
 SVOX_Pico_architecture_and_design.docx

SVOX Pico

Core System

Software Architecture and

System Development Guidelines

Version 1.7

 SVOX_Pico_architecture_and_design.docx

Copyright © 2008-2009 SVOX AG. All Rights Reserved 2/43

Copyright © 2008-2009 SVOX AG. All Rights Reserved.

April 20, 2009

 SVOX_Pico_architecture_and_design.docx

Copyright © 2008-2009 SVOX AG. All Rights Reserved 3/43

ContentsContentsContentsContents

1 Introduction ... 5

1.1 Document Goals .. 5

1.2 SVOX Pico Goals ... 5

1.2.1 Target Applications .. 5

1.2.2 Stated Goals .. 5

1.2.3 Minimal Redundancy ... 5

1.2.4 Remarks on Lower Flexibility ... 6

1.3 Fundamental Design Principles ... 6

1.3.1 Platform-Independence ... 6

1.3.1.1 Programming Language .. 6

1.3.1.2 Software .. 6

1.3.1.3 Lingware .. 7

1.3.1.4 Splitting of Text Analysis data and Signal data ... 7

1.3.2 Language-Independence ... 7

1.3.3 Configurability... 7

1.3.4 Memory Management .. 7

1.3.5 Polling ... 8

1.3.6 Parallel Processing and Multithreading .. 8

2 Architecture Overview .. 9

2.1 Introduction ... 9

2.2 Major System Components .. 9

2.3 Modules of the Pico Runtime System .. 10

3 Operating System Interface Layer .. 11

3.1 Overview .. 12

4 Basic Functions Layer .. 14

4.1 Overview .. 14

5 Knowledge Layer .. 15

5.1 Overview .. 15

5.2 The unique resource name .. 15

5.3 Voice and Voice Definition ... 15

5.4 Resources Format Definition .. 16

5.4.1 Preliminary Remarks.. 16

5.4.2 Binary Structure of a Resource File ... 16

5.4.2.1 Section A: Foreign header (optional, 4-byte aligned) .. 17

5.4.2.2 Section B: Pico Header (4-byte aligned) ... 17

5.4.2.3 Section C: Length of remaining content .. 17

5.4.2.4 Section D: Index of knowledge bases in E .. 17

5.4.2.5 Section E: knowledge bases ... 18

6 Run-Time Processing Layer .. 19

6.1 Overview .. 19

6.1.1 Modules of the Run-Time Processing Layer .. 19

6.1.2 Basic TTS processing Scheme .. 20

6.2 Fundamental Data structures ... 20

6.2.1 Items ... 20

6.2.2 Processing Unit .. 22

6.3 Control Unit processing .. 22

6.3.1 Overview .. 22

6.3.2 Control Unit Details and code samples ... 26

 SVOX_Pico_architecture_and_design.docx

Copyright © 2008-2009 SVOX AG. All Rights Reserved 4/43

6.3.2.1 PU return codes ... 26

6.3.2.2 PU step function ... 26

6.3.2.3 PU list in Control Unit ... 26

6.3.2.4 Control Unit scheduling approach .. 27

6.4 TTS Processing Chain ... 28

6.4.1 Some Remarks on the Processing Units ... 28

6.4.2 List of PUs in Pico .. 28

6.5 Processing Unit Interface (Data Transformations) ... 29

6.5.1 TOK/PR: Tokenizer/Text Preprocessing.. 30

6.5.2 WA: Lexicon + POS prediction .. 31

6.5.3 SA/ACPH: POS disambiguation + G2P + Accentuation & Phrasing 31

6.5.4 SPHO: Transducers for Syllabification and Phonotactic Constraints 31

6.5.5 PAM: tree(s) for duration, f0, spectrum (+ tree adapter) .. 31

6.5.6 CEP: Cepstral smoothing and frame transformation .. 32

6.5.7 SIG: Synthesis .. 32

6.5.8 Resume .. 33

6.6 Implementing a new Processing Unit ... 34

6.6.1 Processing Unit definition .. 34

6.6.2 Processing Unit implementation .. 34

6.6.3 Processing Unit insertion on the Control Unit processing chain 36

6.6.3.1 picodata.h .. 36

6.6.3.2 picoctrl.c .. 36

6.6.4 Inside the PU ... 38

6.6.4.1 PU return codes ... 39

6.6.4.2 PU returned data vs control unit .. 39

6.6.5 Commands for the PU ... 40

7 Application Programming Interface Layer ... 41

Appendix A: Pico Modules ... 42

 SVOX_Pico_architecture_and_design.docx

Copyright © 2008-2009 SVOX AG. All Rights Reserved 5/43

1111 IntroductionIntroductionIntroductionIntroduction

1.11.11.11.1 Document GoalsDocument GoalsDocument GoalsDocument Goals

The SVOX Pico system is a software solution aimed at enabling Text-to-Speech (TTS) functionalities
in low CPU/memory platforms. The Pico core system will be deployed as a set of libraries accessible
