/* * QEMU System Emulator * * Copyright (c) 2003-2008 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ /* the following is needed on Linux to define ptsname() in stdlib.h */ #if defined(__linux__) #define _GNU_SOURCE 1 #endif #include "qemu-common.h" #include "hw/hw.h" #include "hw/boards.h" #include "hw/usb.h" #include "hw/pcmcia.h" #include "hw/pc.h" #include "hw/audiodev.h" #include "hw/isa.h" #include "hw/baum.h" #include "hw/goldfish_nand.h" #include "net.h" #include "console.h" #include "sysemu.h" #include "gdbstub.h" #include "qemu-timer.h" #include "qemu-char.h" #include "blockdev.h" #include "audio/audio.h" #include "qemu_file.h" #include "android/android.h" #include "charpipe.h" #include "modem_driver.h" #include "android/gps.h" #include "android/hw-qemud.h" #include "android/hw-qemud-pipe.h" #include "android/hw-kmsg.h" #include "android/charmap.h" #include "android/globals.h" #include "android/utils/bufprint.h" #include "android/utils/debug.h" #include "android/utils/filelock.h" #include "android/utils/path.h" #include "android/utils/stralloc.h" #include "android/utils/tempfile.h" #include "android/display-core.h" #include "android/utils/timezone.h" #include "android/snapshot.h" #include "targphys.h" #include "tcpdump.h" #ifdef CONFIG_MEMCHECK #include "memcheck/memcheck.h" #endif // CONFIG_MEMCHECK #include #include #include #include #include #include #include /* Needed early for CONFIG_BSD etc. */ #include "config-host.h" #ifndef _WIN32 #include #include #include #include #include #include #include #include #include #include #include #if defined(__NetBSD__) #include #endif #ifdef __linux__ #include #endif #include #include #include #include #ifdef CONFIG_BSD #include #if defined(__FreeBSD__) || defined(__DragonFly__) #include #else #include #endif #elif defined (__GLIBC__) && defined (__FreeBSD_kernel__) #include #else #ifdef __linux__ #include #include #include /* For the benefit of older linux systems which don't supply it, we use a local copy of hpet.h. */ /* #include */ #include "hpet.h" #include #include #endif #ifdef __sun__ #include #include #include #include #include #include #include #include // must come after ip.h #include #include #include #include #include #endif #endif #endif #if defined(__OpenBSD__) #include #endif #if defined(CONFIG_VDE) #include #endif #ifdef _WIN32 #include #include #include #include #define getopt_long_only getopt_long #define memalign(align, size) malloc(size) #endif #ifdef CONFIG_COCOA #undef main #define main qemu_main #endif /* CONFIG_COCOA */ #include "hw/hw.h" #include "hw/boards.h" #include "hw/usb.h" #include "hw/pcmcia.h" #include "hw/pc.h" #include "hw/audiodev.h" #include "hw/isa.h" #include "hw/baum.h" #include "hw/bt.h" #include "hw/watchdog.h" #include "hw/smbios.h" #include "hw/xen.h" #include "bt-host.h" #include "net.h" #include "monitor.h" #include "console.h" #include "sysemu.h" #include "gdbstub.h" #include "qemu-timer.h" #include "qemu-char.h" #include "cache-utils.h" #include "block.h" #include "dma.h" #include "audio/audio.h" #include "migration.h" #include "kvm.h" #include "balloon.h" #include "android/hw-lcd.h" #include "android/boot-properties.h" #include "android/hw-control.h" #include "android/core-init-utils.h" #include "android/audio-test.h" #ifdef CONFIG_STANDALONE_CORE /* Verbose value used by the standalone emulator core (without UI) */ unsigned long android_verbose; #endif // CONFIG_STANDALONE_CORE #if !defined(CONFIG_STANDALONE_CORE) /* in android/qemulator.c */ extern void android_emulator_set_base_port(int port); #endif #if defined(CONFIG_SKINS) && !defined(CONFIG_STANDALONE_CORE) #undef main #define main qemu_main #endif #include "disas.h" #include "exec-all.h" #ifdef CONFIG_TRACE #include "trace.h" #include "dcache.h" #endif #include "qemu_socket.h" #if defined(CONFIG_SLIRP) #include "libslirp.h" #endif #define DEFAULT_RAM_SIZE 128 /* Max number of USB devices that can be specified on the commandline. */ #define MAX_USB_CMDLINE 8 /* Max number of bluetooth switches on the commandline. */ #define MAX_BT_CMDLINE 10 /* XXX: use a two level table to limit memory usage */ static const char *data_dir; const char *bios_name = NULL; static void *ioport_opaque[MAX_IOPORTS]; static IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS]; static IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS]; #ifdef MAX_DRIVES /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available to store the VM snapshots */ DriveInfo drives_table[MAX_DRIVES+1]; int nb_drives; #endif enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB; DisplayType display_type = DT_DEFAULT; const char* keyboard_layout = NULL; int64_t ticks_per_sec; ram_addr_t ram_size; int nb_nics; NICInfo nd_table[MAX_NICS]; int vm_running; int autostart; static int rtc_utc = 1; static int rtc_date_offset = -1; /* -1 means no change */ int cirrus_vga_enabled = 1; int std_vga_enabled = 0; int vmsvga_enabled = 0; int xenfb_enabled = 0; QEMUClock *rtc_clock; #ifdef TARGET_SPARC int graphic_width = 1024; int graphic_height = 768; int graphic_depth = 8; #else int graphic_width = 800; int graphic_height = 600; int graphic_depth = 15; #endif static int full_screen = 0; #ifdef CONFIG_SDL static int no_frame = 0; #endif int no_quit = 0; CharDriverState *serial_hds[MAX_SERIAL_PORTS]; int serial_hds_count; CharDriverState *parallel_hds[MAX_PARALLEL_PORTS]; CharDriverState *virtcon_hds[MAX_VIRTIO_CONSOLES]; #ifdef TARGET_I386 int win2k_install_hack = 0; int rtc_td_hack = 0; #endif int usb_enabled = 0; int singlestep = 0; int smp_cpus = 1; const char *vnc_display; int acpi_enabled = 1; int no_hpet = 0; int no_virtio_balloon = 0; int fd_bootchk = 1; int no_reboot = 0; int no_shutdown = 0; int cursor_hide = 1; int graphic_rotate = 0; #ifndef _WIN32 int daemonize = 0; #endif WatchdogTimerModel *watchdog = NULL; int watchdog_action = WDT_RESET; const char *option_rom[MAX_OPTION_ROMS]; int nb_option_roms; int semihosting_enabled = 0; #ifdef TARGET_ARM int old_param = 0; #endif const char *qemu_name; int alt_grab = 0; #if defined(TARGET_SPARC) || defined(TARGET_PPC) unsigned int nb_prom_envs = 0; const char *prom_envs[MAX_PROM_ENVS]; #endif #ifdef MAX_DRIVES int nb_drives_opt; struct drive_opt drives_opt[MAX_DRIVES]; #endif int nb_numa_nodes; uint64_t node_mem[MAX_NODES]; uint64_t node_cpumask[MAX_NODES]; static CPUState *cur_cpu; static CPUState *next_cpu; static QEMUTimer *nographic_timer; uint8_t qemu_uuid[16]; int qemu_cpu_delay; extern char* audio_input_source; extern char* android_op_ports; extern char* android_op_port; extern char* android_op_report_console; extern char* op_http_proxy; // Path to the file containing specific key character map. char* op_charmap_file = NULL; /* Path to hardware initialization file passed with -android-hw option. */ char* android_op_hwini = NULL; /* Memory checker options. */ char* android_op_memcheck = NULL; /* -dns-server option value. */ char* android_op_dns_server = NULL; /* -radio option value. */ char* android_op_radio = NULL; /* -gps option value. */ char* android_op_gps = NULL; /* -audio option value. */ char* android_op_audio = NULL; /* -cpu-delay option value. */ char* android_op_cpu_delay = NULL; #ifdef CONFIG_NAND_LIMITS /* -nand-limits option value. */ char* android_op_nand_limits = NULL; #endif // CONFIG_NAND_LIMITS /* -netspeed option value. */ char* android_op_netspeed = NULL; /* -netdelay option value. */ char* android_op_netdelay = NULL; /* -netfast option value. */ int android_op_netfast = 0; /* -tcpdump option value. */ char* android_op_tcpdump = NULL; /* -lcd-density option value. */ char* android_op_lcd_density = NULL; /* -ui-port option value. This port will be used to report the core * initialization completion. */ char* android_op_ui_port = NULL; /* -ui-settings option value. This value will be passed to the UI when new UI * process is attaching to the core. */ char* android_op_ui_settings = NULL; /* -android-avdname option value. */ char* android_op_avd_name = "unknown"; extern int android_display_width; extern int android_display_height; extern int android_display_bpp; extern void dprint( const char* format, ... ); const char* dns_log_filename = NULL; const char* drop_log_filename = NULL; static int rotate_logs_requested = 0; const char* savevm_on_exit = NULL; #define TFR(expr) do { if ((expr) != -1) break; } while (errno == EINTR) /* Reports the core initialization failure to the error stdout and to the UI * socket before exiting the application. * Parameters that are passed to this macro are used to format the error * mesage using sprintf routine. */ #ifdef CONFIG_ANDROID #define PANIC(...) android_core_init_failure(__VA_ARGS__) #else #define PANIC(...) do { fprintf(stderr, __VA_ARGS__); \ exit(1); \ } while (0) #endif // CONFIG_ANDROID /* Exits the core during initialization. */ #ifdef CONFIG_ANDROID #define QEMU_EXIT(exit_code) android_core_init_exit(exit_code) #else #define QEMU_EXIT(exit_code) exit(exit_code) #endif // CONFIG_ANDROID /***********************************************************/ /* x86 ISA bus support */ target_phys_addr_t isa_mem_base = 0; PicState2 *isa_pic; static IOPortReadFunc default_ioport_readb, default_ioport_readw, default_ioport_readl; static IOPortWriteFunc default_ioport_writeb, default_ioport_writew, default_ioport_writel; static uint32_t ioport_read(int index, uint32_t address) { static IOPortReadFunc *default_func[3] = { default_ioport_readb, default_ioport_readw, default_ioport_readl }; IOPortReadFunc *func = ioport_read_table[index][address]; if (!func) func = default_func[index]; return func(ioport_opaque[address], address); } static void ioport_write(int index, uint32_t address, uint32_t data) { static IOPortWriteFunc *default_func[3] = { default_ioport_writeb, default_ioport_writew, default_ioport_writel }; IOPortWriteFunc *func = ioport_write_table[index][address]; if (!func) func = default_func[index]; func(ioport_opaque[address], address, data); } static uint32_t default_ioport_readb(void *opaque, uint32_t address) { #ifdef DEBUG_UNUSED_IOPORT fprintf(stderr, "unused inb: port=0x%04x\n", address); #endif return 0xff; } static void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data) { #ifdef DEBUG_UNUSED_IOPORT fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data); #endif } /* default is to make two byte accesses */ static uint32_t default_ioport_readw(void *opaque, uint32_t address) { uint32_t data; data = ioport_read(0, address); address = (address + 1) & (MAX_IOPORTS - 1); data |= ioport_read(0, address) << 8; return data; } static void default_ioport_writew(void *opaque, uint32_t address, uint32_t data) { ioport_write(0, address, data & 0xff); address = (address + 1) & (MAX_IOPORTS - 1); ioport_write(0, address, (data >> 8) & 0xff); } static uint32_t default_ioport_readl(void *opaque, uint32_t address) { #ifdef DEBUG_UNUSED_IOPORT fprintf(stderr, "unused inl: port=0x%04x\n", address); #endif return 0xffffffff; } static void default_ioport_writel(void *opaque, uint32_t address, uint32_t data) { #ifdef DEBUG_UNUSED_IOPORT fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data); #endif } /* * Sets a flag (rotate_logs_requested) to clear both the DNS and the * drop logs upon receiving a SIGUSR1 signal. We need to clear the logs * between the tasks that do not require restarting Qemu. */ void rotate_qemu_logs_handler(int signum) { rotate_logs_requested = 1; } /* * Resets the rotate_log_requested_flag. Normally called after qemu * logs has been rotated. */ void reset_rotate_qemu_logs_request(void) { rotate_logs_requested = 0; } /* * Clears the passed qemu log when the rotate_logs_requested * is set. We need to clear the logs between the tasks that do not * require restarting Qemu. */ FILE* rotate_qemu_log(FILE* old_log_fd, const char* filename) { FILE* new_log_fd = NULL; if (old_log_fd) { if (fclose(old_log_fd) == -1) { fprintf(stderr, "Cannot close old_log fd\n"); exit(errno); } } if (!filename) { fprintf(stderr, "The log filename to be rotated is not provided"); exit(-1); } new_log_fd = fopen(filename , "wb+"); if (new_log_fd == NULL) { fprintf(stderr, "Cannot open the log file: %s for write.\n", filename); exit(1); } return new_log_fd; } /***********************************************************/ void hw_error(const char *fmt, ...) { va_list ap; CPUState *env; va_start(ap, fmt); fprintf(stderr, "qemu: hardware error: "); vfprintf(stderr, fmt, ap); fprintf(stderr, "\n"); for(env = first_cpu; env != NULL; env = env->next_cpu) { fprintf(stderr, "CPU #%d:\n", env->cpu_index); #ifdef TARGET_I386 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU); #else cpu_dump_state(env, stderr, fprintf, 0); #endif } va_end(ap); abort(); } /***************/ /* ballooning */ static QEMUBalloonEvent *qemu_balloon_event; void *qemu_balloon_event_opaque; void qemu_add_balloon_handler(QEMUBalloonEvent *func, void *opaque) { qemu_balloon_event = func; qemu_balloon_event_opaque = opaque; } void qemu_balloon(ram_addr_t target) { if (qemu_balloon_event) qemu_balloon_event(qemu_balloon_event_opaque, target); } ram_addr_t qemu_balloon_status(void) { if (qemu_balloon_event) return qemu_balloon_event(qemu_balloon_event_opaque, 0); return 0; } /***********************************************************/ /* real time host monotonic timer */ /* compute with 96 bit intermediate result: (a*b)/c */ uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c) { union { uint64_t ll; struct { #ifdef HOST_WORDS_BIGENDIAN uint32_t high, low; #else uint32_t low, high; #endif } l; } u, res; uint64_t rl, rh; u.ll = a; rl = (uint64_t)u.l.low * (uint64_t)b; rh = (uint64_t)u.l.high * (uint64_t)b; rh += (rl >> 32); res.l.high = rh / c; res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c; return res.ll; } /***********************************************************/ /* host time/date access */ void qemu_get_timedate(struct tm *tm, int offset) { time_t ti; struct tm *ret; time(&ti); ti += offset; if (rtc_date_offset == -1) { if (rtc_utc) ret = gmtime(&ti); else ret = localtime(&ti); } else { ti -= rtc_date_offset; ret = gmtime(&ti); } memcpy(tm, ret, sizeof(struct tm)); } int qemu_timedate_diff(struct tm *tm) { time_t seconds; if (rtc_date_offset == -1) if (rtc_utc) seconds = mktimegm(tm); else seconds = mktime(tm); else seconds = mktimegm(tm) + rtc_date_offset; return seconds - time(NULL); } #ifdef CONFIG_TRACE static int tbflush_requested; static int exit_requested; void start_tracing() { if (trace_filename == NULL) return; if (!tracing) { fprintf(stderr,"-- start tracing --\n"); start_time = Now(); } tracing = 1; tbflush_requested = 1; qemu_notify_event(); } void stop_tracing() { if (trace_filename == NULL) return; if (tracing) { end_time = Now(); elapsed_usecs += end_time - start_time; fprintf(stderr,"-- stop tracing --\n"); } tracing = 0; tbflush_requested = 1; qemu_notify_event(); } #ifndef _WIN32 /* This is the handler for the SIGUSR1 and SIGUSR2 signals. * SIGUSR1 turns tracing on. SIGUSR2 turns tracing off. */ void sigusr_handler(int sig) { if (sig == SIGUSR1) start_tracing(); else stop_tracing(); } #endif /* This is the handler to catch control-C so that we can exit cleanly. * This is needed when tracing to flush the buffers to disk. */ void sigint_handler(int sig) { exit_requested = 1; qemu_notify_event(); } #endif /* CONFIG_TRACE */ /***********************************************************/ /* Bluetooth support */ static int nb_hcis; static int cur_hci; static struct HCIInfo *hci_table[MAX_NICS]; static struct bt_vlan_s { struct bt_scatternet_s net; int id; struct bt_vlan_s *next; } *first_bt_vlan; /* find or alloc a new bluetooth "VLAN" */ static struct bt_scatternet_s *qemu_find_bt_vlan(int id) { struct bt_vlan_s **pvlan, *vlan; for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) { if (vlan->id == id) return &vlan->net; } vlan = qemu_mallocz(sizeof(struct bt_vlan_s)); vlan->id = id; pvlan = &first_bt_vlan; while (*pvlan != NULL) pvlan = &(*pvlan)->next; *pvlan = vlan; return &vlan->net; } static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len) { } static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr) { return -ENOTSUP; } static struct HCIInfo null_hci = { .cmd_send = null_hci_send, .sco_send = null_hci_send, .acl_send = null_hci_send, .bdaddr_set = null_hci_addr_set, }; struct HCIInfo *qemu_next_hci(void) { if (cur_hci == nb_hcis) return &null_hci; return hci_table[cur_hci++]; } static struct HCIInfo *hci_init(const char *str) { char *endp; struct bt_scatternet_s *vlan = 0; if (!strcmp(str, "null")) /* null */ return &null_hci; else if (!strncmp(str, "host", 4) && (str[4] == '\0' || str[4] == ':')) /* host[:hciN] */ return bt_host_hci(str[4] ? str + 5 : "hci0"); else if (!strncmp(str, "hci", 3)) { /* hci[,vlan=n] */ if (str[3]) { if (!strncmp(str + 3, ",vlan=", 6)) { vlan = qemu_find_bt_vlan(strtol(str + 9, &endp, 0)); if (*endp) vlan = 0; } } else vlan = qemu_find_bt_vlan(0); if (vlan) return bt_new_hci(vlan); } fprintf(stderr, "qemu: Unknown bluetooth HCI `%s'.