1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
|
/* Copyright (C) 2007-2010 The Android Open Source Project
**
** This software is licensed under the terms of the GNU General Public
** License version 2, as published by the Free Software Foundation, and
** may be copied, distributed, and modified under those terms.
**
** This program is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
** GNU General Public License for more details.
*/
/*
* Contains implementations of classes defined for a variety of DWARF objects.
*/
#include "stdio.h"
#include "dwarf_die.h"
#include "dwarf_cu.h"
#include "dwarf_utils.h"
#include "elf_file.h"
DIEObject::~DIEObject() {
/* Delete all children of this object. */
DIEObject* to_del = last_child();
while (to_del != NULL) {
DIEObject* next = to_del->prev_sibling();
delete to_del;
to_del = next;
}
}
ElfFile* DIEObject::elf_file() const {
return parent_cu()->elf_file();
}
Dwarf_Tag DIEObject::get_tag() const {
Dwarf_Tag tag;
return advance(NULL, &tag) != NULL ? tag : 0;
}
const char* DIEObject::get_name() const {
DIEAttrib die_attr;
/* Start with the obvious. */
if (get_attrib(DW_AT_name, &die_attr)) {
return die_attr.value()->str;
}
/* Lets see if there is a reference to the abstract origin, or specification,
* and use its name as the name for this DIE. */
if (get_attrib(DW_AT_abstract_origin, &die_attr) ||
get_attrib(DW_AT_specification, &die_attr)) {
DIEObject* org_die_obj =
parent_cu()->get_referenced_die_object(die_attr.value()->u32);
if (org_die_obj != NULL) {
return org_die_obj->get_name();
}
}
/* Lets see if there is a reference to the type DIE, and use
* its name as the name for this DIE. */
if (get_attrib(DW_AT_type, &die_attr)) {
DIEObject* org_die_obj =
parent_cu()->get_referenced_die_object(die_attr.value()->u32);
if (org_die_obj != NULL) {
return org_die_obj->get_name();
}
}
/* Can't figure the name for this DIE. */
return NULL;
}
bool DIEObject::get_attrib(Dwarf_At at_id, DIEAttrib* attr) const {
const Dwarf_Abbr_AT* at_abbr;
/* Advance to DIE attributes. */
const Elf_Byte* die_attr = advance(&at_abbr, NULL);
if (die_attr == NULL) {
_set_errno(EINVAL);
return false;
}
/* Loop through all DIE attributes, looking for the one that's being
* requested. */
while (!at_abbr->is_separator()) {
at_abbr = at_abbr->process(&attr->at_, &attr->form_);
die_attr = parent_cu()->process_attrib(die_attr, attr->form_, &attr->value_);
if (at_id == attr->at()) {
return true;
}
}
_set_errno(EINVAL);
return false;
}
DIEObject* DIEObject::get_leaf_for_address(Elf_Xword address) {
const bool contains = parent_cu()->is_CU_address_64() ?
contains_address<Elf_Xword>(address) :
contains_address<Elf_Word>(address);
if (!contains && !is_cu_die()) {
/* For CU DIEs address range may be zero size, even though its child DIEs
* occupie some address space. So, if CU DIE's address range doesn't
* contain the given address, we still want to go and check the children.
*/
_set_errno(EINVAL);
return NULL;
}
/* This DIE contains given address (or may contain it, if this is a CU DIE).
