

SVOX AG
Baslerstrasse 30
CH-8048 Zürich

phone +41 43 544 06 00
fax +41 43 544 06 01
www.svox.com

SVOX Pico

Lingware Tools and Source File Description

1.0.0

SVOX Pico 1.0.0 Lingware Tools and Source File Description

Copyright © 2008-2009 SVOX AG. All Rights Reserved. Page 2

Copyright © 2008-2009 SVOX AG. All Rights Reserved.

May 20th, 2009

SVOX Pico 1.0.0 Lingware Tools and Source File Description

Copyright © 2008-2009 SVOX AG. All Rights Reserved. Page 3

Table of Contents
1 Introduction .. 5

1.1 The Lingware Build Process ... 5

1.2 Pkb list .. 5

2 Description of FST Source Files .. 7

2.1 Introduction .. 7

2.2 Alphabet .. 7

2.3 Classification of Pairs .. 8

2.4 Transition Matrix .. 8

2.5 Full FST ... 8

2.6 Comments .. 9

3 Description of DT Source Files .. 10

3.1 Introduction .. 10

3.2 dt2pkb Tool Invocation .. 10

3.3 Configuration File Description .. 10

3.4 Decision Tree File Description .. 11

4 Description of Property Table Source Files 13

4.1 Common Syntax ... 13

4.2 Phones Table .. 13

4.3 Part-Of-Speech (PoS) Table .. 14

4.4 Grapheme Table ... 16

5 Description of Text-Preprocessing Network Source Files19

5.1 Preprocessing Network Description .. 19

5.2 STRINGS section.. 20

5.3 CONTEXTS section .. 20

5.4 PRODUCTIONS section ... 21

5.5 TOKENS section .. 23

5.6 ATTRVALS section .. 26

5.7 OUTITEMS section ... 26

5.8 LEXCATS section ... 29

6 Description of Lexicon Source File 30

6.1 Introduction .. 30

6.2 Format ... 30

6.3 Restrictions .. 30

7 Description of PDF Source Files .. 32

7.1 Introduction .. 32

7.2 Internal Format of the pkb ... 32

SVOX Pico 1.0.0 Lingware Tools and Source File Description

Copyright © 2008-2009 SVOX AG. All Rights Reserved. Page 4

7.3 Duration Resource ... 32

7.4 Pitch Resource ... 33

7.5 Cepstral and Phase Resources .. 33

7.6 Data Format for PDF Resource Values .. 34

Appendix .. 36

A. Syntax of Preprocessing Network File (in UTF-8 format) 36

SVOX Pico 1.0.0 Lingware Tools and Source File Description

Copyright © 2008-2009 SVOX AG. All Rights Reserved. Page 5

1 Introduction
In this document, we report information useful to rebuild the individual lingware components
from parameter (source) files. The lingware used by the Pico engine is composed of a
collection of ‘resources’ that, in their binary form, are conventionally named ‘pkb’, i.e. (p)ico
(k)nowledge (b)ase. The terms ‘knowledge base’ and ‘pkb’ are then to be considered
synonyms in this document.

The actual lingware used by the runtime system is a suitably-packed binary collection of pkbs.
More on how this packing is performed can be found on the document "SVOX Pico Core
System, Software Architecture and System Development Guidelines Version 1.6".

In this description, we will detail how the individual pkbs can be generated starting from a
‘lingware source file’ or ‘lingware parameter file’ representation.

1.1 The Lingware Build Process

In general, the lingware build process can be split into the following steps:

1.1.1. Preparing the lingware source files
1.1.2. Generating the individual pkbs using the provided tools
1.1.3. Packing the pkbs on the final lingware for the runtime using the provided tools

Most of the details we give in this description are related to the step 1.1.1 and 1.1.2 (i.e.
what is the content of the lingware sources and how to generate the pkbs). The step 1.1.3 is
just a matter of invoking a script and is not described here.

1.2 Pkb List

This is the list of individual resources needed to generate a complete set of lingware files:

1.2.1. TPP_MAIN text pre-processing knowledge base
1.2.2. TAB_GRAPHS graphemes accepted in the language
1.2.3. TAB_PHONES phonemes accepted in the language
1.2.4. TAB_POS allowed PoS classifications
1.2.5. LEX_MAIN main lexicon
1.2.6. DT_POSP decision tree for PoS prediction
1.2.7. DT_POSD decision tree for PoS disambiguation
1.2.8. DT_G2P decision tree for G2P disambiguation
1.2.9. DT_PHR decision tree for phrasing prediction
1.2.10. DT_ACC decision tree for prominence prediction
1.2.11. DT_DUR decision tree for duration prediction
1.2.12. DT_LFZ1..5 decision tree for pitch prediction
1.2.13. DT_MGC1..5 decision tree for cepstral prediction
1.2.14. FST_WPHO_1..5 FST for sentence phonology
1.2.15. FST_SPHO_1..5 FST for syllabification
1.2.16. FST_XSPA_PARSE FST for XSAMPA parsing
1.2.17. FST_XS2SVPA FST for XSAMPA to SVOX-PA mapping
1.2.18. PDF_DUR PDF tables for duration
1.2.19. PDF_LFZ PDF tables for pitch
1.2.20. PDF_MGC PDF tables for cepstrum and source
1.2.21. PDF_PHA PDF tables for phase

SVOX Pico 1.0.0 Lingware Tools and Source File Description

Copyright © 2008-2009 SVOX AG. All Rights Reserved. Page 6

Legend

PoS: part of speech

G2P: grapheme to phoneme conversion

DT: decision tree

FST: finite-state transducer

XSAMPA: extended SAMPA phonetic alphabet

PDF: probability density function

SVOX Pico 1.0.0 Lingware Tools and Source File Description

Copyright © 2008-2009 SVOX AG. All Rights Reserved. Page 7

2 Description of FST Source Files
Applies to 1.2.14 ... 1.2.17

2.1 Introduction

FSTs are specialized finite-state automata in which the transition ‘symbols’ are actually pairs
of input and corresponding output symbols. In order to transduce an input string to a
corresponding output string, a state transition path must be found which ends in an
accepting state and where the input symbol of each transition corresponds to a symbol of the
input string. The output symbols of the found transition path together form the output string.
Empty symbols are allowed on both input and output side.

The current FSTs are deterministic automata with respect to the symbol pairs, that is, for
each symbol pair there is at most one transition with that pair from any state to another state.
However, with respect to only the input symbols the FST is not deterministic, i.e., an input
string may, in general, yield several output strings. (However, this should be avoided in the
FSTs used in the Pico system.)

The FST source files consist of three sections: the alphabet definition (symbol pair set), the
grouping of pairs into classes, and the state-transition matrix. The pair classes and the
transition matrix together form the actual automaton.

2.2 Alphabet

Syntax:

 Alphabet = ":ALPHABET" {Pair} "*" .

 Pair = Symbol ["/" Symbol] .