\n", str); return 0; } static int bt_hci_parse(const char *str) { struct HCIInfo *hci; bdaddr_t bdaddr; if (nb_hcis >= MAX_NICS) { fprintf(stderr, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS); return -1; } hci = hci_init(str); if (!hci) return -1; bdaddr.b[0] = 0x52; bdaddr.b[1] = 0x54; bdaddr.b[2] = 0x00; bdaddr.b[3] = 0x12; bdaddr.b[4] = 0x34; bdaddr.b[5] = 0x56 + nb_hcis; hci->bdaddr_set(hci, bdaddr.b); hci_table[nb_hcis++] = hci; return 0; } static void bt_vhci_add(int vlan_id) { struct bt_scatternet_s *vlan = qemu_find_bt_vlan(vlan_id); if (!vlan->slave) fprintf(stderr, "qemu: warning: adding a VHCI to " "an empty scatternet %i\n", vlan_id); bt_vhci_init(bt_new_hci(vlan)); } static struct bt_device_s *bt_device_add(const char *opt) { struct bt_scatternet_s *vlan; int vlan_id = 0; char *endp = strstr(opt, ",vlan="); int len = (endp ? endp - opt : strlen(opt)) + 1; char devname[10]; pstrcpy(devname, MIN(sizeof(devname), len), opt); if (endp) { vlan_id = strtol(endp + 6, &endp, 0); if (*endp) { fprintf(stderr, "qemu: unrecognised bluetooth vlan Id\n"); return 0; } } vlan = qemu_find_bt_vlan(vlan_id); if (!vlan->slave) fprintf(stderr, "qemu: warning: adding a slave device to " "an empty scatternet %i\n", vlan_id); if (!strcmp(devname, "keyboard")) return bt_keyboard_init(vlan); fprintf(stderr, "qemu: unsupported bluetooth device `%s'\n", devname); return 0; } static int bt_parse(const char *opt) { const char *endp, *p; int vlan; if (strstart(opt, "hci", &endp)) { if (!*endp || *endp == ',') { if (*endp) if (!strstart(endp, ",vlan=", 0)) opt = endp + 1; return bt_hci_parse(opt); } } else if (strstart(opt, "vhci", &endp)) { if (!*endp || *endp == ',') { if (*endp) { if (strstart(endp, ",vlan=", &p)) { vlan = strtol(p, (char **) &endp, 0); if (*endp) { fprintf(stderr, "qemu: bad scatternet '%s'\n", p); return 1; } } else { fprintf(stderr, "qemu: bad parameter '%s'\n", endp + 1); return 1; } } else vlan = 0; bt_vhci_add(vlan); return 0; } } else if (strstart(opt, "device:", &endp)) return !bt_device_add(endp); fprintf(stderr, "qemu: bad bluetooth parameter '%s'\n", opt); return 1; } /***********************************************************/ /* QEMU Block devices */ #define HD_ALIAS "index=%d,media=disk" #define CDROM_ALIAS "index=2,media=cdrom" #define FD_ALIAS "index=%d,if=floppy" #define PFLASH_ALIAS "if=pflash" #define MTD_ALIAS "if=mtd" #define SD_ALIAS "index=0,if=sd" static int drive_init_func(QemuOpts *opts, void *opaque) { int *use_scsi = opaque; int fatal_error = 0; if (drive_init(opts, *use_scsi, &fatal_error) == NULL) { if (fatal_error) return 1; } return 0; } static int drive_enable_snapshot(QemuOpts *opts, void *opaque) { if (NULL == qemu_opt_get(opts, "snapshot")) { qemu_opt_set(opts, "snapshot", "on"); } return 0; } #ifdef MAX_DRIVES static int drive_opt_get_free_idx(void) { int index; for (index = 0; index < MAX_DRIVES; index++) if (!drives_opt[index].used) { drives_opt[index].used = 1; return index; } return -1; } static int drive_get_free_idx(void) { int index; for (index = 0; index < MAX_DRIVES; index++) if (!drives_table[index].used) { drives_table[index].used = 1; return index; } return -1; } int drive_add(const char *file, const char *fmt, ...) { va_list ap; int index = drive_opt_get_free_idx(); if (nb_drives_opt >= MAX_DRIVES || index == -1) { fprintf(stderr, "qemu: too many drives\n"); return -1; } drives_opt[index].file = file; va_start(ap, fmt); vsnprintf(drives_opt[index].opt, sizeof(drives_opt[0].opt), fmt, ap); va_end(ap); nb_drives_opt++; return index; } void drive_remove(int index) { drives_opt[index].used = 0; nb_drives_opt--; } int drive_get_index(BlockInterfaceType type, int bus, int unit) { int index; /* seek interface, bus and unit */ for (index = 0; index < MAX_DRIVES; index++) if (drives_table[index].type == type && drives_table[index].bus == bus && drives_table[index].unit == unit && drives_table[index].used) return index; return -1; } int drive_get_max_bus(BlockInterfaceType type) { int max_bus; int index; max_bus = -1; for (index = 0; index < nb_drives; index++) { if(drives_table[index].type == type && drives_table[index].bus > max_bus) max_bus = drives_table[index].bus; } return max_bus; } const char *drive_get_serial(BlockDriverState *bdrv) { int index; for (index = 0; index < nb_drives; index++) if (drives_table[index].bdrv == bdrv) return drives_table[index].serial; return "\0"; } BlockInterfaceErrorAction drive_get_onerror(BlockDriverState *bdrv) { int index; for (index = 0; index < nb_drives; index++) if (drives_table[index].bdrv == bdrv) return drives_table[index].onerror; return BLOCK_ERR_STOP_ENOSPC; } static void bdrv_format_print(void *opaque, const char *name) { fprintf(stderr, " %s", name); } void drive_uninit(BlockDriverState *bdrv) { int i; for (i = 0; i < MAX_DRIVES; i++) if (drives_table[i].bdrv == bdrv) { drives_table[i].bdrv = NULL; drives_table[i].used = 0; drive_remove(drives_table[i].drive_opt_idx); nb_drives--; break; } } int drive_init(struct drive_opt *arg, int snapshot, void *opaque) { char buf[128]; char file[1024]; char devname[128]; char serial[21]; const char *mediastr = ""; BlockInterfaceType type; enum { MEDIA_DISK, MEDIA_CDROM } media; int bus_id, unit_id; int cyls, heads, secs, translation; BlockDriverState *bdrv; BlockDriver *drv = NULL; QEMUMachine *machine = opaque; int max_devs; int index; int cache; int bdrv_flags, onerror; int drives_table_idx; char *str = arg->opt; static const char * const params[] = { "bus", "unit", "if", "index", "cyls", "heads", "secs", "trans", "media", "snapshot", "file", "cache", "format", "serial", "werror", NULL }; if (check_params(buf, sizeof(buf), params, str) < 0) { fprintf(stderr, "qemu: unknown parameter '%s' in '%s'\n", buf, str); return -1; } file[0] = 0; cyls = heads = secs = 0; bus_id = 0; unit_id = -1; translation = BIOS_ATA_TRANSLATION_AUTO; index = -1; cache = 3; if (machine->use_scsi) { type = IF_SCSI; max_devs = MAX_SCSI_DEVS; pstrcpy(devname, sizeof(devname), "scsi"); } else { type = IF_IDE; max_devs = MAX_IDE_DEVS; pstrcpy(devname, sizeof(devname), "ide"); } media = MEDIA_DISK; /* extract parameters */ if (get_param_value(buf, sizeof(buf), "bus", str)) { bus_id = strtol(buf, NULL, 0); if (bus_id < 0) { fprintf(stderr, "qemu: '%s' invalid bus id\n", str); return -1; } } if (get_param_value(buf, sizeof(buf), "unit", str)) { unit_id = strtol(buf, NULL, 0); if (unit_id < 0) { fprintf(stderr, "qemu: '%s' invalid unit id\n", str); return -1; } } if (get_param_value(buf, sizeof(buf), "if", str)) { pstrcpy(devname, sizeof(devname), buf); if (!strcmp(buf, "ide")) { type = IF_IDE; max_devs = MAX_IDE_DEVS; } else if (!strcmp(buf, "scsi")) { type = IF_SCSI; max_devs = MAX_SCSI_DEVS; } else if (!strcmp(buf, "floppy")) { type = IF_FLOPPY; max_devs = 0; } else if (!strcmp(buf, "pflash")) { type = IF_PFLASH; max_devs = 0; } else if (!strcmp(buf, "mtd")) { type = IF_MTD; max_devs = 0; } else if (!strcmp(buf, "sd")) { type = IF_SD; max_devs = 0; } else if (!strcmp(buf, "virtio")) { type = IF_VIRTIO; max_devs = 0; } else if (!strcmp(buf, "xen")) { type = IF_XEN; max_devs = 0; } else { fprintf(stderr, "qemu: '%s' unsupported bus type '%s'\n", str, buf); return -1; } } if (get_param_value(buf, sizeof(buf), "index", str)) { index = strtol(buf, NULL, 0); if (index < 0) { fprintf(stderr, "qemu: '%s' invalid index\n", str); return -1; } } if (get_param_value(buf, sizeof(buf), "cyls", str)) { cyls = strtol(buf, NULL, 0); } if (get_param_value(buf, sizeof(buf), "heads", str)) { heads = strtol(buf, NULL, 0); } if (get_param_value(buf, sizeof(buf), "secs", str)) { secs = strtol(buf, NULL, 0); } if (cyls || heads || secs) { if (cyls < 1 || cyls > 16383) { fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", str); return -1; } if (heads < 1 || heads > 16) { fprintf(stderr, "qemu: '%s' invalid physical heads number\n", str); return -1; } if (secs < 1 || secs > 63) { fprintf(stderr, "qemu: '%s' invalid physical secs number\n", str); return -1; } } if (get_param_value(buf, sizeof(buf), "trans", str)) { if (!cyls) { fprintf(stderr, "qemu: '%s' trans must be used with cyls,heads and secs\n", str); return -1; } if (!strcmp(buf, "none")) translation = BIOS_ATA_TRANSLATION_NONE; else if (!strcmp(buf, "lba")) translation = BIOS_ATA_TRANSLATION_LBA; else if (!strcmp(buf, "auto")) translation = BIOS_ATA_TRANSLATION_AUTO; else { fprintf(stderr, "qemu: '%s' invalid translation type\n", str); return -1; } } if (get_param_value(buf, sizeof(buf), "media", str)) { if (!strcmp(buf, "disk")) { media = MEDIA_DISK; } else if (!strcmp(buf, "cdrom")) { if (cyls || secs || heads) { fprintf(stderr, "qemu: '%s' invalid physical CHS format\n", str); return -1; } media = MEDIA_CDROM; } else { fprintf(stderr, "qemu: '%s' invalid media\n", str); return -1; } } if (get_param_value(buf, sizeof(buf), "snapshot", str)) { if (!strcmp(buf, "on")) snapshot = 1; else if (!strcmp(buf, "off")) snapshot = 0; else { fprintf(stderr, "qemu: '%s' invalid snapshot option\n", str); return -1; } } if (get_param_value(buf, sizeof(buf), "cache", str)) { if (!strcmp(buf, "off") || !strcmp(buf, "none")) cache = 0; else if (!strcmp(buf, "writethrough")) cache = 1; else if (!strcmp(buf, "writeback")) cache = 2; else { fprintf(stderr, "qemu: invalid cache option\n"); return -1; } } if (get_param_value(buf, sizeof(buf), "format", str)) { if (strcmp(buf, "?") == 0) { fprintf(stderr, "qemu: Supported formats:"); bdrv_iterate_format(bdrv_format_print, NULL); fprintf(stderr, "\n"); return -1; } drv = bdrv_find_format(buf); if (!drv) { fprintf(stderr, "qemu: '%s' invalid format\n", buf); return -1; } } if (arg->file == NULL) get_param_value(file, sizeof(file), "file", str); else pstrcpy(file, sizeof(file), arg->file); if (!get_param_value(serial, sizeof(serial), "serial", str)) memset(serial, 0, sizeof(serial)); onerror = BLOCK_ERR_STOP_ENOSPC; if (get_param_value(buf, sizeof(serial), "werror", str)) { if (type != IF_IDE && type != IF_SCSI && type != IF_VIRTIO) { fprintf(stderr, "werror is no supported by this format\n"); return -1; } if (!strcmp(buf, "ignore")) onerror = BLOCK_ERR_IGNORE; else if (!strcmp(buf, "enospc")) onerror = BLOCK_ERR_STOP_ENOSPC; else if (!strcmp(buf, "stop")) onerror = BLOCK_ERR_STOP_ANY; else if (!strcmp(buf, "report")) onerror = BLOCK_ERR_REPORT; else { fprintf(stderr, "qemu: '%s' invalid write error action\n", buf); return -1; } } /* compute bus and unit according index */ if (index != -1) { if (bus_id != 0 || unit_id != -1) { fprintf(stderr, "qemu: '%s' index cannot be used with bus and unit\n", str); return -1; } if (max_devs == 0) { unit_id = index; bus_id = 0; } else { unit_id = index % max_devs; bus_id = index / max_devs; } } /* if user doesn't specify a unit_id, * try to find the first free */ if (unit_id == -1) { unit_id = 0; while (drive_get_index(type, bus_id, unit_id) != -1) { unit_id++; if (max_devs && unit_id >= max_devs) { unit_id -= max_devs; bus_id++; } } } /* check unit id */ if (max_devs && unit_id >= max_devs) { fprintf(stderr, "qemu: '%s' unit %d too big (max is %d)\n", str, unit_id, max_devs - 1); return -1; } /* * ignore multiple definitions */ if (drive_get_index(type, bus_id, unit_id) != -1) return -2; /* init */ if (type == IF_IDE || type == IF_SCSI) mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd"; if (max_devs) snprintf(buf, sizeof(buf), "%s%i%s%i", devname, bus_id, mediastr, unit_id); else snprintf(buf, sizeof(buf), "%s%s%i", devname, mediastr, unit_id); bdrv = bdrv_new(buf); drives_table_idx = drive_get_free_idx(); drives_table[drives_table_idx].bdrv = bdrv; drives_table[drives_table_idx].type = type; drives_table[drives_table_idx].bus = bus_id; drives_table[drives_table_idx].unit = unit_id; drives_table[drives_table_idx].onerror = onerror; drives_table[drives_table_idx].drive_opt_idx = arg - drives_opt; strncpy(drives_table[drives_table_idx].serial, serial, sizeof(serial)); nb_drives++; switch(type) { case IF_IDE: case IF_SCSI: case IF_XEN: switch(media) { case MEDIA_DISK: if (cyls != 0) { bdrv_set_geometry_hint(bdrv, cyls, heads, secs); bdrv_set_translation_hint(bdrv, translation); } break; case MEDIA_CDROM: bdrv_set_type_hint(bdrv, BDRV_TYPE_CDROM); break; } break; case IF_SD: /* FIXME: This isn't really a floppy, but it's a reasonable approximation. */ case IF_FLOPPY: bdrv_set_type_hint(bdrv, BDRV_TYPE_FLOPPY); break; case IF_PFLASH: case IF_MTD: case IF_VIRTIO: break; case IF_COUNT: case IF_NONE: abort(); } if (!file[0]) return -2; bdrv_flags = 0; if (snapshot) { bdrv_flags |= BDRV_O_SNAPSHOT; cache = 2; /* always use write-back with snapshot */ } if (cache == 0) /* no caching */ bdrv_flags |= BDRV_O_NOCACHE; else if (cache == 2) /* write-back */ bdrv_flags |= BDRV_O_CACHE_WB; else if (cache == 3) /* not specified */ bdrv_flags |= BDRV_O_CACHE_DEF; if (bdrv_open2(bdrv, file, bdrv_flags, drv) < 0) { fprintf(stderr, "qemu: could not open disk image %s\n", file); return -1; } if (bdrv_key_required(bdrv)) autostart = 0; return drives_table_idx; } #endif /* MAX_DRIVES */ static void numa_add(const char *optarg) { char option[128]; char *endptr; unsigned long long value, endvalue; int nodenr; optarg = get_opt_name(option, 128, optarg, ',') + 1; if (!strcmp(option, "node")) { if (get_param_value(option, 128, "nodeid", optarg) == 0) { nodenr = nb_numa_nodes; } else { nodenr = strtoull(option, NULL, 10); } if (get_param_value(option, 128, "mem", optarg) == 0) { node_mem[nodenr] = 0; } else { value = strtoull(option, &endptr, 0); switch (*endptr) { case 0: case 'M': case 'm': value <<= 20; break; case 'G': case 'g': value <<= 30; break; } node_mem[nodenr] = value; } if (get_param_value(option, 128, "cpus", optarg) == 0) { node_cpumask[nodenr] = 0; } else { value = strtoull(option, &endptr, 10); if (value >= 64) { value = 63; fprintf(stderr, "only 64 CPUs in NUMA mode supported.