through an API available to application developers.

While benefitting from SVOX knowhow and ‘lessons learned’, SVOX Pico is an entirely new TTS
system designed from scratch and coded in native ANSI-C.

This document describes the Pico core system in terms of the underlying design principles, its
architecture and main components, and some guidelines for developers who would like to extend
Pico’s functionality.

1.21.21.21.2 SVOX PicoSVOX PicoSVOX PicoSVOX Pico Goals Goals Goals Goals

The SVOX Pico project specifically targets small devices with very limited resources. SVOX Pico's
design therefore concentrates on these limitations and the targeted applications in mind, fully aware
that this has to go at the cost of some of the full flexibility, scalability, and rich variety of features
offered by general-purpose TTS system like our SVOX, and also admitting some degradation of TTS
quality.

The careful design enables Pico to outperform competing TTS systems in all key features.

1.2.11.2.11.2.11.2.1 Target ApplicationsTarget ApplicationsTarget ApplicationsTarget Applications

• SMS and E-Mail Reader (e.g. abbreviations, date, time)

• Personal Voice Dialler (using Phone book for recognition and confirmation of names)

• Navigation Systems, Verbal turn-by-turn directions

• Animation of avatars (in future versions)

1.2.21.2.21.2.21.2.2 Stated GoalsStated GoalsStated GoalsStated Goals
The main requirements are the following:

• TTS gives control back to calling application after less than 200ms, even on slow CPUs

• Fast response time

• Low latency

• Identical RAM consumption for all languages (around 200 kB)

1.2.31.2.31.2.31.2.3 Minimal Minimal Minimal Minimal RRRRedundancyedundancyedundancyedundancy
The limited resources should be used in an optimized way in favour of quality. Therefore, SVOX Pico
should not offer luxury or convenience functionality, e.g.

• no direct audio output

• no built-in command line interface

 SVOX_Pico_architecture_and_design.docx

Copyright © 2008-2009 SVOX AG. All Rights Reserved 6/43

• no text output (e.g. errors, tracing)

• there is only one way to do one thing (e.g. avoid as soon as possible any API function and text
markup doing the same thing)

Functionality needed for building the lingware, running a demo system, testing, etc. should, wherever
possible, be implemented as external programs using the SVOX Pico engine via its API. In some
cases where this is not feasible, e.g. for tracing, the extra functionality may be opted-in in a special
testing configuration (see ‘Configurability’) but will not exist in other configurations.

1.2.41.2.41.2.41.2.4 Remarks on Remarks on Remarks on Remarks on Lower FlexibilityLower FlexibilityLower FlexibilityLower Flexibility
Pico goals will correspond to losing some flexibility with respect to a standard general purpose system.
The Pico system will then be less scalable and allow for:

• one engine (even if conceptually several engines are possible)

• one channel

• one voice

• no (inherent) interrupt control

1.31.31.31.3 FuFuFuFundamental Design Principlesndamental Design Principlesndamental Design Principlesndamental Design Principles

This section describes the most important design principles for the SVOX Pico core system and the
impacts they have on the overall system design.

1.3.11.3.11.3.11.3.1 PlatformPlatformPlatformPlatform----IndependenceIndependenceIndependenceIndependence

1.3.1.11.3.1.11.3.1.11.3.1.1 Programming LanguageProgramming LanguageProgramming LanguageProgramming Language
The SVOX Pico core system should be created such that the identical source code runs on as many
platforms as possible. Therefore source code is written in standard ANSI C, assuming that this is the
language most likely supported by the platforms in question.