 Symbol = "'" {<any character with doubling of ' >} "'" |

 '"' {<any character with doubling of " >} '"' |

 "@" .

The alphabet starts with the keyword :ALPHABET, is followed by a list of symbol pairs, and
ends with ‘* ’. Symbol pairs with identical input and output symbol can be denoted by only a
single symbol, pairs with different input and output symbols must note both symbols
separated by ‘/ ’. The individual symbols must be strings delimited by either single or double
quotes. If the delimiter character must appear in the string, it must be doubled (e.g., """" is
the string containing exactly one double quote). The null symbol (epsilon symbol) is
represented by @ (not quoted!). The pair @/@ or only @ is not allowed, that is, the null symbol
must always be either input our output symbol but not both.

Example:

 :ALPHABET 'a' 'b' 'c' 'd' '*' 'a'/'u' 'b'/'v' 'c' /'w' 'd'/@

 *

SVOX Pico 1.0.0 Lingware Tools and Source File Description

Copyright © 2008-2009 SVOX AG. All Rights Reserved. Page 8

2.3 Classification of Pairs

Syntax:

Classification = ":DEFAULTCLASS" Number {":CLASS" N umber ":IS" {Pair}} .

Number = Digit {Digit} .

In order to keep the transition matrix of the FST small, the symbol pairs are grouped into
equivalence classes. All symbol pairs of such a class have identical transitions. Each
symbol pair logically occurs in exactly one class. Pairs that are not explicitly listed in a class
are put into a default class, the number of which must be declared as well. The classes are
numbered from 1 to <nrClasses>. The numbering need not be ordered.

Example:

:DEFAULTCLASS 2

:CLASS 1 :IS 'a'/'u' 'b'/'v' 'c'/'w' 'd'/@

:CLASS 3 :IS '*'

.

2.4 Transition Matrix

Syntax:

TransitionMatrix = ":TRANS" StateNumber ":TO" {Stat eNumber} .

StateNumber = Digit {Digit} .

The transition matrix notes the full matrix of transitions from all starting states with all pair
classes to ending states. The first state of the automaton is state 1. Each :TRANS row must
have exactly <nrClasses> target states. If a transition does not exist, the target state is
noted as 0. The starting states (after :TRANS) must be in strictly ascending order from 1 to
<nrStates>. In the current framework there is only a single accepting state, namely state 1.
(Every automaton can be brought into this form by means of a special additional terminator
symbol which leads from all previously accepting states to a newly introduced single
accepting state which must be numbered as state 1.)

Example:

:TRANS 1 TO 0 1 2 [ending states for classes 1, 2, and 3, starting

state 1] .

:TRANS 2 TO 1 0 2 [ending states for classes 1, 2, and 3, starting

state 2] .

2.5 Full FST

Syntax:

FST = Alphabet ":AUTOMATON" Name Classification Tra nsitionMatrix "*" .

Name = '"' {<any character with doubling of double quotes>} '"' .

SVOX Pico 1.0.0 Lingware Tools and Source File Description

Copyright © 2008-2009 SVOX AG. All Rights Reserved. Page 9

The full automaton consists of the alphabet, the classification section and the transition
matrix. The classification is preceded by an optional automaton name after the keyword
:AUTOMATON. The automaton is closed by a final "* ".

Example:

:ALPHABET 'a' 'b' 'c' 'd' '*' 'a'/'u' 'b'/'v' 'c'/' w' 'd'/@

*

:AUTOMATON "SUBS"

:DEFAULTCLASS 2

:CLASS 1 :IS 'a'/'u' 'b'/'v' 'c'/'w' 'd'/@

:CLASS 3 :IS '*'

:TRANS 1 TO 0 1 2

:TRANS 2 TO 1 0 2

*

This automaton describes an FST which accepts 'a', 'b', 'c', 'd', and '*' as input symbols.
After each '*' in the input, any immediately following 'a', 'b', 'c', or 'd' is converted into 'u', 'v',
'w', and null, respectively.

2.6 Comments

There are two forms of comments:

• Line comments are denoted by ‘!’, that is, any text following a '!' on the same line is
ignored.

• Range comments are denoted by ‘[‘ and ‘]’, that is, any text between square brackets is
ignored. Range comments may be nested.

SVOX Pico 1.0.0 Lingware Tools and Source File Description

Copyright © 2008-2009 SVOX AG. All Rights Reserved. Page 10

3 Description of DT Source Files
Applies to 1.2.6 ... 1.2.13

3.1 Introduction

The DT (Decision Trees) based resources are built using the tool ‘dt2pkb’, operating on an
input textual file whose content is described in the following.

3.2 dt2pkb Tool Invocation

The dt2pkb tool compresses the decision tree (DT) and builds its bit stream representation
(a binary file with the pkb extension). The tool takes three arguments:

<dtfmt_file> <dt_file> <output_pkb>

Example:

dt2pkb lex_en-GB_variant2.amb.dtfmt lex_en-GB_varia nt2.amb.DT.utf lex_en-

GB_variant2.amb.DT.pkb

Where:

<dtfmt_file> : configuration file

<dt_file> : input DT file

<output_pkb> : output pkb file

3.3 Configuration File Description

<dtfmt_file> : the configuration file contains the definitions of the data types used in the
vector attributes and in the DT questions:

:ATTR "<value>" (ex.: :ATTR "1") : the order number of the vector attribute and the
question in the DT. The values are in the range [1, 255] and the reserved word ‘target’ is
available. The word ‘target’ introduces the data type for the decision values.

:PROP [table = "<path>"] type = <value> (ex.: :PROP table =

"..\phoneset.table" type = phone) : the properties defining the data type of the current
attribute.

table = "<path>" is an optional property, which defines the path to the data table
containing the full set of the available values with their indexes.

type = <value> is the data type. The following types are defined:

- phone: a phoneme value;
- graph: a grapheme value (the UTF-8 characters of the language alphabet);
- pos: a part of speech tag;
- history: an index of the output decision;
- numeric: an integer value.

Example:

:ATTR "16" :PROP type = history !the index value

SVOX Pico 1.0.0 Lingware Tools and Source File Description

Copyright © 2008-2009 SVOX AG. All Rights Reserved. Page 11

:ATTR "target" :PROP table = "..\..\..\tables\de-DE \phoneset.table" type

= phone

Comments are supported in the <dtfmt_file> and are introduced by '!' (exclamation mark).

3.4 Decision Tree File Description

<dt_file> : the DT in text format (UTF-8 encoding).

One line in the file corresponds to one tree node:

<header>

<node_1>

<node_2>

.......

<node_n>

<header> : the header defines the DT parameters.

size = <int> : the size of the DT in terms of the number of the nodes;

num_attributes = <int> : the size of the input vector, which is equal to the number of the
different questions asked in the tree; the parameter is optional.

<node_i> : there are four types of nodes in the tree

a) binary node;
b) continuous node;
c) subset node;
d) decision node.