\n"); } else { if (*endptr == '-') { endvalue = strtoull(endptr+1, &endptr, 10); if (endvalue >= 63) { endvalue = 62; fprintf(stderr, "only 63 CPUs in NUMA mode supported.\n"); } value = (1 << (endvalue + 1)) - (1 << value); } else { value = 1 << value; } } node_cpumask[nodenr] = value; } nb_numa_nodes++; } return; } /***********************************************************/ /* USB devices */ static USBPort *used_usb_ports; static USBPort *free_usb_ports; /* ??? Maybe change this to register a hub to keep track of the topology. */ void qemu_register_usb_port(USBPort *port, void *opaque, int index, usb_attachfn attach) { port->opaque = opaque; port->index = index; port->attach = attach; port->next = free_usb_ports; free_usb_ports = port; } int usb_device_add_dev(USBDevice *dev) { USBPort *port; /* Find a USB port to add the device to. */ port = free_usb_ports; if (!port->next) { USBDevice *hub; /* Create a new hub and chain it on. */ free_usb_ports = NULL; port->next = used_usb_ports; used_usb_ports = port; hub = usb_hub_init(VM_USB_HUB_SIZE); usb_attach(port, hub); port = free_usb_ports; } free_usb_ports = port->next; port->next = used_usb_ports; used_usb_ports = port; usb_attach(port, dev); return 0; } #if 0 static void usb_msd_password_cb(void *opaque, int err) { USBDevice *dev = opaque; if (!err) usb_device_add_dev(dev); else dev->handle_destroy(dev); } #endif static int usb_device_add(const char *devname, int is_hotplug) { const char *p; USBDevice *dev; if (!free_usb_ports) return -1; if (strstart(devname, "host:", &p)) { dev = usb_host_device_open(p); } else if (!strcmp(devname, "mouse")) { dev = usb_mouse_init(); } else if (!strcmp(devname, "tablet")) { dev = usb_tablet_init(); } else if (!strcmp(devname, "keyboard")) { dev = usb_keyboard_init(); } else if (strstart(devname, "disk:", &p)) { #if 0 BlockDriverState *bs; #endif dev = usb_msd_init(p); if (!dev) return -1; #if 0 bs = usb_msd_get_bdrv(dev); if (bdrv_key_required(bs)) { autostart = 0; if (is_hotplug) { monitor_read_bdrv_key_start(cur_mon, bs, usb_msd_password_cb, dev); return 0; } } } else if (!strcmp(devname, "wacom-tablet")) { dev = usb_wacom_init(); } else if (strstart(devname, "serial:", &p)) { dev = usb_serial_init(p); #ifdef CONFIG_BRLAPI } else if (!strcmp(devname, "braille")) { dev = usb_baum_init(); #endif } else if (strstart(devname, "net:", &p)) { int nic = nb_nics; if (net_client_init("nic", p) < 0) return -1; nd_table[nic].model = "usb"; dev = usb_net_init(&nd_table[nic]); } else if (!strcmp(devname, "bt") || strstart(devname, "bt:", &p)) { dev = usb_bt_init(devname[2] ? hci_init(p) : bt_new_hci(qemu_find_bt_vlan(0))); #endif } else { return -1; } if (!dev) return -1; return usb_device_add_dev(dev); } int usb_device_del_addr(int bus_num, int addr) { USBPort *port; USBPort **lastp; USBDevice *dev; if (!used_usb_ports) return -1; if (bus_num != 0) return -1; lastp = &used_usb_ports; port = used_usb_ports; while (port && port->dev->addr != addr) { lastp = &port->next; port = port->next; } if (!port) return -1; dev = port->dev; *lastp = port->next; usb_attach(port, NULL); dev->handle_destroy(dev); port->next = free_usb_ports; free_usb_ports = port; return 0; } static int usb_device_del(const char *devname) { int bus_num, addr; const char *p; if (strstart(devname, "host:", &p)) return usb_host_device_close(p); if (!used_usb_ports) return -1; p = strchr(devname, '.'); if (!p) return -1; bus_num = strtoul(devname, NULL, 0); addr = strtoul(p + 1, NULL, 0); return usb_device_del_addr(bus_num, addr); } void do_usb_add(Monitor *mon, const char *devname) { usb_device_add(devname, 1); } void do_usb_del(Monitor *mon, const char *devname) { usb_device_del(devname); } void usb_info(Monitor *mon) { USBDevice *dev; USBPort *port; const char *speed_str; if (!usb_enabled) { monitor_printf(mon, "USB support not enabled\n"); return; } for (port = used_usb_ports; port; port = port->next) { dev = port->dev; if (!dev) continue; switch(dev->speed) { case USB_SPEED_LOW: speed_str = "1.5"; break; case USB_SPEED_FULL: speed_str = "12"; break; case USB_SPEED_HIGH: speed_str = "480"; break; default: speed_str = "?"; break; } monitor_printf(mon, " Device %d.%d, Speed %s Mb/s, Product %s\n", 0, dev->addr, speed_str, dev->devname); } } /***********************************************************/ /* PCMCIA/Cardbus */ static struct pcmcia_socket_entry_s { PCMCIASocket *socket; struct pcmcia_socket_entry_s *next; } *pcmcia_sockets = 0; void pcmcia_socket_register(PCMCIASocket *socket) { struct pcmcia_socket_entry_s *entry; entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s)); entry->socket = socket; entry->next = pcmcia_sockets; pcmcia_sockets = entry; } void pcmcia_socket_unregister(PCMCIASocket *socket) { struct pcmcia_socket_entry_s *entry, **ptr; ptr = &pcmcia_sockets; for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr) if (entry->socket == socket) { *ptr = entry->next; qemu_free(entry); } } void pcmcia_info(Monitor *mon) { struct pcmcia_socket_entry_s *iter; if (!pcmcia_sockets) monitor_printf(mon, "No PCMCIA sockets\n"); for (iter = pcmcia_sockets; iter; iter = iter->next) monitor_printf(mon, "%s: %s\n", iter->socket->slot_string, iter->socket->attached ? iter->socket->card_string : "Empty"); } /***********************************************************/ /* I/O handling */ typedef struct IOHandlerRecord { int fd; IOCanReadHandler *fd_read_poll; IOHandler *fd_read; IOHandler *fd_write; int deleted; void *opaque; /* temporary data */ struct pollfd *ufd; struct IOHandlerRecord *next; } IOHandlerRecord; static IOHandlerRecord *first_io_handler; /* XXX: fd_read_poll should be suppressed, but an API change is necessary in the character devices to suppress fd_can_read(). */ int qemu_set_fd_handler2(int fd, IOCanReadHandler *fd_read_poll, IOHandler *fd_read, IOHandler *fd_write, void *opaque) { IOHandlerRecord **pioh, *ioh; if (!fd_read && !fd_write) { pioh = &first_io_handler; for(;;) { ioh = *pioh; if (ioh == NULL) break; if (ioh->fd == fd) { ioh->deleted = 1; break; } pioh = &ioh->next; } } else { for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) { if (ioh->fd == fd) goto found; } ioh = qemu_mallocz(sizeof(IOHandlerRecord)); ioh->next = first_io_handler; first_io_handler = ioh; found: ioh->fd = fd; ioh->fd_read_poll = fd_read_poll; ioh->fd_read = fd_read; ioh->fd_write = fd_write; ioh->opaque = opaque; ioh->deleted = 0; } return 0; } int qemu_set_fd_handler(int fd, IOHandler *fd_read, IOHandler *fd_write, void *opaque) { return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque); } #ifdef _WIN32 /***********************************************************/ /* Polling handling */ typedef struct PollingEntry { PollingFunc *func; void *opaque; struct PollingEntry *next; } PollingEntry; static PollingEntry *first_polling_entry; int qemu_add_polling_cb(PollingFunc *func, void *opaque) { PollingEntry **ppe, *pe; pe = qemu_mallocz(sizeof(PollingEntry)); pe->func = func; pe->opaque = opaque; for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next); *ppe = pe; return 0; } void qemu_del_polling_cb(PollingFunc *func, void *opaque) { PollingEntry **ppe, *pe; for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) { pe = *ppe; if (pe->func == func && pe->opaque == opaque) { *ppe = pe->next; qemu_free(pe); break; } } } /***********************************************************/ /* Wait objects support */ typedef struct WaitObjects { int num; HANDLE events[MAXIMUM_WAIT_OBJECTS + 1]; WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1]; void *opaque[MAXIMUM_WAIT_OBJECTS + 1]; } WaitObjects; static WaitObjects wait_objects = {0}; int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque) { WaitObjects *w = &wait_objects; if (w->num >= MAXIMUM_WAIT_OBJECTS) return -1; w->events[w->num] = handle; w->func[w->num] = func; w->opaque[w->num] = opaque; w->num++; return 0; } void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque) { int i, found; WaitObjects *w = &wait_objects; found = 0; for (i = 0; i < w->num; i++) { if (w->events[i] == handle) found = 1; if (found) { w->events[i] = w->events[i + 1]; w->func[i] = w->func[i + 1]; w->opaque[i] = w->opaque[i + 1]; } } if (found) w->num--; } #endif /***********************************************************/ /* ram save/restore */ static int ram_get_page(QEMUFile *f, uint8_t *buf, int len) { int v; v = qemu_get_byte(f); switch(v) { case 0: if (qemu_get_buffer(f, buf, len) != len) return -EIO; break; case 1: v = qemu_get_byte(f); memset(buf, v, len); break; default: return -EINVAL; } if (qemu_file_has_error(f)) return -EIO; return 0; } static int ram_load_v1(QEMUFile *f, void *opaque) { int ret; ram_addr_t i; if (qemu_get_be32(f) != last_ram_offset) return -EINVAL; for(i = 0; i < last_ram_offset; i+= TARGET_PAGE_SIZE) { ret = ram_get_page(f, qemu_get_ram_ptr(i), TARGET_PAGE_SIZE); if (ret) return ret; } return 0; } #define BDRV_HASH_BLOCK_SIZE 1024 #define IOBUF_SIZE 4096 #define RAM_CBLOCK_MAGIC 0xfabe typedef struct RamDecompressState { z_stream zstream; QEMUFile *f; uint8_t buf[IOBUF_SIZE]; } RamDecompressState; static int ram_decompress_open(RamDecompressState *s, QEMUFile *f) { int ret; memset(s, 0, sizeof(*s)); s->f = f; ret = inflateInit(&s->zstream); if (ret != Z_OK) return -1; return 0; } static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len) { int ret, clen; s->zstream.avail_out = len; s->zstream.next_out = buf; while (s->zstream.avail_out > 0) { if (s->zstream.avail_in == 0) { if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC) return -1; clen = qemu_get_be16(s->f); if (clen > IOBUF_SIZE) return -1; qemu_get_buffer(s->f, s->buf, clen); s->zstream.avail_in = clen; s->zstream.next_in = s->buf; } ret = inflate(&s->zstream, Z_PARTIAL_FLUSH); if (ret != Z_OK && ret != Z_STREAM_END) { return -1; } } return 0; } static void ram_decompress_close(RamDecompressState *s) { inflateEnd(&s->zstream); } #define RAM_SAVE_FLAG_FULL 0x01 #define RAM_SAVE_FLAG_COMPRESS 0x02 #define RAM_SAVE_FLAG_MEM_SIZE 0x04 #define RAM_SAVE_FLAG_PAGE 0x08 #define RAM_SAVE_FLAG_EOS 0x10 static int is_dup_page(uint8_t *page, uint8_t ch) { uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch; uint32_t *array = (uint32_t *)page; int i; for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) { if (array[i] != val) return 0; } return 1; } static int ram_save_block(QEMUFile *f) { static ram_addr_t current_addr = 0; ram_addr_t saved_addr = current_addr; ram_addr_t addr = 0; int found = 0; while (addr < last_ram_offset) { if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) { uint8_t *p; cpu_physical_memory_reset_dirty(current_addr, current_addr + TARGET_PAGE_SIZE, MIGRATION_DIRTY_FLAG); p = qemu_get_ram_ptr(current_addr); if (is_dup_page(p, *p)) { qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS); qemu_put_byte(f, *p); } else { qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE); qemu_put_buffer(f, p, TARGET_PAGE_SIZE); } found = 1; break; } addr += TARGET_PAGE_SIZE; current_addr = (saved_addr + addr) % last_ram_offset; } return found; } static uint64_t bytes_transferred = 0; static ram_addr_t ram_save_remaining(void) { ram_addr_t addr; ram_addr_t count = 0; for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) { if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG)) count++; } return count; } uint64_t ram_bytes_remaining(void) { return ram_save_remaining() * TARGET_PAGE_SIZE; } uint64_t ram_bytes_transferred(void) { return bytes_transferred; } uint64_t ram_bytes_total(void) { return last_ram_offset; } static int ram_save_live(QEMUFile *f, int stage, void *opaque) { ram_addr_t addr; uint64_t bytes_transferred_last; double bwidth = 0; uint64_t expected_time = 0; cpu_physical_sync_dirty_bitmap(0, TARGET_PHYS_ADDR_MAX); if (stage == 1) { /* Make sure all dirty bits are set */ for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) { if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG)) cpu_physical_memory_set_dirty(addr); } /* Enable dirty memory tracking */ cpu_physical_memory_set_dirty_tracking(1); qemu_put_be64(f, last_ram_offset | RAM_SAVE_FLAG_MEM_SIZE); } bytes_transferred_last = bytes_transferred; bwidth = qemu_get_clock_ns(rt_clock); while (!qemu_file_rate_limit(f)) { int ret; ret = ram_save_block(f); bytes_transferred += ret * TARGET_PAGE_SIZE; if (ret == 0) /* no more blocks */ break; } bwidth = qemu_get_clock_ns(rt_clock) - bwidth; bwidth = (bytes_transferred - bytes_transferred_last) / bwidth; /* if we haven't transferred anything this round, force expected_time to a * a very high value, but without crashing */ if (bwidth == 0) bwidth = 0.000001; /* try transferring iterative blocks of memory */ if (stage == 3) { /* flush all remaining blocks regardless of rate limiting */ while (ram_save_block(f) != 0) { bytes_transferred += TARGET_PAGE_SIZE; } cpu_physical_memory_set_dirty_tracking(0); } qemu_put_be64(f, RAM_SAVE_FLAG_EOS); expected_time = ram_save_remaining() * TARGET_PAGE_SIZE / bwidth; return (stage == 2) && (expected_time <= migrate_max_downtime()); } static int ram_load_dead(QEMUFile *f, void *opaque) { RamDecompressState s1, *s = &s1; uint8_t buf[10]; ram_addr_t i; if (ram_decompress_open(s, f) < 0) return -EINVAL; for(i = 0; i < last_ram_offset; i+= BDRV_HASH_BLOCK_SIZE) { if (ram_decompress_buf(s, buf, 1) < 0) { fprintf(stderr, "Error while reading ram block header\n"); goto error; } if (buf[0] == 0) { if (ram_decompress_buf(s, qemu_get_ram_ptr(i), BDRV_HASH_BLOCK_SIZE) < 0) { fprintf(stderr, "Error while reading ram block address=0x%08" PRIx64, (uint64_t)i); goto error; } } else { error: printf("Error block header\n"); return -EINVAL; } } ram_decompress_close(s); return 0; } static int ram_load(QEMUFile *f, void *opaque, int version_id) { ram_addr_t addr; int flags; if (version_id == 1) return ram_load_v1(f, opaque); if (version_id == 2) { if (qemu_get_be32(f) != last_ram_offset) return -EINVAL; return ram_load_dead(f, opaque); } if (version_id != 3) return -EINVAL; do { addr = qemu_get_be64(f); flags = addr & ~TARGET_PAGE_MASK; addr &= TARGET_PAGE_MASK; if (flags & RAM_SAVE_FLAG_MEM_SIZE) { if (addr != last_ram_offset) return -EINVAL; } if (flags & RAM_SAVE_FLAG_FULL) { if (ram_load_dead(f, opaque) < 0) return -EINVAL; } if (flags & RAM_SAVE_FLAG_COMPRESS) { uint8_t ch = qemu_get_byte(f); memset(qemu_get_ram_ptr(addr), ch, TARGET_PAGE_SIZE); } else if (flags & RAM_SAVE_FLAG_PAGE) qemu_get_buffer(f, qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE); } while (!