_t)val, (target_ulong)(ptrdiff_t)GETPC())) { /* Memory write breaks page boundary. So, if required, we * must invalidate two caches in TLB. */ invalidate_cache = 2; } #endif // CONFIG_MEMCHECK_MMU do_unaligned_access: retaddr = GETPC(); #ifdef ALIGNED_ONLY do_unaligned_access(addr, 1, mmu_idx, retaddr); #endif glue(glue(slow_st, SUFFIX), MMUSUFFIX)(addr, val, mmu_idx, retaddr); } else { #ifdef CONFIG_MEMCHECK_MMU /* We only validate access to the guest's user space, for which * mmu_idx is set to 1. */ if (memcheck_instrument_mmu && mmu_idx == 1) { invalidate_cache = memcheck_validate_st(addr, DATA_SIZE, (uint64_t)val, (target_ulong)(ptrdiff_t)GETPC()); } #endif // CONFIG_MEMCHECK_MMU /* aligned/unaligned access in the same page */ #ifdef ALIGNED_ONLY if ((addr & (DATA_SIZE - 1)) != 0) { retaddr = GETPC(); do_unaligned_access(addr, 1, mmu_idx, retaddr); } #endif addend = env->tlb_table[mmu_idx][index].addend; glue(glue(st, SUFFIX), _raw)((uint8_t *)(long)(addr+addend), val); } #ifdef CONFIG_MEMCHECK_MMU if (invalidate_cache) { /* Accessed memory is under memchecker control. We must invalidate * containing page(s) in order to make sure that next access to them * will invoke _ld/_st_mmu. */ env->tlb_table[mmu_idx][index].addr_read ^= TARGET_PAGE_MASK; env->tlb_table[mmu_idx][index].addr_write ^= TARGET_PAGE_MASK; if ((invalidate_cache == 2) && (index < CPU_TLB_SIZE)) { // Write crossed page boundaris. Invalidate second cache too. env->tlb_table[mmu_idx][index + 1].addr_read ^= TARGET_PAGE_MASK; env->tlb_table[mmu_idx][index + 1].addr_write ^= TARGET_PAGE_MASK; } } #endif // CONFIG_MEMCHECK_MMU } else { /* the page is not in the TLB : fill it */ retaddr = GETPC(); #ifdef ALIGNED_ONLY if ((addr & (DATA_SIZE - 1)) != 0) do_unaligned_access(addr, 1, mmu_idx, retaddr); #endif tlb_fill(addr, 1, mmu_idx, retaddr); goto redo; } } /* handles all unaligned cases */ static void glue(glue(slow_st, SUFFIX), MMUSUFFIX)(target_ulong addr, DATA_TYPE val, int mmu_idx, void *retaddr) { target_phys_addr_t ioaddr; unsigned long addend; target_ulong tlb_addr; int index, i; index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); redo: tlb_addr = env->tlb_table[mmu_idx][index].addr_write; if ((addr & TARGET_PAGE_MASK) == (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { if (tlb_addr & ~TARGET_PAGE_MASK) { /* IO access */ if ((addr & (DATA_SIZE - 1)) != 0) goto do_unaligned_access; ioaddr = env->iotlb[mmu_idx][index]; glue(io_write, SUFFIX)(ioaddr, val, addr, retaddr); } else if (((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1) >= TARGET_PAGE_SIZE) { do_unaligned_access: /* XXX: not efficient, but simple */ /* Note: relies on the fact that tlb_fill() does not remove the * previous page from the TLB cache. */ for(i = DATA_SIZE - 1; i >= 0; i--) { #ifdef TARGET_WORDS_BIGENDIAN glue(slow_stb, MMUSUFFIX)(addr + i, val >> (((DATA_SIZE - 1) * 8) - (i * 8)), mmu_idx, retaddr); #else glue(slow_stb, MMUSUFFIX)(addr + i, val >> (i * 8), mmu_idx, retaddr); #endif } } else { /* aligned/unaligned access in the same page */ addend = env->tlb_table[mmu_idx][index].addend; glue(glue(st, SUFFIX), _raw)((uint8_t *)(long)(addr+addend), val); } } else { /* the page is not in the TLB : fill it */ tlb_fill(addr, 1, mmu_idx, retaddr); goto redo; } } #endif /* !defined(SOFTMMU_CODE_ACCESS) */ #undef READ_ACCESS_TYPE #undef SHIFT #undef DATA_TYPE #undef SUFFIX #undef USUFFIX #undef DATA_SIZE #undef ADDR_READ