The subset nodes have unlimited number of children (n outcome forks). The decision nodes
are terminals and have no questions to ask. All other types of nodes have only two yes/no
children.

node_num = <int> : the index of the node. The nodes index counting starts from 1
(node_num = 1 is the root of the DT).

quest_num = <int> : the index of the question (it starts from 0), which is equal (i+1) to the
order number of the vector attribute.

subset = <val_1,val_2,..,val_n> : the subset question determines the subset of the
values for the corresponding vector attribute. A comma is the only possible delimiter
between the values (no space, no tabulator, etc.)

is_true : the binary question.

is_greater = <int> : the continuous question determines a threshold.

node_yes = <int> : the index of the child node, if the answer is positive.

node_no = <int> : the index of the child node, if the answer is negative.

decision = <val> : the predicted decision value.

SVOX Pico 1.0.0 Lingware Tools and Source File Description

Copyright © 2008-2009 SVOX AG. All Rights Reserved. Page 12

Examples of the nodes:

node_num = 29 quest_num = 12 is_true node_yes = 73 node_no = 72 !binary

node

node_num = 90 quest_num = 11 is_greater = 123 node_ yes = 182 node_no =

181 !continuous node

node_num = 2 quest_num = 4 subset = e,a_LONG,y node _yes = 4 subset =

l,r,u node_yes = 5 node_no = 6 !subset node

node_num = 83 decision = _epsilon_ !decision node

Comments starting with the '! ' are supported in the <dt_file>.

SVOX Pico 1.0.0 Lingware Tools and Source File Description

Copyright © 2008-2009 SVOX AG. All Rights Reserved. Page 13

4 Description of Property Table Source Files
Applies to 1.2.2 ... 1.2.4

4.1 Common Syntax

Several lingware source files are simple tables which map symbols to associated properties.
They share the following (incomplete) syntax:

PropertyTableFile = { Entry } .

Entry = ":SYM" Symbol ":PROP" Property { "," Prop erty } .

The symbols introduced by the :SYM keyword must be strings delimited by either single or
double quotes. If the delimiter character must appear in the string, it must be doubled (e.g.,
"""" is the string containing exactly one double quote).

Two forms of comments are accepted:

- Line comments are denoted by ‘! ’, that is, any text following a '! ' on the same line is
ignored.

- Range comments are denoted by ‘[‘ and ‘] ’, that is, any text between square
brackets is ignored. Range comments may be nested.

The legal strings of Symbol and the syntax and legal values of Property are left open to the
different tables described in the following sections.

4.2 Phones Table

The phones table (<LANG>_phones.utf) defines the valid set of symbols together with
properties needed during analysis and synthesis.

The phone table syntax adheres to the general Property Table syntax (section 4.1):

PhonesPropertyTableFile = { Entry } .

Entry = ":SYM" Symbol ":PROP" Property { "," Prop erty } .

Properties are defined after the symbol and introduced by the keyword :PROP:

Property = "mapval" "=" INT

 | BoolProp "=" "1" .

Here is the complete list of the properties supported in the phones table. Notice that all
properties with the exception of mapval (i.e. BoolProp) accept “1” as the only possible
value.

- mapval : the property mapval is mandatory and defines the integer value (<=255)
used internally. This value is unique and constant; if the value for any symbol in the
table is changed, new lingware should be regenerated accordingly.

- vowel : set to 1 if the symbol represents a vowel.

SVOX Pico 1.0.0 Lingware Tools and Source File Description

Copyright © 2008-2009 SVOX AG. All Rights Reserved. Page 14

- diphth : set to 1 if the symbol represents a diphthong.
- glott : set to 1 if the symbol represents a glottal stop.
- nonsyllvowel : set to 1 if the symbol represents a non-syllabic vowel, used in the

text analysis as an alternative way of transcribing diphthongs.
- syllcons : set to 1 if the symbol represents a syllabic consonant.

The following properties may occur once only:

- primstress : set to 1 if the symbol is the primary stress.
- secstress : set to 1 if the symbol is the secondary stress.
- syllbound : set to 1 if the symbol is the syllable boundary.
- wordbound : set to 1 if the symbol is the word boundary.
- pause : set to 1 if the symbol is the pause.

4.3 Part-Of-Speech (PoS) Table

The table with the part-of-speech-tags (LANG_pos.utf) defines the valid set of PoS symbols
used in the Pico system.

The Part-Of-Speech tag table syntax adheres to the general Property Table syntax (section
4.1):

PoSPropertyTableFile = { Entry } .

Entry = ":SYM" Symbol ":PROP" Property { "," Prop erty } .

Two different types of PoS tags are possible: simple and complex tags. Complex tags are
constructed out of the single ones separating every part by the caret symbol “^”, for example
ADJ_PL^V_PL. Complex tags have introduced in Pico to deal with the ambiguity found in
natural languages, like in the case of “I like your accent” and “I had to accent it” (N^V), where
a different transcription should be predicted for each case.

When building the Pico lexicon it is important not to introduce complex PoS tags not
available the PoS table. This could happen when extending the lexicon with entries that are
homographs of other entries already available in the lexicon.

Only two properties are defined:

Property = "mapval" "=" INT

 | "iscombined" "=" "1" .

- mapval : the property mapval is mandatory and defines the integer value (<=255)
used internally. This value is unique and constant; if the value for any symbol in the
table is changed, new lingware should be regenerated accordingly.

- iscombined : set to 1 if the symbol represents a complex PoS tag.

The following section lists all PoS tags and their meanings currently defined in Pico. To know
which PoS tags are actually available for each language consult the corresponding PoS
table.

Productive Tag Suffixes

SVOX Pico 1.0.0 Lingware Tools and Source File Description

Copyright © 2008-2009 SVOX AG. All Rights Reserved. Page 15

The PoS tags in the PoS Tag Description further down are described without their productive
tag suffixes. The suffixes listed here are productive only by convention and the Pico engine
does not have any built-in knowledge about morphological features.