(flags & RAM_SAVE_FLAG_EOS)); return 0; } void qemu_service_io(void) { qemu_notify_event(); } /***********************************************************/ /* machine registration */ static QEMUMachine *first_machine = NULL; QEMUMachine *current_machine = NULL; int qemu_register_machine(QEMUMachine *m) { QEMUMachine **pm; pm = &first_machine; while (*pm != NULL) pm = &(*pm)->next; m->next = NULL; *pm = m; return 0; } static QEMUMachine *find_machine(const char *name) { QEMUMachine *m; for(m = first_machine; m != NULL; m = m->next) { if (!strcmp(m->name, name)) return m; } return NULL; } static QEMUMachine *find_default_machine(void) { QEMUMachine *m; for(m = first_machine; m != NULL; m = m->next) { if (m->is_default) { return m; } } return NULL; } /***********************************************************/ /* main execution loop */ static void gui_update(void *opaque) { uint64_t interval = GUI_REFRESH_INTERVAL; DisplayState *ds = opaque; DisplayChangeListener *dcl = ds->listeners; dpy_refresh(ds); while (dcl != NULL) { if (dcl->gui_timer_interval && dcl->gui_timer_interval < interval) interval = dcl->gui_timer_interval; dcl = dcl->next; } qemu_mod_timer(ds->gui_timer, interval + qemu_get_clock(rt_clock)); } static void nographic_update(void *opaque) { uint64_t interval = GUI_REFRESH_INTERVAL; qemu_mod_timer(nographic_timer, interval + qemu_get_clock(rt_clock)); } struct vm_change_state_entry { VMChangeStateHandler *cb; void *opaque; QLIST_ENTRY (vm_change_state_entry) entries; }; static QLIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head; VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb, void *opaque) { VMChangeStateEntry *e; e = qemu_mallocz(sizeof (*e)); e->cb = cb; e->opaque = opaque; QLIST_INSERT_HEAD(&vm_change_state_head, e, entries); return e; } void qemu_del_vm_change_state_handler(VMChangeStateEntry *e) { QLIST_REMOVE (e, entries); qemu_free (e); } static void vm_state_notify(int running, int reason) { VMChangeStateEntry *e; for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) { e->cb(e->opaque, running, reason); } } static void resume_all_vcpus(void); static void pause_all_vcpus(void); void vm_start(void) { if (!vm_running) { cpu_enable_ticks(); vm_running = 1; vm_state_notify(1, 0); //qemu_rearm_alarm_timer(alarm_timer); resume_all_vcpus(); } } /* reset/shutdown handler */ typedef struct QEMUResetEntry { QEMUResetHandler *func; void *opaque; int order; struct QEMUResetEntry *next; } QEMUResetEntry; static QEMUResetEntry *first_reset_entry; static int reset_requested; static int shutdown_requested; static int powerdown_requested; static int debug_requested; static int vmstop_requested; int qemu_shutdown_requested(void) { int r = shutdown_requested; shutdown_requested = 0; return r; } int qemu_reset_requested(void) { int r = reset_requested; reset_requested = 0; return r; } int qemu_powerdown_requested(void) { int r = powerdown_requested; powerdown_requested = 0; return r; } static int qemu_debug_requested(void) { int r = debug_requested; debug_requested = 0; return r; } static int qemu_vmstop_requested(void) { int r = vmstop_requested; vmstop_requested = 0; return r; } static void do_vm_stop(int reason) { if (vm_running) { cpu_disable_ticks(); vm_running = 0; pause_all_vcpus(); vm_state_notify(0, reason); } } void qemu_register_reset(QEMUResetHandler *func, int order, void *opaque) { QEMUResetEntry **pre, *re; pre = &first_reset_entry; while (*pre != NULL && (*pre)->order >= order) { pre = &(*pre)->next; } re = qemu_mallocz(sizeof(QEMUResetEntry)); re->func = func; re->opaque = opaque; re->order = order; re->next = NULL; *pre = re; } void qemu_system_reset(void) { QEMUResetEntry *re; /* reset all devices */ for(re = first_reset_entry; re != NULL; re = re->next) { re->func(re->opaque); } } void qemu_system_reset_request(void) { if (no_reboot) { shutdown_requested = 1; } else { reset_requested = 1; } qemu_notify_event(); } void qemu_system_shutdown_request(void) { shutdown_requested = 1; qemu_notify_event(); } void qemu_system_powerdown_request(void) { powerdown_requested = 1; qemu_notify_event(); } #ifdef CONFIG_IOTHREAD static void qemu_system_vmstop_request(int reason) { vmstop_requested = reason; qemu_notify_event(); } #endif #ifndef _WIN32 static int io_thread_fd = -1; #if 0 static void qemu_event_increment(void) { static const char byte = 0; if (io_thread_fd == -1) return; write(io_thread_fd, &byte, sizeof(byte)); } #endif static void qemu_event_read(void *opaque) { int fd = (unsigned long)opaque; ssize_t len; /* Drain the notify pipe */ do { char buffer[512]; len = read(fd, buffer, sizeof(buffer)); } while ((len == -1 && errno == EINTR) || len > 0); } static int qemu_event_init(void) { int err; int fds[2]; err = pipe(fds); if (err == -1) return -errno; err = fcntl_setfl(fds[0], O_NONBLOCK); if (err < 0) goto fail; err = fcntl_setfl(fds[1], O_NONBLOCK); if (err < 0) goto fail; qemu_set_fd_handler2(fds[0], NULL, qemu_event_read, NULL, (void *)(unsigned long)fds[0]); io_thread_fd = fds[1]; return 0; fail: close(fds[0]); close(fds[1]); return err; } #else HANDLE qemu_event_handle; static void dummy_event_handler(void *opaque) { } static int qemu_event_init(void) { qemu_event_handle = CreateEvent(NULL, FALSE, FALSE, NULL); if (!qemu_event_handle) { perror("Failed CreateEvent"); return -1; } qemu_add_wait_object(qemu_event_handle, dummy_event_handler, NULL); return 0; } #if 0 static void qemu_event_increment(void) { SetEvent(qemu_event_handle); } #endif #endif static int cpu_can_run(CPUState *env) { if (env->stop) return 0; if (env->stopped) return 0; return 1; } #ifndef CONFIG_IOTHREAD static int qemu_init_main_loop(void) { return qemu_event_init(); } void qemu_init_vcpu(void *_env) { CPUState *env = _env; if (kvm_enabled()) kvm_init_vcpu(env); return; } int qemu_cpu_self(void *env) { return 1; } static void resume_all_vcpus(void) { } static void pause_all_vcpus(void) { } void qemu_cpu_kick(void *env) { return; } void qemu_notify_event(void) { CPUState *env = cpu_single_env; if (env) { cpu_exit(env); #ifdef USE_KQEMU if (env->kqemu_enabled) kqemu_cpu_interrupt(env); #endif } } #define qemu_mutex_lock_iothread() do { } while (0) #define qemu_mutex_unlock_iothread() do { } while (0) void vm_stop(int reason) { do_vm_stop(reason); } #else /* CONFIG_IOTHREAD */ #include "qemu-thread.h" QemuMutex qemu_global_mutex; static QemuMutex qemu_fair_mutex; static QemuThread io_thread; static QemuThread *tcg_cpu_thread; static QemuCond *tcg_halt_cond; static int qemu_system_ready; /* cpu creation */ static QemuCond qemu_cpu_cond; /* system init */ static QemuCond qemu_system_cond; static QemuCond qemu_pause_cond; static void block_io_signals(void); static void unblock_io_signals(void); static int tcg_has_work(void); static int qemu_init_main_loop(void) { int ret; ret = qemu_event_init(); if (ret) return ret; qemu_cond_init(&qemu_pause_cond); qemu_mutex_init(&qemu_fair_mutex); qemu_mutex_init(&qemu_global_mutex); qemu_mutex_lock(&qemu_global_mutex); unblock_io_signals(); qemu_thread_self(&io_thread); return 0; } static void qemu_wait_io_event(CPUState *env) { while (!tcg_has_work()) qemu_cond_timedwait(env->halt_cond, &qemu_global_mutex, 1000); qemu_mutex_unlock(&qemu_global_mutex); /* * Users of qemu_global_mutex can be starved, having no chance * to acquire it since this path will get to it first. * So use another lock to provide fairness. */ qemu_mutex_lock(&qemu_fair_mutex); qemu_mutex_unlock(&qemu_fair_mutex); qemu_mutex_lock(&qemu_global_mutex); if (env->stop) { env->stop = 0; env->stopped = 1; qemu_cond_signal(&qemu_pause_cond); } } static int qemu_cpu_exec(CPUState *env); static void *kvm_cpu_thread_fn(void *arg) { CPUState *env = arg; block_io_signals(); qemu_thread_self(env->thread); /* signal CPU creation */ qemu_mutex_lock(&qemu_global_mutex); env->created = 1; qemu_cond_signal(&qemu_cpu_cond); /* and wait for machine initialization */ while (!qemu_system_ready) qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100); while (1) { if (cpu_can_run(env)) qemu_cpu_exec(env); qemu_wait_io_event(env); } return NULL; } static void tcg_cpu_exec(void); static void *tcg_cpu_thread_fn(void *arg) { CPUState *env = arg; block_io_signals(); qemu_thread_self(env->thread); /* signal CPU creation */ qemu_mutex_lock(&qemu_global_mutex); for (env = first_cpu; env != NULL; env = env->next_cpu) env->created = 1; qemu_cond_signal(&qemu_cpu_cond); /* and wait for machine initialization */ while (!qemu_system_ready) qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100); while (1) { tcg_cpu_exec(); qemu_wait_io_event(cur_cpu); } return NULL; } void qemu_cpu_kick(void *_env) { CPUState *env = _env; qemu_cond_broadcast(env->halt_cond); if (kvm_enabled()) qemu_thread_signal(env->thread, SIGUSR1); } int qemu_cpu_self(void *env) { return (cpu_single_env != NULL); } static void cpu_signal(int sig) { if (cpu_single_env) cpu_exit(cpu_single_env); } static void block_io_signals(void) { sigset_t set; struct sigaction sigact; sigemptyset(&set); sigaddset(&set, SIGUSR2); sigaddset(&set, SIGIO); sigaddset(&set, SIGALRM); pthread_sigmask(SIG_BLOCK, &set, NULL); sigemptyset(&set); sigaddset(&set, SIGUSR1); pthread_sigmask(SIG_UNBLOCK, &set, NULL); memset(&sigact, 0, sizeof(sigact)); sigact.sa_handler = cpu_signal; sigaction(SIGUSR1, &sigact, NULL); } static void unblock_io_signals(void) { sigset_t set; sigemptyset(&set); sigaddset(&set, SIGUSR2); sigaddset(&set, SIGIO); sigaddset(&set, SIGALRM); pthread_sigmask(SIG_UNBLOCK, &set, NULL); sigemptyset(&set); sigaddset(&set, SIGUSR1); pthread_sigmask(SIG_BLOCK, &set, NULL); } static void qemu_signal_lock(unsigned int msecs) { qemu_mutex_lock(&qemu_fair_mutex); while (qemu_mutex_trylock(&qemu_global_mutex)) { qemu_thread_signal(tcg_cpu_thread, SIGUSR1); if (!qemu_mutex_timedlock(&qemu_global_mutex, msecs)) break; } qemu_mutex_unlock(&qemu_fair_mutex); } void qemu_mutex_lock_iothread(void) { if (kvm_enabled()) { qemu_mutex_lock(&qemu_fair_mutex); qemu_mutex_lock(&qemu_global_mutex); qemu_mutex_unlock(&qemu_fair_mutex); } else qemu_signal_lock(100); } void qemu_mutex_unlock_iothread(void) { qemu_mutex_unlock(&qemu_global_mutex); } static int all_vcpus_paused(void) { CPUState *penv = first_cpu; while (penv) { if (!penv->stopped) return 0; penv = (CPUState *)penv->next_cpu; } return 1; } static void pause_all_vcpus(void) { CPUState *penv = first_cpu; while (penv) { penv->stop = 1; qemu_thread_signal(penv->thread, SIGUSR1); qemu_cpu_kick(penv); penv = (CPUState *)penv->next_cpu; } while (!all_vcpus_paused()) { qemu_cond_timedwait(&qemu_pause_cond, &qemu_global_mutex, 100); penv = first_cpu; while (penv) { qemu_thread_signal(penv->thread, SIGUSR1); penv = (CPUState *)penv->next_cpu; } } } static void resume_all_vcpus(void) { CPUState *penv = first_cpu; while (penv) { penv->stop = 0; penv->stopped = 0; qemu_thread_signal(penv->thread, SIGUSR1); qemu_cpu_kick(penv); penv = (CPUState *)penv->next_cpu; } } static void tcg_init_vcpu(void *_env) { CPUState *env = _env; /* share a single thread for all cpus with TCG */ if (!tcg_cpu_thread) { env->thread = qemu_mallocz(sizeof(QemuThread)); env->halt_cond = qemu_mallocz(sizeof(QemuCond)); qemu_cond_init(env->halt_cond); qemu_thread_create(env->thread, tcg_cpu_thread_fn, env); while (env->created == 0) qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100); tcg_cpu_thread = env->thread; tcg_halt_cond = env->halt_cond; } else { env->thread = tcg_cpu_thread; env->halt_cond = tcg_halt_cond; } } static void kvm_start_vcpu(CPUState *env) { #if 0 kvm_init_vcpu(env); env->thread = qemu_mallocz(sizeof(QemuThread)); env->halt_cond = qemu_mallocz(sizeof(QemuCond)); qemu_cond_init(env->halt_cond); qemu_thread_create(env->thread, kvm_cpu_thread_fn, env); while (env->created == 0) qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100); #endif } void qemu_init_vcpu(void *_env) { CPUState *env = _env; if (kvm_enabled()) kvm_start_vcpu(env); else tcg_init_vcpu(env); } void qemu_notify_event(void) { qemu_event_increment(); } void vm_stop(int reason) { QemuThread me; qemu_thread_self(&me); if (!qemu_thread_equal(&me, &io_thread)) { qemu_system_vmstop_request(reason); /* * FIXME: should not return to device code in case * vm_stop() has been requested. */ if (cpu_single_env) { cpu_exit(cpu_single_env); cpu_single_env->stop = 1; } return; } do_vm_stop(reason); } #endif #ifdef _WIN32 static void host_main_loop_wait(int *timeout) { int ret, ret2, i; PollingEntry *pe; /* XXX: need to suppress polling by better using win32 events */ ret = 0; for(pe = first_polling_entry; pe != NULL; pe = pe->next) { ret |= pe->func(pe->opaque); } if (ret == 0) { int err; WaitObjects *w = &wait_objects; ret = WaitForMultipleObjects(w->num, w->events, FALSE, *timeout); if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) { if (w->func[ret - WAIT_OBJECT_0]) w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]); /* Check for additional signaled events */ for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) { /* Check if event is signaled */ ret2 = WaitForSingleObject(w->events[i], 0); if(ret2 == WAIT_OBJECT_0) { if (w->func[i]) w->func[i](w->opaque[i]); } else if (ret2 == WAIT_TIMEOUT) { } else { err = GetLastError(); fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err); } } } else if (ret == WAIT_TIMEOUT) { } else { err = GetLastError(); fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err); } } *timeout = 0; } #else static void host_main_loop_wait(int *timeout) { } #endif void main_loop_wait(int timeout) { IOHandlerRecord *ioh; fd_set rfds, wfds, xfds; int ret, nfds; struct timeval tv; qemu_bh_update_timeout(&timeout); host_main_loop_wait(&timeout); /* poll any events */ /* XXX: separate device handlers from system ones */ nfds = -1; FD_ZERO(&rfds); FD_ZERO(&wfds); FD_ZERO(&xfds); for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) { if (ioh->deleted) continue; if (ioh->fd_read && (!ioh->fd_read_poll || ioh->fd_read_poll(ioh->opaque) != 0)) { FD_SET(ioh->fd, &rfds); if (ioh->fd > nfds) nfds = ioh->fd; } if (ioh->fd_write) { FD_SET(ioh->fd, &wfds); if (ioh->fd > nfds) nfds = ioh->fd; } } tv.tv_sec = timeout / 1000; tv.tv_usec = (timeout % 1000) * 1000; #if defined(CONFIG_SLIRP) if (slirp_is_inited()) { slirp_select_fill(&nfds, &rfds, &wfds, &xfds); } #endif qemu_mutex_unlock_iothread(); ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv); qemu_mutex_lock_iothread(); if (ret > 0) { IOHandlerRecord **pioh; for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) { if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) { ioh->fd_read(ioh->opaque); } if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) { ioh->fd_write(ioh->opaque); } } /* remove deleted IO handlers */ pioh = &first_io_handler; while (*pioh) { ioh = *pioh; if (ioh->deleted) { *pioh = ioh->next; qemu_free(ioh); } else pioh = &ioh->next; } } #if defined(CONFIG_SLIRP) if (slirp_is_inited()) { if (ret < 0) { FD_ZERO(&rfds); FD_ZERO(&wfds); FD_ZERO(&xfds); } slirp_select_poll(&rfds, &wfds, &xfds); } #endif charpipe_poll(); qemu_run_all_timers(); /* Check bottom-halves last in case any of the earlier events triggered them. */ qemu_bh_poll(); } static int qemu_cpu_exec(CPUState *env) { int ret; #ifdef CONFIG_PROFILER int64_t ti; #endif #ifdef CONFIG_PROFILER ti = profile_getclock(); #endif if (use_icount) { int64_t count; int decr; qemu_icount -= (env->icount_decr.u16.low + env->icount_extra); env->icount_decr.u16.low = 0; env->icount_extra = 0; count = qemu_next_deadline(); count = (count + (1 << icount_time_shift) - 1) >> icount_time_shift; qemu_icount += count; decr = (count > 0xffff) ? 