The use of the standard ANSI-C libraries should be limited to the minimum and made optional
considering that on some platforms SVOX Pico will have to run without any access to an underlying
library (e.g. platforms without a file system will have to live without physical file IO).

1.3.1.21.3.1.21.3.1.21.3.1.2 SoftwareSoftwareSoftwareSoftware
Some platforms may not support the needed ANSI-C standard library functions, or the functions may
be supported but too inefficient to meet SVOX Pico's resource limitations, while alternative platform-
specific functions are better suited. In order to easily port SVOX Pico on all these platforms, basic OS
functionality is centralized into an OS abstraction layer. The rest of the system is platform-
independent and has no direct access to library functions. Instead, it interacts with the OS abstraction
layer via a platform-independent interface.

Some platforms may not support global variables. Therefore, global variables are to be completely
avoided.

 SVOX_Pico_architecture_and_design.docx

Copyright © 2008-2009 SVOX AG. All Rights Reserved 7/43

1.3.1.31.3.1.31.3.1.31.3.1.3 LingwareLingwareLingwareLingware
Often, lingware sources are available in plain text format and are compiled (and possibly compressed)
into platform-independent format (PIL) files that are read by the runtime system and converted to an
internal representation. Where loading time is critical, the use of a binary memory image (BIN) of the
lingware is adopted. BIN files are generally not platform-independent.

For SVOX Pico we define the internal representation such that “PIL=BIN”, so that Pico lingware files
are platform-independent and at the same time can be loaded at high speed.

For this to work, access to loaded lingware data is done via specialized access functions.

1.3.1.41.3.1.41.3.1.41.3.1.4 Splitting of Text Splitting of Text Splitting of Text Splitting of Text Analysis Analysis Analysis Analysis data and Signal datadata and Signal datadata and Signal datadata and Signal data
For a flexible and efficient management of lingware resources, lingware in Pico is generally split into a
lingware resource file containing text analysis (language-dependent) data and lingware resource file
containing signal generation (speaker dependent) data.

By this approach different voices can share one common text analysis resource, and installing new or
updated resources on a mobile device is more efficient. (E.g. downloading a ‘voice pack’ or a
‘language pack’ over the internet

1.3.21.3.21.3.21.3.2 LanguageLanguageLanguageLanguage----IndependenceIndependenceIndependenceIndependence

There is a strict separation between lingware and engine functions, i.e. the engine code should not
contain any hard-coded data related to a specific language or voice.

1.3.31.3.31.3.31.3.3 ConfigurabilityConfigurabilityConfigurabilityConfigurability

Pico should be configurable to allow opting in and out of functionality in such a way, that resources
may be kept very small for the base functionality, while additional functionality may be added
selectively at the cost of additional resources.

1.3.41.3.41.3.41.3.4 Memory ManagementMemory ManagementMemory ManagementMemory Management

One of SVOX Pico's most stringent limitations is memory consumption. To cope with this requirement,
the following design guidelines were set:

− All memory is given by the calling environment using a corresponding startup API function.
Memory allocation is managed by the system, within the limits of the memory given at startup.

− Where possible, engine functions should operate on fixed-sized dedicated buffers (e.g. for
information passed between processing layers) allocated at engine creation.

− Where inevitable, dynamic memory allocation is managed by the engine within the limits of the
memory given at startup. In this case, reaching the memory limits should be anticipated and
handled with graceful degradation.

 SVOX_Pico_architecture_and_design.docx

Copyright © 2008-2009 SVOX AG. All Rights Reserved 8/43

1.3.51.3.51.3.51.3.5 PollingPollingPollingPolling

In many TTS systems, input is done by the application calling a corresponding API function, but output
is done via a callback function given to the TTS system at some point. This means that the time until
an API function returns is unpredictable and that, once TTS is given enough input to generate a (large)
piece of output, it will grab all the CPU it can get to produce this output.