Number

_SG = singular
_PL = plural

Gender

_M = masculine
_F = feminine

Examples

N_M_PL = noun masculine plural
V_SG = verb singular

PoS Tags Description

ABBREV abbreviation
ADJ adjective
ADV adverb
ART article
AUXB "be" auxiliary verb
AUXH "have" auxiliary verb
CARD cardinal number
CLITIC clitic
CONJ_CO coordinating conjunction
CONJ_INF infinitive conjunction (en-GB, en-US)
CONJ_QUE "que" conjunction (fr-FR)
CONJ_SUB subordinating conjunction
DEM demonstrative
DET determiner
DET_PRE invariable indefinite (de-DE)
INDEF_ART indefinite article
INDEF indefinite
N noun
NEG negation
N_ADJ noun-adjective
N_GEN noun-genitive
N_ING noun-gerund
PERS_PRO_OBJ object personal pronoun
PERS_PRO_SUBJ subject personal pronoun
POSS possessive
POSTP postposition
PREF_V verb prefix
PREP preposition
PRO pronoun
PRON_ADV pronominal adverb
PRO_REL relative pronoun
PRO_V pronoun + verb (en-GB, en-US)
PTCL particle
Q_ADJ interrogative adjective

SVOX Pico 1.0.0 Lingware Tools and Source File Description

Copyright © 2008-2009 SVOX AG. All Rights Reserved. Page 16

Q_DET interrogative determiner
Q_PRO interrogative pronoun
Q_PTCL interrogative particle
REL_PRO relative pronoun
V verb
V_AUX auxiliary verb
V_AUX_INF auxiliary verb (infinitive form)
V_AUX_PART auxiliary verb (past participle form)
V_GER verb (gerund form)
V_INF verb (infinitive form)
V_MODAL modal verb
V_MODAL_INF modal verb (infinitive form)
V_MODAL_PART modal verb (past participle form)
V_PART verb (past participle form)
V_PART_PRES verb (present participle form)
V_PAST verb (past form)1

4.4 Grapheme Table

The Grapheme Table is needed for the tokenizing of the input character sequence.
Tokenization is packing a single character or a group of consecutive characters into tokens
of a specific type, based on the character properties defined in the grapheme properties file.

For each character a token type and an optional token id are defined. Following token types
are available:

- WhiteSpaceCharacter
- VowelLikeCharacter
- ConsonantLikeCharacter
- DigitCharacter
- SequenceCharacter
- SingleCharacter

The tokenizer groups together sequences of characters of the same type with the following
exceptions:

- VowelLikeCharacter and ConsonantLikeCharacter are also kept together
- SingleCharacter are always separated in one token per character
- if token ids are defined the tokenizer separates also characters of the same token

type but with different token ids

The grapheme table syntax adheres to the general Property Table syntax (section 4.1):

GraphemesPropertyTableFile = { Entry } .

Entry = ":SYM" Symbol ":PROP" Property { "," Prop erty } .

Properties are defined after the symbol and introduced by the keyword :PROP:

Property =

1 en-GB: used only for lexical disambiguation in case of <read> [ri:d] vs. [red]. en-US: can be
used freely to tag verbs in the past form (including past participle).

SVOX Pico 1.0.0 Lingware Tools and Source File Description

Copyright © 2008-2009 SVOX AG. All Rights Reserved. Page 17

 "stoken" "=" STokenType

 | "stokenid" "=" STokenId

 | "punct" "=" PunctType

 | "graphsubs1" "=" Grapheme

 | "graphsubs2" "=" Grapheme

 .

Grapheme =

 '"' Single-UTF8-Character '"'

 | "'" Single-UTF8-Character "'"

.

STokenType =

 WhiteSpaceCharacter

 | VowelLikeCharacter

 | ConsonantLikeCharacter

 | DigitCharacter

 | SequenceCharacter

 | SingleCharacter

.

STokenId = INTEGER .

WhiteSpaceCharacter = "0" .

VowelLikeCharacter = "1" .

ConsonantLikeCharacter = "2" .

DigitCharacter = "3" .

SequenceCharacter = "4" .

SingleCharacter = "5" .

PunctType =

 SentenceFinalPunctuationMark

 | NotSentenceFinalPunctuationMark

.

SentenceFinalPunctuationMark = "2" .

NonSentenceFinalPunctuationMark = "1" .

SVOX Pico 1.0.0 Lingware Tools and Source File Description

Copyright © 2008-2009 SVOX AG. All Rights Reserved. Page 18

Example:

 :SYM "," :PROP stoken = 5, punct = 1

 :SYM "-" :PROP stoken = 4

 :SYM "." :PROP stoken = 5, punct = 2

 :SYM "0" :PROP stoken = 3

 :SYM "1" :PROP stoken = 3

 :SYM "?" :PROP stoken = 5, punct = 2

 :SYM "@" :PROP stoken = 4

 :SYM "A" :PROP stoken = 1, graphsubs1 = "a"

 :SYM "B" :PROP stoken = 2, graphsubs1 = "b"

SVOX Pico 1.0.0 Lingware Tools and Source File Description

Copyright © 2008-2009 SVOX AG. All Rights Reserved. Page 19

5 Description of Text-Preprocessing Network
Source Files
Applies to 1.2.1

The tokenized character sequence is fed into the preprocessing unit, which matches the input
tokens with the tokens contained in the preprocessing network. All possible paths of matching
input tokens with the tokens in the network are tried until no more paths are available. The
best path found so far is then used to transform the input to the desired output.

A preprocessing network file consists of contexts, productions, tokens, attributes and their
values, output items and strings.

The contexts define groups of active productions. Which context is active can be selected with
a markup command in the input string. A context may consist of several entries in the context
section of the network description. Each context entry defines the context name, the name of
a network allowing to enable productions from other networks and the name of a production.

A production consists of a network of tokens describing a certain behavior, e.g. parsing a
number with some constraints and giving it out directly or changing the input sequence to a
desired output sequence. Productions are hierarchical as they can use other productions.

Tokens define which input sequence is accepted and what is given out instead of the input.
They define also their successors and their alternative tokens. The behavior of a token
(whether and what and how it is matching with an input token) is defined with attributes.

There are two kinds of attributes: those having values and those having no values. Depending
on the attribute, the types of the attribute values can be integers, offsets to strings, offsets to
production names, offsets to output items or offsets to lexical categories.

Output items define what is given out for a matched sequence of input tokens. Output items
can define also the usage of built in functions like concatenation of strings or content of input
tokens.

5.1 Preprocessing Network Description

A preprocessing network file starts with the keyword "NETWORK" followed by an offset to
the string section defining the name of the network. Afterwards the sections for strings,
lexical categories, attribute values, tokens, output items, productions and finally contexts are
following.

Syntax:

 PreprocessingNetworkFile =

 "NETWORK" NetNameOfs

 Strings

 LexCats

 AttrVals

 Tokens

 OutItems

SVOX Pico 1.0.0 Lingware Tools and Source File Description

Copyright © 2008-2009 SVOX AG. All Rights Reserved. Page 20

 Productions

 Contexts

 .

Remarks:

Preprocessing source files may contain the same kind of comments (line comments and
range comments) as Property Tables source file, see (section 4.1).

5.2 STRINGS section

The STRINGS section contains all strings used in the network. That can be names of
contexts, names of networks, names of productions, strings used for input token matching
and strings used in the output items. The string section starts with the keyword "STRINGS"
followed by the number of charcters (including the termination zeroes). Strings are always
referenced with their offsets in the STRINGS section and are always zero terminated.

Syntax:

 Strings =

 "STRINGS" Len

 StringsOfs String

 { StringsOfs String }

 "."

 .

 Len = UINT .

Remark:

The first entry starting at offset 0 has to be the empty string.

Example:

 see CONTEXTS section.