0xffff : count; count -= decr; env->icount_decr.u16.low = decr; env->icount_extra = count; } #ifdef CONFIG_TRACE if (tbflush_requested) { tbflush_requested = 0; tb_flush(env); return EXCP_INTERRUPT; } #endif ret = cpu_exec(env); #ifdef CONFIG_PROFILER qemu_time += profile_getclock() - ti; #endif if (use_icount) { /* Fold pending instructions back into the instruction counter, and clear the interrupt flag. */ qemu_icount -= (env->icount_decr.u16.low + env->icount_extra); env->icount_decr.u32 = 0; env->icount_extra = 0; } return ret; } static void tcg_cpu_exec(void) { int ret = 0; if (next_cpu == NULL) next_cpu = first_cpu; for (; next_cpu != NULL; next_cpu = next_cpu->next_cpu) { CPUState *env = cur_cpu = next_cpu; if (!vm_running) break; if (qemu_timer_alarm_pending()) { break; } if (cpu_can_run(env)) ret = qemu_cpu_exec(env); if (ret == EXCP_DEBUG) { gdb_set_stop_cpu(env); debug_requested = 1; break; } } } static int cpu_has_work(CPUState *env) { if (env->stop) return 1; if (env->stopped) return 0; if (!env->halted) return 1; if (qemu_cpu_has_work(env)) return 1; return 0; } int tcg_has_work(void) { CPUState *env; for (env = first_cpu; env != NULL; env = env->next_cpu) if (cpu_has_work(env)) return 1; return 0; } static int vm_can_run(void) { if (powerdown_requested) return 0; if (reset_requested) return 0; if (shutdown_requested) return 0; if (debug_requested) return 0; return 1; } static void main_loop(void) { int r; #ifdef CONFIG_IOTHREAD qemu_system_ready = 1; qemu_cond_broadcast(&qemu_system_cond); #endif for (;;) { do { #ifdef CONFIG_PROFILER int64_t ti; #endif #ifndef CONFIG_IOTHREAD tcg_cpu_exec(); #endif #ifdef CONFIG_PROFILER ti = profile_getclock(); #endif main_loop_wait(qemu_calculate_timeout()); #ifdef CONFIG_PROFILER dev_time += profile_getclock() - ti; #endif if (rotate_logs_requested) { FILE* new_dns_log_fd = rotate_qemu_log(get_slirp_dns_log_fd(), dns_log_filename); FILE* new_drop_log_fd = rotate_qemu_log(get_slirp_drop_log_fd(), drop_log_filename); slirp_dns_log_fd(new_dns_log_fd); slirp_drop_log_fd(new_drop_log_fd); reset_rotate_qemu_logs_request(); } } while (vm_can_run()); if (qemu_debug_requested()) vm_stop(EXCP_DEBUG); if (qemu_shutdown_requested()) { if (no_shutdown) { vm_stop(0); no_shutdown = 0; } else { if (savevm_on_exit != NULL) { do_savevm(cur_mon, savevm_on_exit); } break; } } if (qemu_reset_requested()) { pause_all_vcpus(); qemu_system_reset(); resume_all_vcpus(); } if (qemu_powerdown_requested()) qemu_system_powerdown(); if ((r = qemu_vmstop_requested())) vm_stop(r); } pause_all_vcpus(); } void version(void) { printf("QEMU PC emulator version " QEMU_VERSION QEMU_PKGVERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n"); } void qemu_help(int exitcode) { version(); printf("usage: %s [options] [disk_image]\n" "\n" "'disk_image' is a raw hard image image for IDE hard disk 0\n" "\n" #define DEF(option, opt_arg, opt_enum, opt_help) \ opt_help #define DEFHEADING(text) stringify(text) "\n" #include "qemu-options.h" #undef DEF #undef DEFHEADING #undef GEN_DOCS "\n" "During emulation, the following keys are useful:\n" "ctrl-alt-f toggle full screen\n" "ctrl-alt-n switch to virtual console 'n'\n" "ctrl-alt toggle mouse and keyboard grab\n" "\n" "When using -nographic, press 'ctrl-a h' to get some help.\n" , "qemu", DEFAULT_RAM_SIZE, #ifndef _WIN32 DEFAULT_NETWORK_SCRIPT, DEFAULT_NETWORK_DOWN_SCRIPT, #endif DEFAULT_GDBSTUB_PORT, "/tmp/qemu.log"); QEMU_EXIT(exitcode); } #define HAS_ARG 0x0001 enum { #define DEF(option, opt_arg, opt_enum, opt_help) \ opt_enum, #define DEFHEADING(text) #include "qemu-options.h" #undef DEF #undef DEFHEADING #undef GEN_DOCS }; typedef struct QEMUOption { const char *name; int flags; int index; } QEMUOption; static const QEMUOption qemu_options[] = { { "h", 0, QEMU_OPTION_h }, #define DEF(option, opt_arg, opt_enum, opt_help) \ { option, opt_arg, opt_enum }, #define DEFHEADING(text) #include "qemu-options.h" #undef DEF #undef DEFHEADING #undef GEN_DOCS { NULL, 0, 0 }, }; #ifdef HAS_AUDIO struct soundhw soundhw[] = { #ifdef HAS_AUDIO_CHOICE #if defined(TARGET_I386) || defined(TARGET_MIPS) { "pcspk", "PC speaker", 0, 1, { .init_isa = pcspk_audio_init } }, #endif #ifdef CONFIG_SB16 { "sb16", "Creative Sound Blaster 16", 0, 1, { .init_isa = SB16_init } }, #endif #ifdef CONFIG_CS4231A { "cs4231a", "CS4231A", 0, 1, { .init_isa = cs4231a_init } }, #endif #ifdef CONFIG_ADLIB { "adlib", #ifdef HAS_YMF262 "Yamaha YMF262 (OPL3)", #else "Yamaha YM3812 (OPL2)", #endif 0, 1, { .init_isa = Adlib_init } }, #endif #ifdef CONFIG_GUS { "gus", "Gravis Ultrasound GF1", 0, 1, { .init_isa = GUS_init } }, #endif #ifdef CONFIG_AC97 { "ac97", "Intel 82801AA AC97 Audio", 0, 0, { .init_pci = ac97_init } }, #endif #ifdef CONFIG_ES1370 { "es1370", "ENSONIQ AudioPCI ES1370", 0, 0, { .init_pci = es1370_init } }, #endif #endif /* HAS_AUDIO_CHOICE */ { NULL, NULL, 0, 0, { NULL } } }; static void select_soundhw (const char *optarg) { struct soundhw *c; if (*optarg == '?') { show_valid_cards: printf ("Valid sound card names (comma separated):\n"); for (c = soundhw; c->name; ++c) { printf ("%-11s %s\n", c->name, c->descr); } printf ("\n-soundhw all will enable all of the above\n"); if (*optarg != '?') { PANIC("Unknown sound card name: %s", optarg); } else { QEMU_EXIT(0); } } else { size_t l; const char *p; char *e; int bad_card = 0; if (!strcmp (optarg, "all")) { for (c = soundhw; c->name; ++c) { c->enabled = 1; } return; } p = optarg; while (*p) { e = strchr (p, ','); l = !e ? strlen (p) : (size_t) (e - p); for (c = soundhw; c->name; ++c) { if (!strncmp (c->name, p, l)) { c->enabled = 1; break; } } if (!c->name) { #ifndef CONFIG_ANDROID if (l > 80) { fprintf (stderr, "Unknown sound card name (too big to show)\n"); } else { fprintf (stderr, "Unknown sound card name `%.*s'\n", (int) l, p); } #endif // !CONFIG_ANDROID bad_card = 1; } p += l + (e != NULL); } if (bad_card) goto show_valid_cards; } } #endif static void select_vgahw (const char *p) { const char *opts; cirrus_vga_enabled = 0; std_vga_enabled = 0; vmsvga_enabled = 0; xenfb_enabled = 0; if (strstart(p, "std", &opts)) { std_vga_enabled = 1; } else if (strstart(p, "cirrus", &opts)) { cirrus_vga_enabled = 1; } else if (strstart(p, "vmware", &opts)) { vmsvga_enabled = 1; } else if (strstart(p, "xenfb", &opts)) { xenfb_enabled = 1; } else if (!strstart(p, "none", &opts)) { invalid_vga: PANIC("Unknown vga type: %s", p); } while (*opts) { const char *nextopt; if (strstart(opts, ",retrace=", &nextopt)) { opts = nextopt; if (strstart(opts, "dumb", &nextopt)) vga_retrace_method = VGA_RETRACE_DUMB; else if (strstart(opts, "precise", &nextopt)) vga_retrace_method = VGA_RETRACE_PRECISE; else goto invalid_vga; } else goto invalid_vga; opts = nextopt; } } #ifdef _WIN32 static BOOL WINAPI qemu_ctrl_handler(DWORD type) { exit(STATUS_CONTROL_C_EXIT); return TRUE; } #endif int qemu_uuid_parse(const char *str, uint8_t *uuid) { int ret; if(strlen(str) != 36) return -1; ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3], &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9], &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]); if(ret != 16) return -1; #ifdef TARGET_I386 smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid); #endif return 0; } #define MAX_NET_CLIENTS 32 #ifndef _WIN32 static void termsig_handler(int signal) { qemu_system_shutdown_request(); } static void sigchld_handler(int signal) { waitpid(-1, NULL, WNOHANG); } static void sighandler_setup(void) { struct sigaction act; memset(&act, 0, sizeof(act)); act.sa_handler = termsig_handler; sigaction(SIGINT, &act, NULL); sigaction(SIGHUP, &act, NULL); sigaction(SIGTERM, &act, NULL); act.sa_handler = sigchld_handler; act.sa_flags = SA_NOCLDSTOP; sigaction(SIGCHLD, &act, NULL); } #endif #ifdef _WIN32 /* Look for support files in the same directory as the executable. */ static char *find_datadir(const char *argv0) { char *p; char buf[MAX_PATH]; DWORD len; len = GetModuleFileName(NULL, buf, sizeof(buf) - 1); if (len == 0) { return NULL; } buf[len] = 0; p = buf + len - 1; while (p != buf && *p != '\\') p--; *p = 0; if (access(buf, R_OK) == 0) { return qemu_strdup(buf); } return NULL; } #else /* !_WIN32 */ /* Find a likely location for support files using the location of the binary. For installed binaries this will be "$bindir/../share/qemu". When running from the build tree this will be "$bindir/../pc-bios". The emulator running from the SDK will find the support files in $bindir/lib/pc-bios. */ #define SHARE_SUFFIX "/share/qemu" #define BUILD_SUFFIX "/pc-bios" #define SDK_SUFFIX "/lib/pc-bios" static char *find_datadir(const char *argv0) { char *dir; char *p = NULL; char *res; #ifdef PATH_MAX char buf[PATH_MAX]; #endif size_t max_len; #if defined(__linux__) { int len; len = readlink("/proc/self/exe", buf, sizeof(buf) - 1); if (len > 0) { buf[len] = 0; p = buf; } } #elif defined(__FreeBSD__) { int len; len = readlink("/proc/curproc/file", buf, sizeof(buf) - 1); if (len > 0) { buf[len] = 0; p = buf; } } #endif /* If we don't have any way of figuring out the actual executable location then try argv[0]. */ if (!p) { #ifdef PATH_MAX p = buf; #endif p = realpath(argv0, p); if (!p) { return NULL; } } #define STRLEN_CONST(str) (sizeof(str)-1) dir = dirname(p); max_len = strlen(dir) + 1 + MAX(STRLEN_CONST(SDK_SUFFIX), MAX(STRLEN_CONST(SHARE_SUFFIX), STRLEN_CONST(BUILD_SUFFIX))); res = qemu_mallocz(max_len); snprintf(res, max_len, "%s%s", dir, SDK_SUFFIX); if (access(res, R_OK)) { dir = dirname(dir); snprintf(res, max_len, "%s%s", dir, SHARE_SUFFIX); if (access(res, R_OK)) { snprintf(res, max_len, "%s%s", dir, BUILD_SUFFIX); if (access(res, R_OK)) { qemu_free(res); res = NULL; } } } #ifndef PATH_MAX free(p); #endif return res; } #undef SHARE_SUFFIX #undef BUILD_SUFFIX #endif char *qemu_find_file(int type, const char *name) { int len; const char *subdir; char *buf; /* If name contains path separators then try it as a straight path. */ if ((strchr(name, '/') || strchr(name, '\\')) && access(name, R_OK) == 0) { return strdup(name); } switch (type) { case QEMU_FILE_TYPE_BIOS: subdir = ""; break; case QEMU_FILE_TYPE_KEYMAP: subdir = "keymaps/"; break; default: abort(); } len = strlen(data_dir) + strlen(name) + strlen(subdir) + 2; buf = qemu_mallocz(len); snprintf(buf, len, "%s/%s%s", data_dir, subdir, name); if (access(buf, R_OK)) { qemu_free(buf); return NULL; } return buf; } static int add_dns_server( const char* server_name ) { SockAddress addr; if (sock_address_init_resolve( &addr, server_name, 55, 0 ) < 0) { fprintf(stdout, "### WARNING: can't resolve DNS server name '%s'\n", server_name ); return -1; } fprintf(stderr, "DNS server name '%s' resolved to %s\n", server_name, sock_address_to_string(&addr) ); if ( slirp_add_dns_server( &addr ) < 0 ) { fprintf(stderr, "### WARNING: could not add DNS server '%s' to the network stack\n", server_name); return -1; } return 0; } /* Parses an integer * Pararm: * str String containing a number to be parsed. * result Passes the parsed integer in this argument * returns 0 if ok, -1 if failed */ int parse_int(const char *str, int *result) { char* r; *result = strtol(str, &r, 0); if (r == NULL || *r != '\0') return -1; return 0; } #ifndef _WIN32 /* * Initializes the SIGUSR1 signal handler to clear Qemu logs. */ void init_qemu_clear_logs_sig() { struct sigaction act; sigfillset(&act.sa_mask); act.sa_flags = 0; act.sa_handler = rotate_qemu_logs_handler; if (sigaction(SIGUSR1, &act, NULL) == -1) { fprintf(stderr, "Failed to setup SIGUSR1 handler to clear Qemu logs\n"); exit(-1); } } #endif /* parses a null-terminated string specifying a network port (e.g., "80") or * port range (e.g., "[6666-7000]"). In case of a single port, lport and hport * are the same. Returns 0 on success, -1 on error. */ int parse_port_range(const char *str, unsigned short *lport, unsigned short *hport) { unsigned int low = 0, high = 0; char *p, *arg = strdup(str); if ((*arg == '[') && ((p = strrchr(arg, ']')) != NULL)) { p = arg + 1; /* skip '[' */ low = atoi(strtok(p, "-")); high = atoi(strtok(NULL, "-")); if ((low > 0) && (high > 0) && (low < high) && (high < 65535)) { *lport = low; *hport = high; } } else { low = atoi(arg); if ((0 < low) && (low < 65535)) { *lport = low; *hport = low; } } free(arg); if (low != 0) return 0; return -1; } /* * Implements the generic port forwarding option */ void net_slirp_forward(const char *optarg) { /* * we expect the following format: * dst_net:dst_mask:dst_port:redirect_ip:redirect_port OR * dst_net:dst_mask:[dp_range_start-dp_range_end]:redirect_ip:redirect_port */ char *argument = strdup(optarg), *p = argument; char *dst_net, *dst_mask, *dst_port; char *redirect_ip, *redirect_port; uint32_t dnet, dmask, rip; unsigned short dlport, dhport, rport; dst_net = strtok(p, ":"); dst_mask = strtok(NULL, ":"); dst_port = strtok(NULL, ":"); redirect_ip = strtok(NULL, ":"); redirect_port = strtok(NULL, ":"); if (dst_net == NULL || dst_mask == NULL || dst_port == NULL || redirect_ip == NULL || redirect_port == NULL) { fprintf(stderr, "Invalid argument for -net-forward, we expect " "dst_net:dst_mask:dst_port:redirect_ip:redirect_port or " "dst_net:dst_mask:[dp_range_start-dp_range_end]" ":redirect_ip:redirect_port: %s\n", optarg); exit(1); } /* inet_strtoip converts dotted address to host byte order */ if (inet_strtoip(dst_net, &dnet) == -1) { fprintf(stderr, "Invalid destination IP net: %s\n", dst_net); exit(1); } if (inet_strtoip(dst_mask, &dmask) == -1) { fprintf(stderr, "Invalid destination IP mask: %s\n", dst_mask); exit(1); } if (inet_strtoip(redirect_ip, &rip) == -1) { fprintf(stderr, "Invalid redirect IP address: %s\n", redirect_ip); exit(1); } if (parse_port_range(dst_port, &dlport, &dhport) == -1) { fprintf(stderr, "Invalid destination port or port range\n"); exit(1); } rport = atoi(redirect_port); if (!rport) { fprintf(stderr, "Invalid redirect port: %s\n", redirect_port); exit(1); } dnet &= dmask; slirp_add_net_forward(dnet, dmask, dlport, dhport, rip, rport); free(argument); } /* Parses an -allow-tcp or -allow-udp argument and inserts a corresponding * entry in the allows list */ void slirp_allow(const char *optarg, u_int8_t proto) { /* * we expect the following format: * dst_ip:dst_port OR dst_ip:[dst_lport-dst_hport] */ char *argument = strdup(optarg), *p = argument; char *dst_ip_str, *dst_port_str; uint32_t dst_ip; unsigned