aboutsummaryrefslogtreecommitdiffstats
path: root/hw/arm_timer.c
blob: a97d73e4474d9f8f4fac46d927b915c00f66f744 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
/* 
 * ARM PrimeCell Timer modules.
 *
 * Copyright (c) 2005-2006 CodeSourcery.
 * Written by Paul Brook
 *
 * This code is licenced under the GPL.
 */

#include "vl.h"
#include "arm_pic.h"

/* Common timer implementation.  */

#define TIMER_CTRL_ONESHOT      (1 << 0)
#define TIMER_CTRL_32BIT        (1 << 1)
#define TIMER_CTRL_DIV1         (0 << 2)
#define TIMER_CTRL_DIV16        (1 << 2)
#define TIMER_CTRL_DIV256       (2 << 2)
#define TIMER_CTRL_IE           (1 << 5)
#define TIMER_CTRL_PERIODIC     (1 << 6)
#define TIMER_CTRL_ENABLE       (1 << 7)

typedef struct {
    int64_t next_time;
    int64_t expires;
    int64_t loaded;
    QEMUTimer *timer;
    uint32_t control;
    uint32_t count;
    uint32_t limit;
    int raw_freq;
    int freq;
    int int_level;
    void *pic;
    int irq;
} arm_timer_state;

/* Calculate the new expiry time of the given timer.  */

static void arm_timer_reload(arm_timer_state *s)
{
    int64_t delay;

    s->loaded = s->expires;
    delay = muldiv64(s->count, ticks_per_sec, s->freq);
    if (delay == 0)
        delay = 1;
    s->expires += delay;
}

/* Check all active timers, and schedule the next timer interrupt.  */

static void arm_timer_update(arm_timer_state *s, int64_t now)
{
    int64_t next;

    /* Ignore disabled timers.  */
    if ((s->control & TIMER_CTRL_ENABLE) == 0)
        return;
    /* Ignore expired one-shot timers.  */
    if (s->count == 0 && (s->control & TIMER_CTRL_ONESHOT))
        return;
    if (s->expires - now <= 0) {
        /* Timer has expired.  */
        s->int_level = 1;
        if (s->control & TIMER_CTRL_ONESHOT) {
            /* One-shot.  */
            s->count = 0;
        } else {
            if ((s->control & TIMER_CTRL_PERIODIC) == 0) {
                /* Free running.  */
                if (s->control & TIMER_CTRL_32BIT)
                    s->count = 0xffffffff;
                else
                    s->count = 0xffff;
            } else {
                  /* Periodic.  */
                  s->count = s->limit;
            }
        }
    }
    while (s->expires - now <= 0) {
        arm_timer_reload(s);
    }
    /* Update interrupts.  */
    if (s->int_level && (s->control & TIMER_CTRL_IE)) {
        pic_set_irq_new(s->pic, s->irq, 1);
    } else {
        pic_set_irq_new(s->pic, s->irq, 0);
    }

    next = now;
    if (next - s->expires < 0)
        next = s->expires;

    /* Schedule the next timer interrupt.  */
    if (next == now) {
        qemu_del_timer(s->timer);
        s->next_time = 0;
    } else if (next != s->next_time) {
        qemu_mod_timer(s->timer, next);
        s->next_time = next;
    }
}

/* Return the current value of the timer.  */
static uint32_t arm_timer_getcount(arm_timer_state *s, int64_t now)
{
    int64_t elapsed;
    int64_t period;

    if (s->count == 0)
        return 0;
    if ((s->control & TIMER_CTRL_ENABLE) == 0)
        return s->count;
    elapsed = now - s->loaded;
    period = s->expires - s->loaded;
    /* If the timer should have expired then return 0.  This can happen
       when the host timer signal doesnt occur immediately.  It's better to
       have a timer appear to sit at zero for a while than have it wrap
       around before the guest interrupt is raised.  */
    /* ??? Could we trigger the interrupt here?  */
    if (elapsed > period)
        return 0;
    /* We need to calculate count * elapsed / period without overfowing.
       Scale both elapsed and period so they fit in a 32-bit int.  */
    while (period != (int32_t)period) {
        period >>= 1;
        elapsed >>= 1;
    }
    return ((uint64_t)s->count * (uint64_t)(int32_t)elapsed)
            / (int32_t)period;
}