5.3 CONTEXTS section

The context section contains as many entries as given with the number 'NrContextEntries',
however the actual number of different contexts is given by the number of context entries
with different context name offsets. A certain context consists of 4 numbers. The first
number is an entry id, the second an offset to the context name, the third an offset to a
network name and the fourth an offset to a production name. A context may consist of as
many context entries as different productions should be enabled for this context. Productions
from other networks may be enabled by using a different network name offset.

Syntax:

 Contexts =

SVOX Pico 1.0.0 Lingware Tools and Source File Description

Copyright © 2008-2009 SVOX AG. All Rights Reserved. Page 21

 "CONTEXTS" NrContextsEntries

 ContextEntry

 { ContextEntry }

 "."

 .

 NrContextEntries = UINT .

 ContextEntry =

 ContextsOfs CtxNameOfs NetNameOfs ProdNameOfs

 .

Remark:

 The first context entry at offset 0 should contain only zeroes.

Example:

 STRINGS 59

 0 ""

 1 "NETWORK1"

 10 "CONTEXT1"

 19 "CONTEXT2"

 28 "CONTEXT3"

 36 "PRODUCTION1"

 48 "PRODUCTION2"

 .

 CONTEXTS 5

 0 0 0 0

 1 10 1 36 ! CONTEXT1 using PRODUCTION1 of netwo rk NETWORK1

 2 19 1 48 ! CONTEXT2 using PRODUCTION2 of netwo rk NETWORK1

 3 28 1 36 ! CONTEXT3 using PRODUCTION1 of netwo rk NETWORK1 and

 4 28 1 48 ! PRODUCTION2 of netwo rk NETWORK1

 .

If a context should be empty, an entry referencing the empty string for network and
production name can be used.

5.4 PRODUCTIONS section

The production entries in the production section consist of 5 numbers. The first number
'ProductionOfs' is the entry index or offset in the production section. The second number

SVOX Pico 1.0.0 Lingware Tools and Source File Description

Copyright © 2008-2009 SVOX AG. All Rights Reserved. Page 22

'ProdPrefCost' is a cost value to prefer or penalize the selection of the production against
other productions. The third number 'ProdNameOfs' is the offset to the production name. The
fourth and fifth number 'ATokOfs' and 'ETokOfs' are offsets to the start and ending tokens of
the production.

Syntax:

 Productions =

 "PRODUCTIONS" NrProductions

 Production

 { Production }

 "."

 .

 Production =

 ProductionsOfs ProdPrefCost ProdNameOfs ATokOfs ETokOfs

 .

 NrProductions = UINT .

 ProdPrefCost = INT .

 ATokOfs = TokensOfs .

 ETokOfs = TokensOfs .

Remark:

 The first production entry at offset 0 should contain only zeroes.

Example:

 STRINGS 59

 0 ""

 1 "NETWORK1"

 10 "CONTEXT1"

 19 "CONTEXT2"

 28 "CONTEXT3"

 36 "PRODUCTION1"

 48 "PRODUCTION2"

 .

 TOKENS ...

SVOX Pico 1.0.0 Lingware Tools and Source File Description

Copyright © 2008-2009 SVOX AG. All Rights Reserved. Page 23

 0 {} 0 0 0 0

 1 ...

 2 ...

 3 ...

 4 ...

 ...

 .

 PRODUCTIONS 2

 0 0 0 0 0

 1 0 36 1 2 ! PRODUCTION2 starting at token 1 and ending at token 2

 2 0 48 3 4 ! PRODUCTION2 starting at token 3 and ending at token 4

 .

 CONTEXTS 5

 0 0 0 0

 1 10 1 36 ! CONTEXT1 using PRODUCTION1 of netwo rk NETWORK1

 2 19 1 48 ! CONTEXT2 using PRODUCTION2 of netwo rk NETWORK1

 3 28 1 36 ! CONTEXT3 using PRODUCTION1 of netwo rk NETWORK1 and

 4 28 1 48 ! PRODUCTION2 of netwo rk NETWORK1

 .

5.5 TOKENS section

The TOKENS section contains 'NrTokens' tokens. Each token entry consists of a set of
attributes, an offset to the first attribute value ('AttrValsOfs') and three fields ('NextTokenOfs',
'AltLTokenOfs', 'AltRTokenOfs') for connecting the token with other tokens to be able to form
a network. With the 'NextTokenOfs' field the tokens can be sequenced. With the
'AltLTokenOfs' and the 'AltRTokenOfs' field tokens can form an alternative.

Syntax:

 Tokens =

 "TOKENS" NrTokens

 Token { Token }

 "."

 .

SVOX Pico 1.0.0 Lingware Tools and Source File Description

Copyright © 2008-2009 SVOX AG. All Rights Reserved. Page 24

 Token =

 TokensOfs AttributeSet NextTokenOfs AltLTokenOf s AltRTokenOfs

AttrValsOfs

 .

 NrTokens = UINT .

 NextTokenOfs = TokensOfs .

 AltLTokenOfs = TokensOfs .

 AltRTokenOfs = TokensOfs .

 Attribute =

 "TSEOut" | "TSEMin" | "TSEMax" | "TSE Len" | "TSEVal"

 | "TSEStr" | "TSEHead" | "TSEMid" | "TSE Tail" | "TSEProd"

 | "TSEProdExt" | "TSEVar" | "TSELex" | "TSE Cost" | "TSEID"

 | "TSEBegin" | "TSEEnd" | "TSESpace" | "TSE Digit" | "TSELetter"

 | "TSEChar" | "TSESeq" | "TSECmpr" | "TSE NLZ" | "TSERoman"

 | "TSECI" | "TSECIS" | "TSEAUC" | "TSE ALC" | "TSESUC"

 | "TSEAccept" | "TSENext" | "TSEAltL" | "TSE AltR"

 .

 AttributeSet = "{" Attribute { "," Attribute } "} " .

Remark:

 The first attribute entry at offset 0 should be an empty entry, eg

 0 {} 0 0 0 0

The attributes define among other things

- how to match a token with an input token or
- what to give out or
- how to connect the token to other tokens or
- how to influence the rating of certain path

Attributes without values are:

TSEBegin matches with first token since a channel has been opened

TSEEnd matches with the last token before a channel is closed

TSESpace matches tokens of type W (whitespace (stoken type 0))

SVOX Pico 1.0.0 Lingware Tools and Source File Description

Copyright © 2008-2009 SVOX AG. All Rights Reserved. Page 25

TSELetter matches tokens of type L (letter (stoken type 1 or 2))

TSEDigit matches tokens of type D (digit (stoken type 3))

TSESeq matches tokens of type S (character sequence(stoken type 4))

TSEChar matches tokens of type C (single character (stoken type 5))

TSECmpr has always to be set

TSENLZ matches D tokens without leading zeroes

TSERoman matches L tokens containing roman numbers

TSECI matches L tokens case insensitive

TSECIS matches L tokens case insensitive at start (only first character)

TSEAUC matches L tokens with only upper case characters

TSEALC matches L tokens with only lower case characters

TSESUC matches L tokens with an upper case character as first character

TSEAccept accepting token marking the matched end of a production

TSENext token has a follower token specified in the NextTokenOfs field

TSEAltL token has a alternative token specified in the AltLTokenOfs field
which is alphabetically smaller than the actual input token.