short dst_lport, dst_hport; dst_ip_str = strtok(p, ":"); dst_port_str = strtok(NULL, ":"); if (dst_ip_str == NULL || dst_port_str == NULL) { fprintf(stderr, "Invalid argument %s for -allow. We expect " "dst_ip:dst_port or dst_ip:[dst_lport-dst_hport]\n", optarg); exit(1); } if (inet_strtoip(dst_ip_str, &dst_ip) == -1) { fprintf(stderr, "Invalid destination IP address: %s\n", dst_ip_str); exit(1); } if (parse_port_range(dst_port_str, &dst_lport, &dst_hport) == -1) { fprintf(stderr, "Invalid destination port or port range\n"); exit(1); } slirp_add_allow(dst_ip, dst_lport, dst_hport, proto); free(argument); } /* Add a serial device at a given location in the emulated hardware table. * On failure, this function aborts the program with an error message. */ static void serial_hds_add_at(int index, const char* devname) { char label[32]; if (!devname || !strcmp(devname,"none")) return; if (index >= MAX_SERIAL_PORTS) { PANIC("qemu: invalid serial index for %s (%d >= %d)", devname, index, MAX_SERIAL_PORTS); } if (serial_hds[index] != NULL) { PANIC("qemu: invalid serial index for %s (%d: already taken!)", devname, index); } snprintf(label, sizeof(label), "serial%d", index); serial_hds[index] = qemu_chr_open(label, devname, NULL); if (!serial_hds[index]) { PANIC("qemu: could not open serial device '%s'", devname); } } /* Find a free slot in the emulated serial device table, and register * it. Return the allocated table index. */ static int serial_hds_add(const char* devname) { int index; /* Find first free slot */ for (index = 0; index < MAX_SERIAL_PORTS; index++) { if (serial_hds[index] == NULL) { serial_hds_add_at(index, devname); return index; } } PANIC("qemu: too many serial devices registered (%d)", index); return -1; /* shouldn't happen */ } int main(int argc, char **argv, char **envp) { const char *gdbstub_dev = NULL; uint32_t boot_devices_bitmap = 0; int i; int snapshot, linux_boot, net_boot; const char *icount_option = NULL; const char *initrd_filename; const char *kernel_filename, *kernel_cmdline; const char *boot_devices = ""; DisplayState *ds; DisplayChangeListener *dcl; int cyls, heads, secs, translation; QemuOpts *hda_opts = NULL; QemuOpts *hdb_opts = NULL; const char *net_clients[MAX_NET_CLIENTS]; int nb_net_clients; const char *bt_opts[MAX_BT_CMDLINE]; int nb_bt_opts; int optind; const char *r, *optarg; CharDriverState *monitor_hd = NULL; const char *monitor_device; const char *serial_devices[MAX_SERIAL_PORTS]; int serial_device_index; const char *parallel_devices[MAX_PARALLEL_PORTS]; int parallel_device_index; const char *virtio_consoles[MAX_VIRTIO_CONSOLES]; int virtio_console_index; const char *loadvm = NULL; QEMUMachine *machine; const char *cpu_model; const char *usb_devices[MAX_USB_CMDLINE]; int usb_devices_index; #ifndef _WIN32 int fds[2]; #endif int tb_size; const char *pid_file = NULL; const char *incoming = NULL; #ifndef _WIN32 int fd = 0; struct passwd *pwd = NULL; const char *chroot_dir = NULL; const char *run_as = NULL; #endif CPUState *env; int show_vnc_port = 0; IniFile* hw_ini = NULL; STRALLOC_DEFINE(kernel_params); STRALLOC_DEFINE(kernel_config); int dns_count = 0; /* Initialize sockets before anything else, so we can properly report * initialization failures back to the UI. */ #ifdef _WIN32 socket_init(); #endif init_clocks(); qemu_cache_utils_init(envp); QLIST_INIT (&vm_change_state_head); #ifndef _WIN32 { struct sigaction act; sigfillset(&act.sa_mask); act.sa_flags = 0; act.sa_handler = SIG_IGN; sigaction(SIGPIPE, &act, NULL); } #else SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE); /* Note: cpu_interrupt() is currently not SMP safe, so we force QEMU to run on a single CPU */ { HANDLE h; DWORD mask, smask; int i; h = GetCurrentProcess(); if (GetProcessAffinityMask(h, &mask, &smask)) { for(i = 0; i < 32; i++) { if (mask & (1 << i)) break; } if (i != 32) { mask = 1 << i; SetProcessAffinityMask(h, mask); } } } #endif module_call_init(MODULE_INIT_MACHINE); machine = find_default_machine(); cpu_model = NULL; initrd_filename = NULL; ram_size = 0; snapshot = 0; kernel_filename = NULL; kernel_cmdline = ""; cyls = heads = secs = 0; translation = BIOS_ATA_TRANSLATION_AUTO; monitor_device = "vc:80Cx24C"; serial_devices[0] = "vc:80Cx24C"; for(i = 1; i < MAX_SERIAL_PORTS; i++) serial_devices[i] = NULL; serial_device_index = 0; parallel_devices[0] = "vc:80Cx24C"; for(i = 1; i < MAX_PARALLEL_PORTS; i++) parallel_devices[i] = NULL; parallel_device_index = 0; for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) virtio_consoles[i] = NULL; virtio_console_index = 0; for (i = 0; i < MAX_NODES; i++) { node_mem[i] = 0; node_cpumask[i] = 0; } usb_devices_index = 0; nb_net_clients = 0; nb_bt_opts = 0; #ifdef MAX_DRIVES nb_drives = 0; nb_drives_opt = 0; #endif nb_numa_nodes = 0; nb_nics = 0; tb_size = 0; autostart= 1; register_watchdogs(); /* Initialize boot properties. */ boot_property_init_service(); android_hw_control_init(); optind = 1; for(;;) { if (optind >= argc) break; r = argv[optind]; if (r[0] != '-') { hda_opts = drive_add(argv[optind++], HD_ALIAS, 0); } else { const QEMUOption *popt; optind++; /* Treat --foo the same as -foo. */ if (r[1] == '-') r++; popt = qemu_options; for(;;) { if (!popt->name) { PANIC("%s: invalid option -- '%s'", argv[0], r); } if (!strcmp(popt->name, r + 1)) break; popt++; } if (popt->flags & HAS_ARG) { if (optind >= argc) { PANIC("%s: option '%s' requires an argument", argv[0], r); } optarg = argv[optind++]; } else { optarg = NULL; } switch(popt->index) { case QEMU_OPTION_M: machine = find_machine(optarg); if (!machine) { QEMUMachine *m; printf("Supported machines are:\n"); for(m = first_machine; m != NULL; m = m->next) { printf("%-10s %s%s\n", m->name, m->desc, m->is_default ? " (default)" : ""); } if (*optarg != '?') { PANIC("Invalid machine parameter: %s", optarg); } else { QEMU_EXIT(0); } } break; case QEMU_OPTION_cpu: /* hw initialization will check this */ if (*optarg == '?') { /* XXX: implement xxx_cpu_list for targets that still miss it */ #if defined(cpu_list) cpu_list(stdout, &fprintf); #endif QEMU_EXIT(0); } else { cpu_model = optarg; } break; case QEMU_OPTION_initrd: initrd_filename = optarg; break; case QEMU_OPTION_hda: if (cyls == 0) hda_opts = drive_add(optarg, HD_ALIAS, 0); else hda_opts = drive_add(optarg, HD_ALIAS ",cyls=%d,heads=%d,secs=%d%s", 0, cyls, heads, secs, translation == BIOS_ATA_TRANSLATION_LBA ? ",trans=lba" : translation == BIOS_ATA_TRANSLATION_NONE ? ",trans=none" : ""); break; case QEMU_OPTION_hdb: hdb_opts = drive_add(optarg, HD_ALIAS, 1); break; case QEMU_OPTION_hdc: case QEMU_OPTION_hdd: drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda); break; case QEMU_OPTION_drive: drive_add(NULL, "%s", optarg); break; case QEMU_OPTION_mtdblock: drive_add(optarg, MTD_ALIAS); break; case QEMU_OPTION_sd: drive_add(optarg, SD_ALIAS); break; case QEMU_OPTION_pflash: drive_add(optarg, PFLASH_ALIAS); break; case QEMU_OPTION_snapshot: snapshot = 1; break; case QEMU_OPTION_hdachs: { const char *p; p = optarg; cyls = strtol(p, (char **)&p, 0); if (cyls < 1 || cyls > 16383) goto chs_fail; if (*p != ',') goto chs_fail; p++; heads = strtol(p, (char **)&p, 0); if (heads < 1 || heads > 16) goto chs_fail; if (*p != ',') goto chs_fail; p++; secs = strtol(p, (char **)&p, 0); if (secs < 1 || secs > 63) goto chs_fail; if (*p == ',') { p++; if (!strcmp(p, "none")) translation = BIOS_ATA_TRANSLATION_NONE; else if (!strcmp(p, "lba")) translation = BIOS_ATA_TRANSLATION_LBA; else if (!strcmp(p, "auto")) translation = BIOS_ATA_TRANSLATION_AUTO; else goto chs_fail; } else if (*p != '\0') { chs_fail: PANIC("qemu: invalid physical CHS format"); } if (hda_opts != NULL) { char num[16]; snprintf(num, sizeof(num), "%d", cyls); qemu_opt_set(hda_opts, "cyls", num); snprintf(num, sizeof(num), "%d", heads); qemu_opt_set(hda_opts, "heads", num); snprintf(num, sizeof(num), "%d", secs); qemu_opt_set(hda_opts, "secs", num); if (translation == BIOS_ATA_TRANSLATION_LBA) qemu_opt_set(hda_opts, "trans", "lba"); if (translation == BIOS_ATA_TRANSLATION_NONE) qemu_opt_set(hda_opts, "trans", "none"); } } break; case QEMU_OPTION_numa: if (nb_numa_nodes >= MAX_NODES) { PANIC("qemu: too many NUMA nodes"); } numa_add(optarg); break; case QEMU_OPTION_nographic: display_type = DT_NOGRAPHIC; break; #ifdef CONFIG_CURSES case QEMU_OPTION_curses: display_type = DT_CURSES; break; #endif case QEMU_OPTION_portrait: graphic_rotate = 1; break; case QEMU_OPTION_kernel: kernel_filename = optarg; break; case QEMU_OPTION_append: kernel_cmdline = optarg; break; case QEMU_OPTION_cdrom: drive_add(optarg, CDROM_ALIAS); break; case QEMU_OPTION_boot: boot_devices = optarg; /* We just do some generic consistency checks */ { /* Could easily be extended to 64 devices if needed */ const char *p; boot_devices_bitmap = 0; for (p = boot_devices; *p != '\0'; p++) { /* Allowed boot devices are: * a b : floppy disk drives * c ... f : IDE disk drives * g ... m : machine implementation dependant drives * n ... p : network devices * It's up to each machine implementation to check * if the given boot devices match the actual hardware * implementation and firmware features. */ if (*p < 'a' || *p > 'q') { PANIC("Invalid boot device '%c'", *p); } if (boot_devices_bitmap & (1 << (*p - 'a'))) { PANIC( "Boot device '%c' was given twice",*p); } boot_devices_bitmap |= 1 << (*p - 'a'); } } break; case QEMU_OPTION_fda: case QEMU_OPTION_fdb: drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda); break; #ifdef TARGET_I386 case QEMU_OPTION_no_fd_bootchk: fd_bootchk = 0; break; #endif case QEMU_OPTION_net: if (nb_net_clients >= MAX_NET_CLIENTS) { PANIC("qemu: too many network clients"); } net_clients[nb_net_clients] = optarg; nb_net_clients++; break; #ifdef CONFIG_SLIRP case QEMU_OPTION_tftp: tftp_prefix = optarg; break; case QEMU_OPTION_bootp: bootp_filename = optarg; break; #if 0 /* ANDROID disabled */ #ifndef _WIN32 case QEMU_OPTION_smb: net_slirp_smb(optarg); break; #endif #endif /* ANDROID */ case QEMU_OPTION_redir: net_slirp_redir(NULL, optarg, NULL); break; #endif case QEMU_OPTION_bt: if (nb_bt_opts >= MAX_BT_CMDLINE) { PANIC("qemu: too many bluetooth options"); } bt_opts[nb_bt_opts++] = optarg; break; #ifdef HAS_AUDIO case QEMU_OPTION_audio_help: AUD_help (); QEMU_EXIT(0); break; case QEMU_OPTION_soundhw: select_soundhw (optarg); break; #endif case QEMU_OPTION_h: qemu_help(0); break; case QEMU_OPTION_version: version(); QEMU_EXIT(0); break; case QEMU_OPTION_m: { uint64_t value; char *ptr; value = strtoul(optarg, &ptr, 10); switch (*ptr) { case 0: case 'M': case 'm': value <<= 20; break; case 'G': case 'g': value <<= 30; break; default: PANIC("qemu: invalid ram size: %s", optarg); } /* On 32-bit hosts, QEMU is limited by virtual address space */ if (value > (2047 << 20) #ifndef CONFIG_KQEMU && HOST_LONG_BITS == 32 #endif ) { PANIC("qemu: at most 2047 MB RAM can be simulated"); } if (value != (uint64_t)(ram_addr_t)value) { PANIC("qemu: ram size too large"); } ram_size = value; break; } case QEMU_OPTION_d: { int mask; const CPULogItem *item; mask = cpu_str_to_log_mask(optarg); if (!mask) { printf("Log items (comma separated):\n"); for(item = cpu_log_items; item->mask != 0; item++) { printf("%-10s %s\n", item->name, item->help); } PANIC("Invalid parameter -d=%s", optarg); } cpu_set_log(mask); } break; case QEMU_OPTION_s: gdbstub_dev = "tcp::" DEFAULT_GDBSTUB_PORT; break; case QEMU_OPTION_gdb: gdbstub_dev = optarg; break; case QEMU_OPTION_L: data_dir = optarg; break; case QEMU_OPTION_bios: bios_name = optarg; break; case QEMU_OPTION_singlestep: singlestep = 1; break; case QEMU_OPTION_S: #if 0 /* ANDROID */ PANIC("Sorry, stopped launch is not supported in the Android emulator" ); #endif autostart = 0; break; #ifndef _WIN32 case QEMU_OPTION_k: keyboard_layout = optarg; break; #endif case QEMU_OPTION_localtime: rtc_utc = 0; break; case QEMU_OPTION_vga: select_vgahw (optarg); break; #if defined(TARGET_PPC) || defined(TARGET_SPARC) case QEMU_OPTION_g: { const char *p; int w, h, depth; p = optarg; w = strtol(p, (char **)&p, 10); if (w <= 0) { graphic_error: PANIC("qemu: invalid resolution or depth"); } if (*p != 'x') goto graphic_error; p++; h = strtol(p, (char **)&p, 10); if (h <= 0) goto graphic_error; if (*p == 'x') { p++; depth = strtol(p, (char **)&p, 10); if (depth != 8 && depth != 15 && depth != 16 && depth != 24 && depth != 32) goto graphic_error; } else if (*p == '\0') { depth = graphic_depth; } else { goto graphic_error; } graphic_width = w; graphic_height = h; graphic_depth = depth; } break; #endif case QEMU_OPTION_echr: { char *r; term_escape_char = strtol(optarg, &r, 0); if (r == optarg) printf("Bad argument to echr\n"); break; } case QEMU_OPTION_monitor: monitor_device = optarg; break; case QEMU_OPTION_serial: if (serial_device_index >= MAX_SERIAL_PORTS) { PANIC("qemu: too many serial ports"); } serial_devices[serial_device_index] = optarg; serial_device_index++; break; case QEMU_OPTION_watchdog: i = select_watchdog(optarg); if (i > 0) { if (i == 1) { PANIC("Invalid watchdog parameter: %s", optarg); } else { QEMU_EXIT(0); } } break; case QEMU_OPTION_watchdog_action: if (select_watchdog_action(optarg) == -1) { PANIC("Unknown -watchdog-action parameter"); } break; case QEMU_OPTION_virtiocon: if (virtio_console_index >= MAX_VIRTIO_CONSOLES) { PANIC("qemu: too many virtio consoles"); } virtio_consoles[virtio_console_index] = optarg; virtio_console_index++; break; case QEMU_OPTION_parallel: if (parallel_device_index >= MAX_PARALLEL_PORTS) { PANIC("qemu: too many parallel ports"); } parallel_devices[parallel_device_index] = optarg; parallel_device_index++; break; case QEMU_OPTION_loadvm: loadvm = optarg; break; case QEMU_OPTION_savevm_on_exit: savevm_on_exit = optarg; break; case QEMU_OPTION_full_screen: full_screen = 1; break; #ifdef CONFIG_SDL case QEMU_OPTION_no_frame: no_frame = 1; break; case QEMU_OPTION_alt_grab: alt_grab = 1; break; case QEMU_OPTION_no_quit: no_quit = 1; break; case QEMU_OPTION_sdl: display_type = DT_SDL; break; #endif case QEMU_OPTION_pidfile: pid_file = optarg; break; #ifdef TARGET_I386 case QEMU_OPTION_win2k_hack: win2k_install_hack = 1; break; case QEMU_OPTION_rtc_td_hack: rtc_td_hack = 1; break; #ifndef CONFIG_ANDROID case QEMU_OPTION_acpitable: if(acpi_table_add(optarg) < 0) { PANIC("Wrong acpi table provided"); } break; #endif case QEMU_OPTION_smbios: if(smbios_entry_add(optarg) < 0) { PANIC("Wrong smbios provided"); } break; #endif #ifdef CONFIG_KQEMU case QEMU_OPTION_no_kqemu: kqemu_allowed = 0; break; case QEMU_OPTION_kernel_kqemu: kqemu_allowed = 2; break; #endif #ifdef TARGET_I386 #ifdef CONFIG_KVM case QEMU_OPTION_enable_kvm: kvm_allowed = 1; #ifdef CONFIG_KQEMU kqemu_allowed = 0; #endif break; #endif #endif /* TARGET_I386 */ case QEMU_OPTION_usb: usb_enabled = 1; break; case QEMU_OPTION_usbdevice: usb_enabled = 1; if (usb_devices_index >= MAX_USB_CMDLINE) { PANIC("Too many USB devices"); } usb_devices[usb_devices_index] = optarg; usb_devices_index++; break; case QEMU_OPTION_smp: smp_cpus = atoi(optarg); if (smp_cpus < 1) { PANIC("Invalid number of