* Lets iterate through child DIEs to find the leaf (last DIE) that contains
* this address. */
DIEObject* child = last_child();
while (child != NULL) {
DIEObject* leaf = child->get_leaf_for_address(address);
if (leaf != NULL) {
return leaf;
}
child = child->prev_sibling();
}
/* No child DIE contains this address. This DIE is the leaf. */
return contains || !is_cu_die() ? this : NULL;
}
template <typename AddrType>
bool DIEObject::contains_address(Elf_Xword address) {
DIEAttrib die_ranges;
/* DIE can contain either list of ranges (f.i. DIEs that represent a routine
* that is inlined in multiple places will contain list of address ranges
* where that routine is inlined), or a pair "low PC, and high PC" describing
* contiguos address space where routine has been placed by compiler. */
if (get_attrib(DW_AT_ranges, &die_ranges)) {
/* Iterate through this DIE's ranges list, looking for the one that
* contains the given address. */
AddrType low;
AddrType high;
Elf_Word range_off = die_ranges.value()->u32;
while (elf_file()->get_range(range_off, &low, &high) &&
(low != 0 || high != 0)) {
if (address >= low && address < high) {
return true;
}
range_off += sizeof(AddrType) * 2;
}
return false;
} else {
/* This DIE doesn't have ranges. Lets see if it has low_pc and high_pc
* attributes. */
DIEAttrib low_pc;
DIEAttrib high_pc;
if (!get_attrib(DW_AT_low_pc, &low_pc) ||
!get_attrib(DW_AT_high_pc, &high_pc) ||
address < low_pc.value()->u64 ||
address >= high_pc.value()->u64) {
return false;
}
return true;
}
}
DIEObject* DIEObject::find_die_object(const Dwarf_DIE* die_to_find) {
if (die_to_find == die()) {
return this;
}
/* First we will iterate through the list of children, since chances to
* find requested DIE decrease as we go deeper into DIE tree. */
DIEObject* iter = last_child();
while (iter != NULL) {
if (iter->die() == die_to_find) {
return iter;
}
iter = iter->prev_sibling();
};
/* DIE has not been found among the children. Lets go deeper now. */
iter = last_child();
while (iter != NULL) {
DIEObject* ret = iter->find_die_object(die_to_find);
if (ret != NULL) {
return ret;
}
iter = iter->prev_sibling();
}
_set_errno(EINVAL);
return NULL;
}
void DIEObject::dump(bool only_this) const {
const Dwarf_Abbr_AT* at_abbr;
Dwarf_Tag tag;
const Elf_Byte* die_attr = advance(&at_abbr, &tag);
if (die_attr != NULL) {
printf("\n********** DIE[%p(%04X)] %s: %s **********\n",
die_, parent_cu()->get_die_reference(die_), dwarf_tag_name(tag),
get_name());
/* Dump this DIE attributes. */
while (!at_abbr->is_separator()) {
DIEAttrib attr;
at_abbr = at_abbr->process(&attr.at_, &attr.form_);
die_attr = parent_cu()->process_attrib(die_attr, attr.form(), &attr.value_);
dump_attrib(attr.at(), attr.form(), attr.value());
if (attr.at() == DW_AT_ranges) {
/* Dump all ranges for this DIE. */
Elf_Word off = attr.value()->u32;
if (parent_cu()->is_CU_address_64()) {
Elf_Xword low, high;
while (elf_file()->get_range<Elf_Xword>(off, &low, &high) &&
(low != 0 || high != 0)) {
printf(" %08I64X - %08I64X\n",
low, high);
off += 16;
}
} else {
Elf_Word low, high;
while (elf_file()->get_range<Elf_Word>(off, &low, &high) &&
(low != 0 || high != 0)) {
printf(" %08X - %08X\n",
low, high);
off += 8;
}
}
}
}
}
if (only_this) {
if (parent_die_ != NULL && !parent_die_->is_cu_die()) {
printf("\n-----------> CHILD OF:\n");
parent_die_->dump(true);
}
} else {
/* Dump this DIE's children. */
if (last_child() != NULL) {
last_child()->dump(false);
}
/* Dump this DIE's siblings. */
if (prev_sibling() != NULL) {
prev_sibling()->dump(false);
}
}
}
const Elf_Byte* DIEObject::advance(const Dwarf_Abbr_AT** at_abbr,
Dwarf_Tag* tag) const {
Dwarf_AbbrNum abbr_num;
Dwarf_Tag die_tag;
const Elf_Byte* die_attr = die()->process(&abbr_num);
const Dwarf_Abbr_DIE* abbr = parent_cu()->get_die_abbr(abbr_num);
if (abbr == NULL) {
return NULL;
}
const Dwarf_Abbr_AT* attrib_abbr = abbr->process(NULL, &die_tag);
if (at_abbr != NULL) {
*at_abbr = attrib_abbr;
}
if (tag != NULL) {
*tag = die_tag;
}
return die_attr;
}
|