TSEAltR token has a alternative token specified in the AltRTokenOfs field
which is alphabetically larger than the actual input token.

Attributes with values are:

TSEMin matches tokens of type W, D, S and L having the minimal length specified in
the attribute value (INT)

 TSEMax matches tokens of type W, D, S and L having a maximal length specified in
the attribute value (INT)

TSELen matches tokens of type W, D, S and L having the exact length specified in
the attribute value (INT)

TSEVal matches D tokens with same values as specified in the attribute value (INT)

TSEStr matches W, D, S, L and C tokens with same character sequence as specified
in the string the attribute value points to (StringOfs)

TSEHead matches D, S and L tokens starting with the same character sequence as
specified in the string the attribute value points to (StringOfs)

TSEMid matches D, S and L tokens containing the character sequence as specified in
the string the attribute value points to (StringOfs)

TSETail matches D, S and L tokens ending with the same character sequence as
specified in the string the attribute value points to (StringOfs)

TSEProd matches the following input tokens with the production the attribute value

SVOX Pico 1.0.0 Lingware Tools and Source File Description

Copyright © 2008-2009 SVOX AG. All Rights Reserved. Page 26

points to (ProductionsOfs)

TSEProdExt matches the following input tokens with an external production from another
network having the network and production name offset defined in attribute
value (StringOfs)

TSELex matches L tokens having an entry in the lexicon with the lexical categories
pointed to by the attribute value (LexCatsOfs)

TSEOut make an output according to what is defined in the output item specified in the
attribute value (OutItemsOfs)

TSEVar variable with the id specified in the attribute value containing the input token
or the result of a matched production (INT)

TSECost associating a cost value to the token (INT)

TSEID matches tokens with the same stokenid as specified in the attribute value
(INT)

The attribute values for a certain set of attributes are starting at position position
'AttrValsOfs'. Given the above order of the attributes, the i-th attribute (i=1..n) uses the
attribute value at 'AttrValOfs'+i-1.

5.6 ATTRVALS section

An attribute value is an integer or an offset to another data section depending on the type of
the attribute. The attribute values for a certain attribute set are stored consecutively.

Syntax:

AttrVals =

 "ATTRVALS" NrAttrVals

 AttrValsOfs AttrVal

 { AttrValsOfs AttrVal }

 "."

 .

AttrVal = INT | StringsOfs | ProductionsOfs | OutIt emsOfs | LexCatsOfs .

Remark:

 The first attribute value entry at offset 0 has to be a 0.

5.7 OUTITEMS section

The out item section defines what is given out from a token with a TSEOut attribute.
Therefore the attribute value of the TSEOut attribute points to an out item entry in the out

SVOX Pico 1.0.0 Lingware Tools and Source File Description

Copyright © 2008-2009 SVOX AG. All Rights Reserved. Page 27

items section. Out items can be nested so the output may be the input argument for other
output items.

What is returned or given out by an out item is defined by the out item type. VAL or STR just
return the integer value or the string offset. Other out items define some functions like LEFT,
RIGHT or CONCAT on the input argument(s). Some of these functions do not produce
direct output but influence the way a certain text is synthesized by emitting a command.
Such functions more or less correspond to the markups available on textual level, like it is
the case with SPEED, PITCH and VOLUME. Some of these 'markup-like' functions are
reserved for future versions of PICO but are ignored right now.

Out items consist of three fields:

- OutItemType: type of out item
- Arg: argument value depending on out item type
- NextArg: offset pointing to the next argument

Following out item types are available:

STR emit string pointed to by Arg

VAL emit integer value in Arg

VAR emit context of variable Arg

CONCAT emit concatenation of x,y,... Concatenate list of strings with first element
pointed to by argument Arg and the next by NextArg of Arg

ITEM emit x-th element of argument y; x in argument Arg pointed to by Arg. y in
argument Arg pointed to by NextArg of Arg pointed to by Arg.

RIGHT emit right n characters of string x; in argument Arg pointed to by Arg. x in
argument Arg pointed to by NextArg of Arg pointed to by Arg.

LEFT emit left n characters of string x; n in argument Arg pointed to by Arg. x in
argument Arg pointed to by NextArg of Arg pointed to by Arg.

SPELL emit spelled sequence of string arg1 with pauses in arg2

SVOXPA not available (ignored) in PICO
emit phoneme command with alphabet SVOXPA and phone in argument
Arg pointed to by Arg.

SAMPA not available (ignored) in PICO
emit phoneme command with alphabet SAMPA and phone sequence in
argument Arg pointed to by Arg.

AUDIOEDIT not available in PICO

RLZ remove leading zeros of argument Arg pointed to by Arg and emit result

IGNORE emit ignore command (Arg=0: ignore start, Arg=1: ignore end)

SENTENCE Arg=0: emit sentence start command
Arg =1: emit sentence end command

PARAGRAPH Arg=0: emit paragraph end command
Arg =1: emit paragraph start command

ROMAN emit string with cardinal aquivalent of roman number in argument Arg
pointed to by Arg.

SVOX Pico 1.0.0 Lingware Tools and Source File Description

Copyright © 2008-2009 SVOX AG. All Rights Reserved. Page 28

 GENFILE Arg>0: emit genfile command with file in argument Arg to by Arg
Arg=0: emit genfile end command

 PLAY Arg>0: emit play command with file in argument Arg pointed to by Arg
Arg=0: emit play end command

USESIG Arg>0: emit usesig start command with file in argument Arg pointed to by
Arg
Arg=0: emit usesig end command

SPEED emit set speed command to level to level in argument Arg pointed to by
Arg.

PITCH emit set pitch command to level in argument Arg pointed to by Arg.

VOLUME emit set volume command to level in argument Arg pointed to by Arg.

VOICE not available (ignored) in PICO
emit set voice command to voice name in argument Arg pointed to by
Arg.

MARK not available (ignored) in PICO
emit mark command with string in argument Arg pointed to by Arg.

BREAK emit break command with duration in argument Arg pointed by Arg (in
ms).

CONTEXT emit set context command to context in argument Arg pointed by Arg (in
ms).

Syntax:

 OutItems =

 "OUTITEMS" NrOutItems

 OutItem { OutItem }

 "."

 .

 OutItem =

 OutItemOfs NextArg OutItemType Arg

 .

 NextArg = OutItemsOfs .

 NrOutItems = UINT .