CPUs"); } break; case QEMU_OPTION_vnc: display_type = DT_VNC; vnc_display = optarg; break; #ifdef TARGET_I386 case QEMU_OPTION_no_acpi: acpi_enabled = 0; break; case QEMU_OPTION_no_hpet: no_hpet = 1; break; case QEMU_OPTION_no_virtio_balloon: no_virtio_balloon = 1; break; #endif case QEMU_OPTION_no_reboot: no_reboot = 1; break; case QEMU_OPTION_no_shutdown: no_shutdown = 1; break; case QEMU_OPTION_show_cursor: cursor_hide = 0; break; case QEMU_OPTION_uuid: if(qemu_uuid_parse(optarg, qemu_uuid) < 0) { PANIC("Fail to parse UUID string. Wrong format."); } break; #ifndef _WIN32 case QEMU_OPTION_daemonize: daemonize = 1; break; #endif case QEMU_OPTION_option_rom: if (nb_option_roms >= MAX_OPTION_ROMS) { PANIC("Too many option ROMs"); } option_rom[nb_option_roms] = optarg; nb_option_roms++; break; #if defined(TARGET_ARM) || defined(TARGET_M68K) case QEMU_OPTION_semihosting: semihosting_enabled = 1; break; #endif case QEMU_OPTION_name: qemu_name = optarg; break; #if defined(TARGET_SPARC) || defined(TARGET_PPC) case QEMU_OPTION_prom_env: if (nb_prom_envs >= MAX_PROM_ENVS) { PANIC("Too many prom variables"); } prom_envs[nb_prom_envs] = optarg; nb_prom_envs++; break; #endif #ifdef TARGET_ARM case QEMU_OPTION_old_param: old_param = 1; break; #endif case QEMU_OPTION_clock: configure_alarms(optarg); break; case QEMU_OPTION_startdate: { struct tm tm; time_t rtc_start_date = 0; if (!strcmp(optarg, "now")) { rtc_date_offset = -1; } else { if (sscanf(optarg, "%d-%d-%dT%d:%d:%d", &tm.tm_year, &tm.tm_mon, &tm.tm_mday, &tm.tm_hour, &tm.tm_min, &tm.tm_sec) == 6) { /* OK */ } else if (sscanf(optarg, "%d-%d-%d", &tm.tm_year, &tm.tm_mon, &tm.tm_mday) == 3) { tm.tm_hour = 0; tm.tm_min = 0; tm.tm_sec = 0; } else { goto date_fail; } tm.tm_year -= 1900; tm.tm_mon--; rtc_start_date = mktimegm(&tm); if (rtc_start_date == -1) { date_fail: PANIC("Invalid date format. Valid format are:\n" "'now' or '2006-06-17T16:01:21' or '2006-06-17'"); } rtc_date_offset = time(NULL) - rtc_start_date; } } break; /* -------------------------------------------------------*/ /* User mode network stack restrictions */ case QEMU_OPTION_drop_udp: slirp_drop_udp(); break; case QEMU_OPTION_drop_tcp: slirp_drop_tcp(); break; case QEMU_OPTION_allow_tcp: slirp_allow(optarg, IPPROTO_TCP); break; case QEMU_OPTION_allow_udp: slirp_allow(optarg, IPPROTO_UDP); break; case QEMU_OPTION_drop_log: { FILE* drop_log_fd; drop_log_filename = optarg; drop_log_fd = fopen(optarg, "w+"); if (!drop_log_fd) { fprintf(stderr, "Cannot open drop log: %s\n", optarg); exit(1); } slirp_drop_log_fd(drop_log_fd); } break; case QEMU_OPTION_dns_log: { FILE* dns_log_fd; dns_log_filename = optarg; dns_log_fd = fopen(optarg, "wb+"); if (dns_log_fd == NULL) { fprintf(stderr, "Cannot open dns log: %s\n", optarg); exit(1); } slirp_dns_log_fd(dns_log_fd); } break; case QEMU_OPTION_max_dns_conns: { int max_dns_conns = 0; if (parse_int(optarg, &max_dns_conns)) { fprintf(stderr, "qemu: syntax: -max-dns-conns max_connections\n"); exit(1); } if (max_dns_conns <= 0 || max_dns_conns == LONG_MAX) { fprintf(stderr, "Invalid arg for max dns connections: %s\n", optarg); exit(1); } slirp_set_max_dns_conns(max_dns_conns); } break; case QEMU_OPTION_net_forward: net_slirp_forward(optarg); break; case QEMU_OPTION_net_forward_tcp2sink: { SockAddress saddr; if (parse_host_port(&saddr, optarg)) { fprintf(stderr, "Invalid ip/port %s for " "-forward-dropped-tcp2sink. " "We expect 'sink_ip:sink_port'\n", optarg); exit(1); } slirp_forward_dropped_tcp2sink(saddr.u.inet.address, saddr.u.inet.port); } break; /* -------------------------------------------------------*/ case QEMU_OPTION_tb_size: tb_size = strtol(optarg, NULL, 0); if (tb_size < 0) tb_size = 0; break; case QEMU_OPTION_icount: icount_option = optarg; break; case QEMU_OPTION_incoming: incoming = optarg; break; #ifndef _WIN32 case QEMU_OPTION_chroot: chroot_dir = optarg; break; case QEMU_OPTION_runas: run_as = optarg; break; #endif #ifdef CONFIG_XEN case QEMU_OPTION_xen_domid: xen_domid = atoi(optarg); break; case QEMU_OPTION_xen_create: xen_mode = XEN_CREATE; break; case QEMU_OPTION_xen_attach: xen_mode = XEN_ATTACH; break; #endif case QEMU_OPTION_mic: audio_input_source = (char*)optarg; break; #ifdef CONFIG_TRACE case QEMU_OPTION_trace: trace_filename = optarg; tracing = 1; break; #if 0 case QEMU_OPTION_trace_miss: trace_cache_miss = 1; break; case QEMU_OPTION_trace_addr: trace_all_addr = 1; break; #endif case QEMU_OPTION_tracing: if (strcmp(optarg, "off") == 0) tracing = 0; else if (strcmp(optarg, "on") == 0 && trace_filename) tracing = 1; else { PANIC("Unexpected option to -tracing ('%s')", optarg); } break; #if 0 case QEMU_OPTION_dcache_load_miss: dcache_load_miss_penalty = atoi(optarg); break; case QEMU_OPTION_dcache_store_miss: dcache_store_miss_penalty = atoi(optarg); break; #endif #endif #ifdef CONFIG_NAND case QEMU_OPTION_nand: nand_add_dev(optarg); break; #endif case QEMU_OPTION_android_ports: android_op_ports = (char*)optarg; break; case QEMU_OPTION_android_port: android_op_port = (char*)optarg; break; case QEMU_OPTION_android_report_console: android_op_report_console = (char*)optarg; break; case QEMU_OPTION_http_proxy: op_http_proxy = (char*)optarg; break; case QEMU_OPTION_charmap: op_charmap_file = (char*)optarg; break; case QEMU_OPTION_android_hw: android_op_hwini = (char*)optarg; break; case QEMU_OPTION_dns_server: android_op_dns_server = (char*)optarg; break; case QEMU_OPTION_radio: android_op_radio = (char*)optarg; break; case QEMU_OPTION_gps: android_op_gps = (char*)optarg; break; case QEMU_OPTION_audio: android_op_audio = (char*)optarg; break; case QEMU_OPTION_cpu_delay: android_op_cpu_delay = (char*)optarg; break; case QEMU_OPTION_show_kernel: android_kmsg_init(ANDROID_KMSG_PRINT_MESSAGES); break; #ifdef CONFIG_NAND_LIMITS case QEMU_OPTION_nand_limits: android_op_nand_limits = (char*)optarg; break; #endif // CONFIG_NAND_LIMITS case QEMU_OPTION_netspeed: android_op_netspeed = (char*)optarg; break; case QEMU_OPTION_netdelay: android_op_netdelay = (char*)optarg; break; case QEMU_OPTION_netfast: android_op_netfast = 1; break; case QEMU_OPTION_tcpdump: android_op_tcpdump = (char*)optarg; break; case QEMU_OPTION_boot_property: boot_property_parse_option((char*)optarg); break; case QEMU_OPTION_lcd_density: android_op_lcd_density = (char*)optarg; break; case QEMU_OPTION_ui_port: android_op_ui_port = (char*)optarg; break; case QEMU_OPTION_ui_settings: android_op_ui_settings = (char*)optarg; break; case QEMU_OPTION_audio_test_out: android_audio_test_start_out(); break; case QEMU_OPTION_android_avdname: android_op_avd_name = (char*)optarg; break; case QEMU_OPTION_timezone: if (timezone_set((char*)optarg)) { fprintf(stderr, "emulator: it seems the timezone '%s' is not in zoneinfo format\n", (char*)optarg); } break; #ifdef CONFIG_MEMCHECK case QEMU_OPTION_android_memcheck: android_op_memcheck = (char*)optarg; /* This will set ro.kernel.memcheck system property * to memcheck's tracing flags. */ stralloc_add_format(kernel_config, " memcheck=%s", android_op_memcheck); break; #endif // CONFIG_MEMCHECK case QEMU_OPTION_snapshot_no_time_update: android_snapshot_update_time = 0; break; } } } /* Initialize character map. */ if (android_charmap_setup(op_charmap_file)) { if (op_charmap_file) { PANIC( "Unable to initialize character map from file %s.", op_charmap_file); } else { PANIC( "Unable to initialize default character map."); } } /* If no data_dir is specified then try to find it relative to the executable path. */ if (!data_dir) { data_dir = find_datadir(argv[0]); } /* If all else fails use the install patch specified when building. */ if (!data_dir) { data_dir = CONFIG_QEMU_SHAREDIR; } if (!android_op_hwini) { PANIC("Missing -android-hw option!"); } hw_ini = iniFile_newFromFile(android_op_hwini); if (hw_ini == NULL) { PANIC("Could not find %s file.", android_op_hwini); } androidHwConfig_init(android_hw, 0); androidHwConfig_read(android_hw, hw_ini); iniFile_free(hw_ini); { int width = android_hw->hw_lcd_width; int height = android_hw->hw_lcd_height; int depth = android_hw->hw_lcd_depth; /* A bit of sanity checking */ if (width <= 0 || height <= 0 || (depth != 16 && depth != 32) || (((width|height) & 3) != 0) ) { PANIC("Invalid display configuration (%d,%d,%d)", width, height, depth); } android_display_width = width; android_display_height = height; android_display_bpp = depth; } #ifdef CONFIG_NAND_LIMITS /* Init nand stuff. */ if (android_op_nand_limits) { parse_nand_limits(android_op_nand_limits); } #endif // CONFIG_NAND_LIMITS /* Initialize AVD name from hardware configuration if needed */ if (!android_op_avd_name) { if (android_hw->avd_name && *android_hw->avd_name) { android_op_avd_name = android_hw->avd_name; VERBOSE_PRINT(init,"AVD Name: %s", android_op_avd_name); } } /* Initialize system partition image */ { char tmp[PATH_MAX+32]; const char* sysImage = android_hw->disk_systemPartition_path; const char* initImage = android_hw->disk_systemPartition_initPath; uint64_t sysBytes = android_hw->disk_systemPartition_size; if (sysBytes == 0) { PANIC("Invalid system partition size: %" PRUd64, sysBytes); } snprintf(tmp,sizeof(tmp),"system,size=0x%" PRUx64, sysBytes); if (sysImage && *sysImage) { if (filelock_create(sysImage) == NULL) { fprintf(stderr,"WARNING: System image already in use, changes will not persist!\n"); /* If there is no file= parameters, nand_add_dev will create * a temporary file to back the partition image. */ } else { pstrcat(tmp,sizeof(tmp),",file="); pstrcat(tmp,sizeof(tmp),sysImage); } } if (initImage && *initImage) { if (!path_exists(initImage)) { PANIC("Invalid initial system image path: %s", initImage); } pstrcat(tmp,sizeof(tmp),",initfile="); pstrcat(tmp,sizeof(tmp),initImage); } else { PANIC("Missing initial system image path!"); } nand_add_dev(tmp); } /* Initialize data partition image */ { char tmp[PATH_MAX+32]; const char* dataImage = android_hw->disk_dataPartition_path; const char* initImage = android_hw->disk_dataPartition_initPath; uint64_t dataBytes = android_hw->disk_dataPartition_size; if (dataBytes == 0) { PANIC("Invalid data partition size: %" PRUd64, dataBytes); } snprintf(tmp,sizeof(tmp),"userdata,size=0x%" PRUx64, dataBytes); if (dataImage && *dataImage) { if (filelock_create(dataImage) == NULL) { fprintf(stderr, "WARNING: Data partition already in use. Changes will not persist!\n"); /* Note: if there is no file= parameters, nand_add_dev() will * create a temporary file to back the partition image. */ } else { /* Create the file if needed */ if (!path_exists(dataImage)) { if (path_empty_file(dataImage) < 0) { PANIC("Could not create data image file %s: %s", dataImage, strerror(errno)); } } pstrcat(tmp, sizeof(tmp), ",file="); pstrcat(tmp, sizeof(tmp), dataImage); } } if (initImage && *initImage) { pstrcat(tmp, sizeof(tmp), ",initfile="); pstrcat(tmp, sizeof(tmp), initImage); } nand_add_dev(tmp); } /* Init SD-Card stuff. For Android, it is always hda */ /* If the -hda option was used, ignore the Android-provided one */ if (hda_opts == NULL) { const char* sdPath = android_hw->hw_sdCard_path; if (sdPath && *sdPath) { if (!path_exists(sdPath)) { fprintf(stderr, "WARNING: SD Card image is missing: %s\n", sdPath); } else if (filelock_create(sdPath) == NULL) { fprintf(stderr, "WARNING: SD Card image already in use: %s\n", sdPath); } else { /* Successful locking */ hda_opts = drive_add(sdPath, HD_ALIAS, 0); } } } if (hdb_opts == NULL) { const char* spath = android_hw->disk_snapStorage_path; if (spath && *spath) { if (!path_exists(spath)) { PANIC("Snapshot storage file does not exist: %s", spath); } if (filelock_create(spath) == NULL) { PANIC("Snapshot storag already in use: %s", spath); } hdb_opts = drive_add(spath, HD_ALIAS, 1); } } /* Set the VM's max heap size, passed as a boot property */ if (android_hw->vm_heapSize > 0) { char tmp[64]; snprintf(tmp, sizeof(tmp), "%dm", android_hw->vm_heapSize); boot_property_add("dalvik.vm.heapsize",tmp); } /* Initialize net speed and delays stuff. */ if (android_parse_network_speed(android_op_netspeed) < 0 ) { PANIC("invalid -netspeed parameter '%s'", android_op_netspeed); } if ( android_parse_network_latency(android_op_netdelay) < 0 ) { PANIC("invalid -netdelay parameter '%s'", android_op_netdelay); } if (android_op_netfast) { qemu_net_download_speed = 0; qemu_net_upload_speed = 0; qemu_net_min_latency = 0; qemu_net_max_latency = 0; } /* Initialize LCD density */ if (android_hw->hw_lcd_density) { long density = android_hw->hw_lcd_density; if (density <= 0) { PANIC("Invalid hw.lcd.density value: %ld", density); } hwLcd_setBootProperty(density); } /* Initialize TCP dump */ if (android_op_tcpdump) { if (qemu_tcpdump_start(android_op_tcpdump) < 0) { fprintf(stdout, "could not start packet capture: %s\n", strerror(errno)); } } /* Initialize modem */ if (android_op_radio) { CharDriverState* cs = qemu_chr_open("radio", android_op_radio, NULL); if (cs == NULL) { PANIC("unsupported character device specification: %s\n" "used -help-char-devices for list of available formats", android_op_radio); } android_qemud_set_channel( ANDROID_QEMUD_GSM, cs); } else if (android_hw->hw_gsmModem != 0 ) { if ( android_qemud_get_channel( ANDROID_QEMUD_GSM, &android_modem_cs ) < 0 ) { PANIC("could not initialize qemud 'gsm' channel"); } } /* Initialize GPS */ if (android_op_gps) { CharDriverState* cs = qemu_chr_open("gps", android_op_gps, NULL); if (cs == NULL) { PANIC("unsupported character device specification: %s\n" "used -help-char-devices for list of available formats", android_op_gps); } android_qemud_set_channel( ANDROID_QEMUD_GPS, cs); } else if (android_hw->hw_gps != 0) { if ( android_qemud_get_channel( "gps", &android_gps_cs ) < 0 ) { PANIC("could not initialize qemud 'gps' channel"); } } /* Initialize audio. */ if (android_op_audio) { if ( !audio_check_backend_name( 0, android_op_audio ) ) { PANIC("'%s' is not a valid audio output backend. see -help-audio-out", android_op_audio); } } /* Initialize OpenGLES emulation */ android_hw_opengles_init(); if (android_op_cpu_delay) { char* end; long delay = strtol(android_op_cpu_delay, &end, 0); if (end == NULL || *end || delay < 0 || delay > 1000 ) { PANIC("option -cpu-delay must be an integer between 0 and 1000" ); } if (delay > 0) delay = (1000-delay); qemu_cpu_delay = (int) delay; } if (android_op_dns_server) { char* x = strchr(android_op_dns_server, ','); dns_count = 0; if (x == NULL) { if ( add_dns_server( android_op_dns_server ) == 0 ) dns_count = 1; } else { x = android_op_dns_server; while (*x) { char* y = strchr(x, ','); if (y != NULL) { *y = 0; y++; } else { y = x + strlen(x); } if (y > x && add_dns_server( x ) == 0) { dns_count += 1; } x = y; } } if (dns_count == 0) fprintf( stdout, "### WARNING: will use system default DNS server\n" ); } if (dns_count == 0) dns_count = slirp_get_system_dns_servers(); if (dns_count) { stralloc_add_format(kernel_config, " ndns=%d", dns_count); } #ifdef CONFIG_MEMCHECK if (android_op_memcheck) { memcheck_init(android_op_memcheck); } #endif // CONFIG_MEMCHECK /* Initialize cache partition, if any */ if (android_hw->disk_cachePartition != 0) { char tmp[PATH_MAX+32]; const char* partPath = android_hw->disk_cachePartition_path; uint64_t partSize = android_hw->disk_cachePartition_size; snprintf(tmp,sizeof(tmp),"cache,size=0x%" PRUx64, partSize); if (partPath && *partPath && strcmp(partPath, "") != 0) { if (filelock_create(partPath) == NULL) { fprintf(stderr, "WARNING: Cache partition already in use. Changes will not persist!