uint32_t arm_timer_read(void *opaque, target_phys_addr_t offset)
{
    arm_timer_state *s = (arm_timer_state *)opaque;

    switch (offset >> 2) {
    case 0: /* TimerLoad */
    case 6: /* TimerBGLoad */
        return s->limit;
    case 1: /* TimerValue */
        return arm_timer_getcount(s, qemu_get_clock(vm_clock));
    case 2: /* TimerControl */
        return s->control;
    case 4: /* TimerRIS */
        return s->int_level;
    case 5: /* TimerMIS */
        if ((s->control & TIMER_CTRL_IE) == 0)
            return 0;
        return s->int_level;
    default:
        cpu_abort (cpu_single_env, "arm_timer_read: Bad offset %x\n", offset);
        return 0;
    }
}

static void arm_timer_write(void *opaque, target_phys_addr_t offset,
                            uint32_t value)
{
    arm_timer_state *s = (arm_timer_state *)opaque;
    int64_t now;

    now = qemu_get_clock(vm_clock);
    switch (offset >> 2) {
    case 0: /* TimerLoad */
        s->limit = value;
        s->count = value;
        s->expires = now;
        arm_timer_reload(s);
        break;
    case 1: /* TimerValue */
        /* ??? Linux seems to want to write to this readonly register.
           Ignore it.  */
        break;
    case 2: /* TimerControl */
        if (s->control & TIMER_CTRL_ENABLE) {
            /* Pause the timer if it is running.  This may cause some
               inaccuracy dure to rounding, but avoids a whole lot of other
               messyness.  */
            s->count = arm_timer_getcount(s, now);
        }
        s->control = value;
        s->freq = s->raw_freq;
        /* ??? Need to recalculate expiry time after changing divisor.  */
        switch ((value >> 2) & 3) {
        case 1: s->freq >>= 4; break;
        case 2: s->freq >>= 8; break;
        }
        if (s->control & TIMER_CTRL_ENABLE) {
            /* Restart the timer if still enabled.  */
            s->expires = now;
            arm_timer_reload(s);
        }
        break;
    case 3: /* TimerIntClr */
        s->int_level = 0;
        break;
    case 6: /* TimerBGLoad */
        s->limit = value;
        break;
    default:
        cpu_abort (cpu_single_env, "arm_timer_write: Bad offset %x\n", offset);
    }
    arm_timer_update(s, now);
}

static void arm_timer_tick(void *opaque)
{
    int64_t now;

    now = qemu_get_clock(vm_clock);
    arm_timer_update((arm_timer_state *)opaque, now);
}

static void *arm_timer_init(uint32_t freq, void *pic, int irq)
{
    arm_timer_state *s;

    s = (arm_timer_state *)qemu_mallocz(sizeof(arm_timer_state));
    s->pic = pic;
    s->irq = irq;
    s->raw_freq = s->freq = 1000000;
    s->control = TIMER_CTRL_IE;
    s->count = 0xffffffff;

    s->timer = qemu_new_timer(vm_clock, arm_timer_tick, s);
    /* ??? Save/restore.  */
    return s;
}

/* ARM PrimeCell SP804 dual timer module.
   Docs for this device don't seem to be publicly available.  This
   implementation is based on gueswork, the linux kernel sources and the
   Integrator/CP timer modules.  */

typedef struct {
    /* Include a pseudo-PIC device to merge the two interrupt sources.  */
    arm_pic_handler handler;
    void *timer[2];
    int level[2];
    uint32_t base;
    /* The output PIC device.  */
    void *pic;
    int irq;
} sp804_state;

static void sp804_set_irq(void *opaque, int irq, int level)
{
    sp804_state *s = (sp804_state *)opaque;

    s->level[irq] = level;
    pic_set_irq_new(s->pic, s->irq, s->level[0] || s->level[1]);
}

static uint32_t sp804_read(void *opaque, target_phys_addr_t offset)
{
    sp804_state *s = (sp804_state *)opaque;