In Pico, a new input doesn’t automatically trigger the processing of this input. Instead, the application
has to explicitly provide SVOX Pico with CPU time by calling a “stepping” API function and actively
fetching the resulting output. Every API function call has to return within a given time limit (200ms). In
order to accomplish a given task, which in general takes longer than this time limit, the stepping
function has to be called as many times as necessary. The stepping and fetching of data can be
combined into one function, conventionally called “polling”.

1.3.61.3.61.3.61.3.6 Parallel Processing aParallel Processing aParallel Processing aParallel Processing and Multithreadingnd Multithreadingnd Multithreadingnd Multithreading

For the time being, SVOX Pico is required to run only one channel per engine, so that running several
channels means running several engines. Since the engine state is encapsulated in an engine
“object” (no global variables) and the calling application sets the pace via the polling mechanism,
having those engines run in parallel (whether it is genuine multi-threading or pseudo-parallelism) is
completely in the hands of the calling application. By keeping lingware resources and processing
state (“channel”) cleanly separated, minimal conditions are met to extend SVOX Pico such that
multiple channels/engines may share lingware resources.

 SVOX_Pico_architecture_and_design.docx

Copyright © 2008-2009 SVOX AG. All Rights Reserved 9/43

2222 Architecture OverviewArchitecture OverviewArchitecture OverviewArchitecture Overview

2.12.12.12.1 IntroductionIntroductionIntroductionIntroduction

This chapter presents the main components of the SVOX Pico core system. The individual
components are further discussed in the subsequent chapters.

2.22.22.22.2 Major System ComponentsMajor System ComponentsMajor System ComponentsMajor System Components

The Pico core system can be subdivided into five major layers, with each layer executing different
tasks:

a. The OS interface layer serves as a narrow interface between the SVOX Pico core
system and the operating system. Only modules of this layer call any OS- and library-
dependent functions.

b. The basic functions layer provides functions that are widely used throughout the system.
These functions comprise symbol table management, handling of dynamic arrays, and
mathematical operations.

c. The knowledge management layer defines internal data structures to hold linguistic
knowledge and voice corpora (knowledge definition block) and provides functions to load
and make knowledge accessible to the actual TTS processing (knowledge access block).

d. The run-time processing layer comprises the definitions of the data structures needed
during the actual text-to-speech conversion, the actual TTS processing modules, and a
control module that controls the overall TTS conversion chain and which serves as an
interface to the SVOX Pico API.

e. The API and main program layer comprises the application programming interface of the
run-time system and the main programs of the compilation system.

 SVOX_Pico_architecture_and_design.docx

Copyright © 2008-2009 SVOX AG. All Rights Reserved 10/43

2.32.32.32.3 Modules of the Pico Modules of the Pico Modules of the Pico Modules of the Pico Runtime SRuntime SRuntime SRuntime Systemystemystemystem

A graphical overview of some modules that make up the Pico Core system Runtime is depicted in
Figure 3.1. A full list of all the involved modules (as defined so far) is given in Appendix A.

Figure 3.1 Sketch view of some modules of the Pico Runtime core system. The modules in the
Applications Layer are deployed to application developers as an example on how to use the API.
Blocks with outgoing arrows use functionalities or has dependencies on the blocks pointed to. Cfr.
Appendix A for a full list of Pico Modules.

RunTime
processing
layer

API layer PicoApic

PicoOs

Knowledge
management layer

Basic functions
layer

Os Interface layer

Application layer

PicoPal

Testpico

PicoCtrl

PicoDbg

PicoData

PicoTok

PicoRsrc

PicoPr

PicoBase

PicoVoice

Control

Processing Units

Buffer, Item & data man.

...

... PicoTrns

Picokdt ...

 SVOX_Pico_architecture_and_design.docx

Copyright © 2008-2009 SVOX AG. All Rights Reserved 11/43

3333 Operating System Interface LayerOperating System Interface LayerOperating System Interface LayerOperating System Interface Layer

The operating system interface layer serves as an OS abstraction layer and completely separates the
main parts of the SVOX Pico system from any platform-dependent functions.

Some platforms may not support the needed ANSI-C standard library functions, or the functions may
be supported but too inefficient to meet SVOX Pico's resource limitations, while alternative platform-
specific functions are better suited.