\n"); /* Note: if there is no file= parameters, nand_add_dev() will * create a temporary file to back the partition image. */ } else { /* Create the file if needed */ if (!path_exists(partPath)) { if (path_empty_file(partPath) < 0) { PANIC("Could not create cache image file %s: %s", partPath, strerror(errno)); } } pstrcat(tmp, sizeof(tmp), ",file="); pstrcat(tmp, sizeof(tmp), partPath); } } nand_add_dev(tmp); } /* We always force qemu=1 when running inside QEMU */ stralloc_add_str(kernel_params, " qemu=1"); /* We always initialize the first serial port for the android-kmsg * character device (used to send kernel messages) */ serial_hds_add_at(0, "android-kmsg"); stralloc_add_str(kernel_params, " console=ttyS0"); /* We always initialize the second serial port for the android-qemud * character device as well */ serial_hds_add_at(1, "android-qemud"); stralloc_add_str(kernel_params, " android.qemud=ttyS1"); #if defined(CONFIG_KVM) && defined(CONFIG_KQEMU) if (kvm_allowed && kqemu_allowed) { PANIC( "You can not enable both KVM and kqemu at the same time"); } #endif machine->max_cpus = machine->max_cpus ?: 1; /* Default to UP */ if (smp_cpus > machine->max_cpus) { PANIC("Number of SMP cpus requested (%d), exceeds max cpus " "supported by machine `%s' (%d)", smp_cpus, machine->name, machine->max_cpus); } if (display_type == DT_NOGRAPHIC) { if (serial_device_index == 0) serial_devices[0] = "stdio"; if (parallel_device_index == 0) parallel_devices[0] = "null"; if (strncmp(monitor_device, "vc", 2) == 0) monitor_device = "stdio"; } #ifndef _WIN32 if (daemonize) { pid_t pid; if (pipe(fds) == -1) { PANIC("Unable to aquire pidfile"); } pid = fork(); if (pid > 0) { uint8_t status; ssize_t len; close(fds[1]); again: len = read(fds[0], &status, 1); if (len == -1 && (errno == EINTR)) goto again; if (len != 1) { PANIC("Error when aquiring pidfile"); } else if (status == 1) { PANIC("Could not acquire pidfile"); } else { QEMU_EXIT(0); } } else if (pid < 0) { PANIC("Unable to daemonize"); } setsid(); pid = fork(); if (pid > 0) { QEMU_EXIT(0); } else if (pid < 0) { PANIC("Could not acquire pid file"); } umask(027); signal(SIGTSTP, SIG_IGN); signal(SIGTTOU, SIG_IGN); signal(SIGTTIN, SIG_IGN); } if (pid_file && qemu_create_pidfile(pid_file) != 0) { if (daemonize) { uint8_t status = 1; int ret; do { ret = write(fds[1], &status, 1); } while (ret < 0 && errno == EINTR); PANIC("Could not acquire pid file"); } else { PANIC("Could not acquire pid file"); } } #endif #ifdef CONFIG_KQEMU if (smp_cpus > 1) kqemu_allowed = 0; #endif if (qemu_init_main_loop()) { PANIC("qemu_init_main_loop failed"); } if (kernel_filename == NULL) { kernel_filename = android_hw->kernel_path; } if (initrd_filename == NULL) { initrd_filename = android_hw->disk_ramdisk_path; } linux_boot = (kernel_filename != NULL); net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF; if (!linux_boot && *kernel_cmdline != '\0') { PANIC("-append only allowed with -kernel option"); } if (!linux_boot && initrd_filename != NULL) { PANIC("-initrd only allowed with -kernel option"); } /* boot to floppy or the default cd if no hard disk defined yet */ if (!boot_devices[0]) { boot_devices = "cad"; } setvbuf(stdout, NULL, _IOLBF, 0); if (init_timer_alarm() < 0) { PANIC("could not initialize alarm timer"); } configure_icount(icount_option); /* init network clients */ if (nb_net_clients == 0) { /* if no clients, we use a default config */ net_clients[nb_net_clients++] = "nic"; #ifdef CONFIG_SLIRP net_clients[nb_net_clients++] = "user"; #endif } for(i = 0;i < nb_net_clients; i++) { if (net_client_parse(net_clients[i]) < 0) { PANIC("Unable to parse net clients"); } } net_client_check(); #ifdef TARGET_I386 /* XXX: this should be moved in the PC machine instantiation code */ if (net_boot != 0) { int netroms = 0; for (i = 0; i < nb_nics && i < 4; i++) { const char *model = nd_table[i].model; char buf[1024]; char *filename; if (net_boot & (1 << i)) { if (model == NULL) model = "ne2k_pci"; snprintf(buf, sizeof(buf), "pxe-%s.bin", model); filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, buf); if (filename && get_image_size(filename) > 0) { if (nb_option_roms >= MAX_OPTION_ROMS) { PANIC("Too many option ROMs"); } option_rom[nb_option_roms] = qemu_strdup(buf); nb_option_roms++; netroms++; } if (filename) { qemu_free(filename); } } } if (netroms == 0) { PANIC("No valid PXE rom found for network device"); } } #endif /* init the bluetooth world */ for (i = 0; i < nb_bt_opts; i++) if (bt_parse(bt_opts[i])) { PANIC("Unable to parse bluetooth options"); } /* init the memory */ if (ram_size == 0) { ram_size = android_hw->hw_ramSize * 1024LL * 1024; if (ram_size == 0) { ram_size = DEFAULT_RAM_SIZE * 1024 * 1024; } } #ifdef CONFIG_KQEMU /* FIXME: This is a nasty hack because kqemu can't cope with dynamic guest ram allocation. It needs to go away. */ if (kqemu_allowed) { kqemu_phys_ram_size = ram_size + 8 * 1024 * 1024 + 4 * 1024 * 1024; kqemu_phys_ram_base = qemu_vmalloc(kqemu_phys_ram_size); if (!kqemu_phys_ram_base) { PANIC("Could not allocate physical memory"); } } #endif #ifndef _WIN32 init_qemu_clear_logs_sig(); #endif /* init the dynamic translator */ cpu_exec_init_all(tb_size * 1024 * 1024); bdrv_init(); /* we always create the cdrom drive, even if no disk is there */ #if 0 if (nb_drives_opt < MAX_DRIVES) drive_add(NULL, CDROM_ALIAS); /* we always create at least one floppy */ if (nb_drives_opt < MAX_DRIVES) drive_add(NULL, FD_ALIAS, 0); /* we always create one sd slot, even if no card is in it */ if (1) { drive_add(NULL, SD_ALIAS); } #endif /* open the virtual block devices */ if (snapshot) qemu_opts_foreach(qemu_find_opts("drive"), drive_enable_snapshot, NULL, 0); if (qemu_opts_foreach(qemu_find_opts("drive"), drive_init_func, &machine->use_scsi, 1) != 0) exit(1); //register_savevm("timer", 0, 2, timer_save, timer_load, &timers_state); register_savevm_live("ram", 0, 3, ram_save_live, NULL, ram_load, NULL); #ifndef _WIN32 /* must be after terminal init, SDL library changes signal handlers */ sighandler_setup(); #endif /* Maintain compatibility with multiple stdio monitors */ if (!strcmp(monitor_device,"stdio")) { for (i = 0; i < MAX_SERIAL_PORTS; i++) { const char *devname = serial_devices[i]; if (devname && !strcmp(devname,"mon:stdio")) { monitor_device = NULL; break; } else if (devname && !strcmp(devname,"stdio")) { monitor_device = NULL; serial_devices[i] = "mon:stdio"; break; } } } if (nb_numa_nodes > 0) { int i; if (nb_numa_nodes > smp_cpus) { nb_numa_nodes = smp_cpus; } /* If no memory size if given for any node, assume the default case * and distribute the available memory equally across all nodes */ for (i = 0; i < nb_numa_nodes; i++) { if (node_mem[i] != 0) break; } if (i == nb_numa_nodes) { uint64_t usedmem = 0; /* On Linux, the each node's border has to be 8MB aligned, * the final node gets the rest. */ for (i = 0; i < nb_numa_nodes - 1; i++) { node_mem[i] = (ram_size / nb_numa_nodes) & ~((1 << 23UL) - 1); usedmem += node_mem[i]; } node_mem[i] = ram_size - usedmem; } for (i = 0; i < nb_numa_nodes; i++) { if (node_cpumask[i] != 0) break; } /* assigning the VCPUs round-robin is easier to implement, guest OSes * must cope with this anyway, because there are BIOSes out there in * real machines which also use this scheme. */ if (i == nb_numa_nodes) { for (i = 0; i < smp_cpus; i++) { node_cpumask[i % nb_numa_nodes] |= 1 << i; } } } if (kvm_enabled()) { int ret; ret = kvm_init(smp_cpus); if (ret < 0) { PANIC("failed to initialize KVM"); } } if (monitor_device) { monitor_hd = qemu_chr_open("monitor", monitor_device, NULL); if (!monitor_hd) { PANIC("qemu: could not open monitor device '%s'", monitor_device); } } for(i = 0; i < MAX_SERIAL_PORTS; i++) { serial_hds_add(serial_devices[i]); } for(i = 0; i < MAX_PARALLEL_PORTS; i++) { const char *devname = parallel_devices[i]; if (devname && strcmp(devname, "none")) { char label[32]; snprintf(label, sizeof(label), "parallel%d", i); parallel_hds[i] = qemu_chr_open(label, devname, NULL); if (!parallel_hds[i]) { PANIC("qemu: could not open parallel device '%s'", devname); } } } for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) { const char *devname = virtio_consoles[i]; if (devname && strcmp(devname, "none")) { char label[32]; snprintf(label, sizeof(label), "virtcon%d", i); virtcon_hds[i] = qemu_chr_open(label, devname, NULL); if (!virtcon_hds[i]) { PANIC("qemu: could not open virtio console '%s'", devname); } } } module_call_init(MODULE_INIT_DEVICE); #ifdef CONFIG_TRACE if (trace_filename) { trace_init(trace_filename); #if 0 // We don't need the dcache code until we can get load and store tracing // working again. dcache_init(dcache_size, dcache_ways, dcache_line_size, dcache_replace_policy, dcache_load_miss_penalty, dcache_store_miss_penalty); #endif fprintf(stderr, "-- When done tracing, exit the emulator. --\n"); } #endif /* Combine kernel command line passed from the UI with parameters * collected during initialization. * * The order is the following: * - parameters from the hw configuration (kernel.parameters) * - additionnal parameters from options (e.g. -memcheck) * - the -append parameters. */ { const char* kernel_parameters; if (android_hw->kernel_parameters) { stralloc_add_c(kernel_params, ' '); stralloc_add_str(kernel_params, android_hw->kernel_parameters); } /* If not empty, kernel_config always contains a leading space */ stralloc_append(kernel_params, kernel_config); if (*kernel_cmdline) { stralloc_add_c(kernel_params, ' '); stralloc_add_str(kernel_params, kernel_cmdline); } /* Remove any leading/trailing spaces */ stralloc_strip(kernel_params); kernel_parameters = stralloc_cstr(kernel_params); VERBOSE_PRINT(init, "Kernel parameters: %s", kernel_parameters); machine->init(ram_size, boot_devices, kernel_filename, kernel_parameters, initrd_filename, cpu_model); stralloc_reset(kernel_params); stralloc_reset(kernel_config); } for (env = first_cpu; env != NULL; env = env->next_cpu) { for (i = 0; i < nb_numa_nodes; i++) { if (node_cpumask[i] & (1 << env->cpu_index)) { env->numa_node = i; } } } current_machine = machine; /* Set KVM's vcpu state to qemu's initial CPUState. */ if (kvm_enabled()) { int ret; ret = kvm_sync_vcpus(); if (ret < 0) { PANIC("failed to initialize vcpus"); } } /* init USB devices */ if (usb_enabled) { for(i = 0; i < usb_devices_index; i++) { if (usb_device_add(usb_devices[i], 0) < 0) { fprintf(stderr, "Warning: could not add USB device %s\n", usb_devices[i]); } } } /* just use the first displaystate for the moment */ ds = get_displaystate(); /* Initialize display from the command line parameters. */ android_display_reset(ds, android_display_width, android_display_height, android_display_bpp); if (display_type == DT_DEFAULT) { #if defined(CONFIG_SDL) || defined(CONFIG_COCOA) display_type = DT_SDL; #else display_type = DT_VNC; vnc_display = "localhost:0,to=99"; show_vnc_port = 1; #endif } switch (display_type) { case DT_NOGRAPHIC: break; #if defined(CONFIG_CURSES) case DT_CURSES: curses_display_init(ds, full_screen); break; #endif #if defined(CONFIG_SDL) && !defined(CONFIG_STANDALONE_CORE) case DT_SDL: sdl_display_init(ds, full_screen, no_frame); break; #elif defined(CONFIG_COCOA) case DT_SDL: cocoa_display_init(ds, full_screen); break; #elif defined(CONFIG_STANDALONE_CORE) case DT_SDL: coredisplay_init(ds); break; #endif case DT_VNC: vnc_display_init(ds); if (vnc_display_open(ds, vnc_display) < 0) { PANIC("Unable to initialize VNC display"); } if (show_vnc_port) { printf("VNC server running on `%s'\n", vnc_display_local_addr(ds)); } break; default: break; } dpy_resize(ds); dcl = ds->listeners; while (dcl != NULL) { if (dcl->dpy_refresh != NULL) { ds->gui_timer = qemu_new_timer(rt_clock, gui_update, ds); qemu_mod_timer(ds->gui_timer, qemu_get_clock(rt_clock)); } dcl = dcl->next; } if (display_type == DT_NOGRAPHIC || display_type == DT_VNC) { nographic_timer = qemu_new_timer(rt_clock, nographic_update, NULL); qemu_mod_timer(nographic_timer, qemu_get_clock(rt_clock)); } text_consoles_set_display(ds); qemu_chr_initial_reset(); if (monitor_device && monitor_hd) monitor_init(monitor_hd, MONITOR_USE_READLINE | MONITOR_IS_DEFAULT); for(i = 0; i < MAX_SERIAL_PORTS; i++) { const char *devname = serial_devices[i]; if (devname && strcmp(devname, "none")) { if (strstart(devname, "vc", 0)) qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i); } } for(i = 0; i < MAX_PARALLEL_PORTS; i++) { const char *devname = parallel_devices[i]; if (devname && strcmp(devname, "none")) { if (strstart(devname, "vc", 0)) qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i); } } for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) { const char *devname = virtio_consoles[i]; if (virtcon_hds[i] && devname) { if (strstart(devname, "vc", 0)) qemu_chr_printf(virtcon_hds[i], "virtio console%d\r\n", i); } } if (gdbstub_dev && gdbserver_start(gdbstub_dev) < 0) { PANIC("qemu: could not open gdbserver on device '%s'", gdbstub_dev); } /* call android-specific setup function */ android_emulation_setup(); #if !defined(CONFIG_STANDALONE_CORE) // For the standalone emulator (UI+core in one executable) we need to // set the window title here. android_emulator_set_base_port(android_base_port); #endif if (loadvm) do_loadvm(cur_mon, loadvm); if (incoming) { autostart = 0; /* fixme how to deal with -daemonize */ qemu_start_incoming_migration(incoming); } if (autostart) vm_start(); #ifndef _WIN32 if (daemonize) { uint8_t status = 0; ssize_t len; again1: len = write(fds[1], &status, 1); if (len == -1 && (errno == EINTR)) goto again1; if (len != 1) { PANIC("Unable to daemonize"); } if (chdir("/")) { perror("not able to chdir to /"); PANIC("not able to chdir to /"); } TFR(fd = open("/dev/null", O_RDWR)); if (fd == -1) PANIC("open(\"/dev/null\") failed: %s", errno_str); } if (run_as) { pwd = getpwnam(run_as); if (!pwd) { PANIC("User \"%s\" doesn't exist", run_as); } } if (chroot_dir) { if (chroot(chroot_dir) < 0) { PANIC("chroot failed"); } if (chdir("/")) { perror("not able to chdir to /"); PANIC("not able to chdir to /"); } } if (run_as) { if (setgid(pwd->pw_gid) < 0) { PANIC("Failed to setgid(%d)", pwd->pw_gid); } if (setuid(pwd->pw_uid) < 0) { PANIC("Failed to setuid(%d)", pwd->pw_uid); } if (setuid(0) != -1) { PANIC("Dropping privileges failed"); } } if (daemonize) { dup2(fd, 0); dup2(fd, 1); dup2(fd, 2); close(fd); } #endif #ifdef CONFIG_ANDROID // This will notify the UI that the core is successfuly initialized android_core_init_completed(); #endif // CONFIG_ANDROID main_loop(); quit_timers(); net_cleanup(); android_emulation_teardown(); return 0; } void android_emulation_teardown(void) { android_charmap_done(); }