    /* ??? Don't know the PrimeCell ID for this device.  */
    offset -= s->base;
    if (offset < 0x20) {
        return arm_timer_read(s->timer[0], offset);
    } else {
        return arm_timer_read(s->timer[1], offset - 0x20);
    }
}

static void sp804_write(void *opaque, target_phys_addr_t offset,
                        uint32_t value)
{
    sp804_state *s = (sp804_state *)opaque;

    offset -= s->base;
    if (offset < 0x20) {
        arm_timer_write(s->timer[0], offset, value);
    } else {
        arm_timer_write(s->timer[1], offset - 0x20, value);
    }
}

static CPUReadMemoryFunc *sp804_readfn[] = {
   sp804_read,
   sp804_read,
   sp804_read
};

static CPUWriteMemoryFunc *sp804_writefn[] = {
   sp804_write,
   sp804_write,
   sp804_write
};

void sp804_init(uint32_t base, void *pic, int irq)
{
    int iomemtype;
    sp804_state *s;

    s = (sp804_state *)qemu_mallocz(sizeof(sp804_state));
    s->handler = sp804_set_irq;
    s->base = base;
    s->pic = pic;
    s->irq = irq;
    /* ??? The timers are actually configurable between 32kHz and 1MHz, but
       we don't implement that.  */
    s->timer[0] = arm_timer_init(1000000, s, 0);
    s->timer[1] = arm_timer_init(1000000, s, 1);
    iomemtype = cpu_register_io_memory(0, sp804_readfn,
                                       sp804_writefn, s);
    cpu_register_physical_memory(base, 0x00000fff, iomemtype);
    /* ??? Save/restore.  */
}


/* Integrator/CP timer module.  */

typedef struct {
    void *timer[3];
    uint32_t base;
} icp_pit_state;

static uint32_t icp_pit_read(void *opaque, target_phys_addr_t offset)
{
    icp_pit_state *s = (icp_pit_state *)opaque;
    int n;

    /* ??? Don't know the PrimeCell ID for this device.  */
    offset -= s->base;
    n = offset >> 8;
    if (n > 3)
        cpu_abort(cpu_single_env, "sp804_read: Bad timer %d\n", n);

    return arm_timer_read(s->timer[n], offset & 0xff);
}

static void icp_pit_write(void *opaque, target_phys_addr_t offset,
                          uint32_t value)
{
    icp_pit_state *s = (icp_pit_state *)opaque;
    int n;

    offset -= s->base;
    n = offset >> 8;
    if (n > 3)
        cpu_abort(cpu_single_env, "sp804_write: Bad timer %d\n", n);

    arm_timer_write(s->timer[n], offset & 0xff, value);
}


static CPUReadMemoryFunc *icp_pit_readfn[] = {
   icp_pit_read,
   icp_pit_read,
   icp_pit_read
};

static CPUWriteMemoryFunc *icp_pit_writefn[] = {
   icp_pit_write,
   icp_pit_write,
   icp_pit_write
};

void icp_pit_init(uint32_t base, void *pic, int irq)
{
    int iomemtype;
    icp_pit_state *s;

    s = (icp_pit_state *)qemu_mallocz(sizeof(icp_pit_state));
    s->base = base;
    /* Timer 0 runs at the system clock speed (40MHz).  */
    s->timer[0] = arm_timer_init(40000000, pic, irq);
    /* The other two timers run at 1MHz.  */
    s->timer[1] = arm_timer_init(1000000, pic, irq + 1);
    s->timer[2] = arm_timer_init(1000000, pic, irq + 2);

    iomemtype = cpu_register_io_memory(0, icp_pit_readfn,
                                       icp_pit_writefn, s);
    cpu_register_physical_memory(base, 0x00000fff, iomemtype);
    /* ??? Save/restore.  */
}