In order to easily port SVOX Pico to all these platforms, basic OS functionality is concentrated into two
abstraction layers.

• The first, PicoOS, offers higher-level OS-near functionality, e.g. buffered file access.

• The second layer (PicoPAL) offers an abstraction of the standard library functions.

Both sub-layers may be subdivided (horizontally) such that the run-time system code will only contain
those functions that it really uses.

Figure 4.1 Subsets of the PicoOS interface. The deployed runtime could be shipped with different
subsets depending on the needed functions.

The implementation of PicoPAL and PicoOS functions may depend on the target platform (e.g. in
order to implement library functions that are missing on that platform or to optimize resources
consumption).

The OS-dependent implementations are distinguished by simple #ifdef statements, based on a
platform symbol which is set for the entire system in one header file (platform.h).

All modules of the SVOX Pico core system which are not themselves part of the OS interface layer
may only use OS functions from the PicoOS layer by including the platform-independent header file
PicoOS.h.

PicoOS Interface.s1 PicoOS Interface.s2

Os Interface layer (subsets)

PicoPAL Interface.s1 PicoPAL Interface.s2

 SVOX_Pico_architecture_and_design.docx

Copyright © 2008-2009 SVOX AG. All Rights Reserved 12/43

3.13.13.13.1 OverviewOverviewOverviewOverview

The Pico OS layer functionalities could be better explained if we adopt a terminology and a conceptual
partitioning of the full system as follows. The main concepts and ideas are defined in terms of
“objects”, i.e. in terms of data structures and methods needed to operate on them:

1) System: an object that handles things common to all engines, like lingware loading and
unloading, creation and deletion of engines, etc. From the application point of view there could be
one and only one System object, that could make use, internally, of other kind of objects non
visible from the outside.

a) For the system object to be able to manage resource loading and unloading, there should be
one and only one Resource Manager, i.e. an object that represents the functionalities needed
by the TTS engines inside a System object to load and use the linguistic data and signal
generation data. For each System object there could be no more than one Resource
Manager

b) Engine: one out of (possibily) more instances of a TTS device. It includes all features needed
to perform TTS conversion, i.e. the runtime API plus the required linguistic and signal
generation data. For each engine then, internally, there could be the need of other kind of
objects non visible from the outside, for instance:

(1) Control Unit: an object that represents the scheduler of the Engine. For each engine
we could have no more than a single Control Unit.

(2) Processing Units: one out of more parts of the processing chain. Normally for each
engine we have more than one processing unit.

Given that description, and with specific attention to what could be “thread sensitive”, we could say:

system

Engine M

Engine 2

Resource
manager

Engine 1

Control

PU1

PU2

PUN

Error
Management

Memory
manager

File Manager

 SVOX_Pico_architecture_and_design.docx

Copyright © 2008-2009 SVOX AG. All Rights Reserved 13/43

• API functions operate on objects; first parameter to API function is an object handle.
• Two API functions that operate on an identical object must not be called in parallel.
• For each system or engine object, internally, we define a "Common" object

o It handles common functionalities, including:
� MemoryManager, governing over memory allocations and deallocations
� ErrorManager, keeping track of the last error code and text, warnings etc.
� File manager, keeping track of a list of open files, their respective read/write

positions etc.
• This “Common” object should reflect the capability of the Pico runtime to operate engines and

system objects as stand-alone entities

This approach is adopted in order to make the Pico Runtime code suitable for application scenarios
that could implement some form of multitasking/multiprocessing/multithreading, as far as the TTS
service request is concerned.

 SVOX_Pico_architecture_and_design.docx

Copyright © 2008-2009 SVOX AG. All Rights Reserved 14/43

4444 Basic Functions LayerBasic Functions LayerBasic Functions LayerBasic Functions Layer

4.14.14.14.1 OverviewOverviewOverviewOverview

The basic functions layer contains modules that provide basic definitions and functions that are
extensively used by the knowledge compiling and the run-time processing part of the SVOX Pico
system:

• memory management

• creation and management of dynamically growing arrays

• creation and management of symbol tables

• high-level mathematical and signal processing operations

note: to prevent efficiency losses, no support is given for dynamic memory allocation, All available
memory should be allocated and passed at startup by the application using the engine.