 OutItemType =

 "AUDIOEDIT" | "BREAK" | "CONCAT" | "CONTEXT"

 | "GENFILE" | "IGNORE" | "ITEM" | "LEFT"

SVOX Pico 1.0.0 Lingware Tools and Source File Description

Copyright © 2008-2009 SVOX AG. All Rights Reserved. Page 29

 | "MARK" | "PARA" | "SAMPA" | "SVOXPA"

 | "PITCH" | "PLAY" | "RLZ" | "RIGHT"

 | "ROMAN" | "SENT" | "SPEED" | "SPELL"

 | "STR" | "USESIG" | "VAL" | "VAR"

 | "VOICE" | "VOLUME"

 .

 Arg =

 INT

 | StringOfs

 | OutItemOfs

 .

Argument description of out items:

5.8 LEXCATS section

The LEXCATS section defines the id's of lexical categories. As lexical categories are not yet
supported in PICO, this section contains normally only one entry with value 0.

Syntax:

 LexCats =

 "LEXCATS" NrLexCats

 LexCatEntry

 { LexCatEntry }

 "."

 .

 LexCatEntry = LexCatsOfs LexCat { LexCat } .

 LexCat = INT16 .

Remarks:

 The first LexCatEntry at offset 0 should have only one LexCat with value 0.

 The last lexical category of a LexCatEntry should be a 0.

SVOX Pico 1.0.0 Lingware Tools and Source File Description

Copyright © 2008-2009 SVOX AG. All Rights Reserved. Page 30

6 Description of Lexicon Source File
Applies to 1.2.5

6.1 Introduction

The Pico lexicon a list of entries that are considered to be exceptions and corrections to the
general mechanism of PoS and G2P prediction built into Pico. The main applications for the
lexicon are:

- to support the preprocessing, especially in the number reading domain
- to read characters or character sequences that were not included in the G2P training
- to correct errors in the part of speech (PoS) prediction
- and to correct errors in the G2P prediction.

6.2 Format

The lexicon is a list of entries, with one entry per line. An entry consists of three fields,
separated by white space:

Lexicon = { Entry } .

Entry = PoS Ortho (Phono | ":G2P") .

The first field PoS describes the Part-of-Speech of the entry. The PoS might be also
composed (ambiguous, e.g. N^V). Please refer to the corresponding PoS table to find out
which PoS are supported for a given language.

The second field Ortho represents the orthographic form of the word and is enclosed in
double quotes.

The third field represents the phonetic transcription for the given combination of Part-of-
.Speech and /orthographic . Two variants are supported: the full phonetic representation
Phono enclosed in double quotes, and the:G2P keyword that leaves the phonetic
transcription of the word to be predicted by the G2P prediction tree. This second variant
should be used when only the PoS for a given word is predicted wrongly and is useful to
keep the size of the lexicon small.

6.3 Restrictions

The following restrictions apply:

1. Only up to 5 homographs (five entries having the same orthographic string) are
supported.

2. Homographs, i.e. an orthographic form with several different phonetic transcriptions, may
not be described using combined PoS tags or using the G2P keyword.

Example:

The following entries for the orthographic word “second” will lead to unexpected results:

ADJ^ADV^N "second" :G2P

SVOX Pico 1.0.0 Lingware Tools and Source File Description

Copyright © 2008-2009 SVOX AG. All Rights Reserved. Page 31

V "second" "sIk'And"

Instead, the composed tag should be split, resulting in separate entries in the lexicon,
and the G2P keyword has to be replaced by explicit phonetic transcriptions:

ADJ "second" "s'ek@nd"

ADV "second" "s'ek@nd"

N "second" "s'ek@nd"

V "second" "sIk'And"

SVOX Pico 1.0.0 Lingware Tools and Source File Description

Copyright © 2008-2009 SVOX AG. All Rights Reserved. Page 32

7 Description of PDF Source Files
Applies to 1.2.18 ... 1.2.21

7.1 Introduction

Part of the signal generation lingware enables Pico to determine acoustic speech
parameters including:

- Phone overall duration and HMM phone model individual state durations

- HMM phone model individual state F0 values

- HMM phone model individual state mel cepstral parameter vectors

- HMM phone model individual state excitation parameters

- HMM phone model individual state phase parameters.

This part of the lingware is implemented with 4 different resources:

- Duration resource (DUR)

- Pitch resource (LFZ)

- Cepstral resource (MGC, includes excitation)

- Phase resource (PHA)

7.2 Internal Format of the pkb

The internal format of the binary resources is described on the corresponding textual input
representation. The identifier, number of items and data type is specified for each resource
component in the correct order. Comments are added at the end of the lines, if suitable, to
better explain the content. In this document we add some information that is not easy to
insert in the textual description comments.

7.3 Duration Resource

This resource is used on the system to retrieve phone and HMM phone individual state
durations starting from the indices predicted by the corresponding DT traversal. Durations in
this resource are specified in number of frames, where the frame length is 4 ms. The
decision tree is used to determine the duration index per phoneme, and the duration index
points to a vector containing the total duration of the phoneme and the duration of each
phoneme state. The structure of this pdf is reported in the following:

numvectors total number of vectors in the pdf file

vecsize length of each vector

sampperframe number of samples per frame

phonquantlen length of the phone quantization table

phonquant phone quantization table

statequantlen length of the state quantization table

SVOX Pico 1.0.0 Lingware Tools and Source File Description

Copyright © 2008-2009 SVOX AG. All Rights Reserved. Page 33

statequant state quantization table

For more details as the number of entries, the data type of each entry, and numeric
examples, see the corresponding textual representation source.

7.4 Pitch Resource

This resource is used on the system to retrieve phone level and HMM phone individual state
pitch values starting from the indices predicted by the corresponding DT traversal. F0 values
in this resource are specified in Hertz. The decision tree is used to determine the F0 indices
per each phoneme state. There is, in fact, a separate decision tree for each state. The F0
index points then to a vector in the LFZ pdf table. Each LFZ vector contains a static log F0
value, delta log F0 value, and delta delta log F0 value, and corresponding inverse variance
values. The delta and variance information are used to smooth the predicted F0 values
based on a maximum likelihood criterion.

The structure of this pdf is reported in the following:

numvectors total number of vectors in the pdf file

vecsize length of each vector

numstates number of states

numframesperstate number of vectors per state

ceporder length of static part of vector

numvuv length of voicing part of vector

numdelta length of delta part of vector

meanpow log fixed-point base for stored vectors

maxbigpow maximum log fixed-point base for smoothing

amplif correction factor in percent for synthesized speech or smoothed f0

meanpowum log scaling factor for each stored cepstral dimension

ivarpow log scaling factor for inverse variances

content psf content

For more details as the number of entries, the data type of each entry, and numeric
examples, see the corresponding textual representation source.

7.5 Cepstral and Phase Resources

A third set of decision trees predicts a spectral index for each state. The spectral index
points to a vector in the MGC pdf table and to a vector in the phase pdf table. Each MGC
vector contains a voicing byte, static mel cepstral values, delta and delta delta cepstral
values, and corresponding inverse variance values. The delta and variance information are
used to smooth the predicted MGC values based on a maximum likelihood criterion. The
spectral index also points to a phase vector, which is used for synthesis of a natural voice
quality.

The structure of MGC pdf is reported in the following:

SVOX Pico 1.0.0 Lingware Tools and Source File Description

Copyright © 2008-2009 SVOX AG. All Rights Reserved. Page 34

numvectors total number of vectors in the pdf file

vecsize length of each vector

numstates number of states

numframesperstate number of vectors per state

ceporder length of static part of vector

numvuv length of voicing part of vector

numdelta length of delta part of vector

meanpow log fixed point base for stored vectors

maxbigpow maximum log fixed point base for smoothing

amplif correction factor in percent for synthesized speech or smoothed f0

meanpowum log scaling factor for each stored cepstral dimension

ivarpow log scaling factor for inverse variances

content cepstral content

The structure of Phase pdf is reported in the following:

numvectors total number of vectors in the pdf file

index phase indices table

n_comps phase sub table n.0 number of components

phase phase sub table n.0

...

...

n_comps phase sub table n.numvectors-1 number of components

phase phase sub table n.numvectors-1

For more details as the number of entries, the data type of each entry, and numeric
examples, see the corresponding textual representation source.

7.6 Data Format for PDF Resource Values

In the pdf files textual description, data values are expected to be UNSIGNED, 8-, 16- or 32-
bit values. In general, this is the correct type of data for ‘offsets’ or for most of the data
values.

If some of the data is related to a signed quantity, please note that:

- Unsigned char

unsigned values 0..127 maps to 0..127 positive values;

unsigned values 255..128 maps to negative values (-1..-128)

- Unsigned short

unsigned values 0..32767 maps to 0..32767 positive values;

SVOX Pico 1.0.0 Lingware Tools and Source File Description

Copyright © 2008-2009 SVOX AG. All Rights Reserved. Page 35

unsigned values 65536..32768 maps to negative values (-1..-32768)

- Unsigned int

unsigned values 0..2**31-1 maps to 0..2**31-1 positive values;

unsigned values 2**32..2**31 maps to negative values (-1..2**31)

SVOX Pico 1.0.0 Lingware Tools and Source File Description

Copyright © 2008-2009 SVOX AG. All Rights Reserved. Page 36

Appendix

A. Syntax of Preprocessing Network File (in UTF-8
format)

PreprocessingNetworkFile =

 "NETWORK" NetNameOfs

 Strings

 LexCats

 AttrVals

 Tokens

 OutItems

 Productions

 Contexts

.

String = UTF8STRING .

StringsOfs = UINT .

LexCatsOfs = UINT .

AttrValsOfs = UINT .

OutItemsOfs = UINT .

TokensOfs = UINT .

ProductionsOfs = UINT .

ContextsOfs = UINT .

CtxNameOfs = StringsOfs .

NetNameOfs = StringsOfs .

ProdNameOfs = StringsOfs .

Len = UINT .

Strings =

SVOX Pico 1.0.0 Lingware Tools and Source File Description

Copyright © 2008-2009 SVOX AG. All Rights Reserved. Page 37

 "STRINGS" Len

 StringsOfs String

 { StringsOfs String }

 "."

.

NrLexCats = UINT .

LexCat = INT16 .

LexCats =

 "LEXCATS" NrLexCats

 LexCatsOfs { LexCat } "0"

 { LexCatsOfs { LexCat } "0" }

 "."

.

AttrVal = INT | StringsOfs | ProductionsOfs | OutIt emsOfs | LexCatsOfs .

NrAttrVals = UINT .

AttrVals =

 "ATTRVALS" NrAttrVals

 AttrValsOfs AttrVal

 { AttrValsOfs AttrVal }

 "."

.

NrOutItems = UINT .

NextArg = OutItemsOfs .

SVOX Pico 1.0.0 Lingware Tools and Source File Description

Copyright © 2008-2009 SVOX AG. All Rights Reserved. Page 38

OutItemType =

 "AUDIOEDIT" | "BREAK" | "CONCAT" | "CONTEXT"

 | "GENFILE" | "IGNORE" | "ITEM" | "LEFT"

 | "MARK" | "PARA" | "SAMPA" | "SVOXPA"

 | "PITCH" | "PLAY" | "RLZ" | "RIGHT"

 | "ROMAN" | "SENT" | "SPEED" | "SPELL"

 | "STR" | "USESIG" | "VAL" | "VAR"

 | "VOICE" | "VOLUME"

.

Arg =

 INT

 | StringOfs

 | OutItemOfs

.

OutItem =

 OutItemOfs NextArg OutItemType Arg

.

OutItems =

 "OUTITEMS" NrOutItems

 OutItem { OutItem }

 "."

.

NrTokens = UINT .

NextTokenOfs = TokensOfs .

AltLTokenOfs = TokensOfs .

AltRTokenOfs = TokensOfs .

Attribute =

 "TSEOut" | "TSEMin" | "TSEMax" | "TSELe n" | "TSEVal"

SVOX Pico 1.0.0 Lingware Tools and Source File Description

Copyright © 2008-2009 SVOX AG. All Rights Reserved. Page 39

 | "TSEStr" | "TSEHead" | "TSEMid" | "TSETa il" | "TSEProd"

 | "TSEProdExt" | "TSEVar" | "TSELex" | "TSECo st" | "TSEID"

 | "TSEBegin" | "TSEEnd" | "TSESpace" | "TSEDi git" | "TSELetter"

 | "TSEChar" | "TSESeq" | "TSECmpr" | "TSENL Z" | "TSERoman"

 | "TSECI" | "TSECIS" | "TSEAUC" | "TSEAL C" | "TSESUC"

 | "TSEAccept" | "TSENext" | "TSEAltL" | "TSEAl tR"

.

AttributeSet = "{" Attribute { "," Attribute } "}"

Token =

 TokensOfs AttributeSet NextTokenOfs AltLTokenOfs AltRTokenOfs

AttrValsOfs

.

Tokens =

 "TOKENS" NrTokens

 Token { Token }

 "."

.

NrProductions = UINT .

ProdPrefCost = INT .

ATokOfs = TokensOfs .

ETokOfs = TokensOfs .

Production =

 ProductionsOfs ProdPrefCost ProdNameOfs ATokOfs E TokOfs

.

Productions =

 "PRODUCTIONS" NrProductions

SVOX Pico 1.0.0 Lingware Tools and Source File Description

Copyright © 2008-2009 SVOX AG. All Rights Reserved. Page 40

 Production

 { Production }

 "."

.

NrContextsEntries = UINT .

Context =

 ContextsOfs CtxNameOfs NetNameOfs ProdNameOfs

.

Contexts =

 "CONTEXTS" NrContextsEntries

 Context

 { Context }

 "."

.