 SVOX_Pico_architecture_and_design.docx

Copyright © 2008-2009 SVOX AG. All Rights Reserved 15/43

5555 Knowledge LayerKnowledge LayerKnowledge LayerKnowledge Layer

5.15.15.15.1 OverviewOverviewOverviewOverview

The knowledge layer supports other layers to access, in a consistent and unified way, the data that
make up the language-dependent and speaker-dependent content of the Pico runtime system. This
data is often called “lingware”.

Lingware data includes text pre-processing and text analysis, signal generation, and potentially other
data.

The main entities handled by the Knowledge Layer are the following:

• KnowledgeBase: data entity describing one particular aspect of a language or of a speaker
characteristics (e.g. lexicon, phoneme property table, pitch prediction tree, etc.).

• Voice: essentially a collection of knowledge bases that is required and sufficient to perform
TTS in one particular language with one specific set of speaker characteristics.

• Resource: essentially a collection of (functionally related) knowledge bases which is a subset
of a voice. Lingware is shipped as files each containing a resource, which may be loaded by
the system. Usually, the speaker-independent part of the lingware is packaged into one
resource (text analysis resource, or TextAna) and the speaker-dependent part into another
resource (signal generation resource, or SigGen). Other partitions are possible and may be
useful.

• VoiceDefinition: a mapping of a voice name to a set of resources that together make up the
voice. A voice definition can be created at runtime so that a new voice can be dynamically
defined as a combinations of resources.

• ResourceManager: entity maintaining lists of loaded resources, voice definitions and voices.

5.25.25.25.2 The unique resource The unique resource The unique resource The unique resource namenamenamename

Normally Resources are loaded into RAM from resource files. Once a Resource is loaded, it is
referred to by its unique resource name (URN) throughout the system. The URN is part of the
Resource content and is read when the Resource is loaded. Using the URN, a Resource can be
clearly identified without bothering about the paths and file names where the Resource was loaded.
The resource name should be globally unique, so that two resources with different content imply that
their URN is different.

Using the URN to control the use of resources implies that the URNs must be known to the
application, e.g. managed in a database. In some cases the application designer may prefer to use
the resource file names to identify resources. In this case, the URN may be retrieved from the loaded
resource using an API function.

5.35.35.35.3 Voice and Voice and Voice and Voice and Voice Definition Voice Definition Voice Definition Voice Definition

A voice definition describes a voice as a collection of resources given by their resource names, and
assigns this voice a voice name.

 SVOX_Pico_architecture_and_design.docx

Copyright © 2008-2009 SVOX AG. All Rights Reserved 16/43

“VoiceName”

URN1,

URN2,

.....

The VoiceDefinition may be built at any time before its first usage by calling

createVoiceDefinition(resourceManager, voiceName)

to create an empty voice definition of a given name and one or more of

addResourceToVoiceDefinition(resourceManager, voiceName, resourceName)

to add resources to the voice definition.

A Voice is created using a voice name previously introduced in a voice definition by calling:

createVoice(resourceManager, voiceName, &voice);

While a resource consists of knowledge bases physically loaded into memory, a voice is essentially a
list of handles referring to such knowledge bases in one or more resources. Several voices may refer
to the same resource.

The resource manager keeps track of all resources, voices, voice definitions and the interdependence
between resources and voice definitions. For instance, it will make sure that no more than one copy
of a resource is physically loaded, and that resources are not unloaded as long as there are voices
referring to them.

5.45.45.45.4 Resources Resources Resources Resources FFFFormat ormat ormat ormat DDDDefinitionefinitionefinitionefinition

5.4.15.4.15.4.15.4.1 Preliminary RemarksPreliminary RemarksPreliminary RemarksPreliminary Remarks
A resource file contains a set of knowledge bases together with a header giving some information
about the resource and a knowledge base index giving information of the position inside the resource
and the size of each knowledge base.

Resource files must be platform-independent, but there should be no transformation needed when
loading resource files into RAM. This is achieved by assuming the resource to be a byte sequence,
where the actual meaning of each byte is known and handled by access functions specialized for each
particular type of information. From the point of view of the resource manager, knowledge bases
inside a resource are just byte sequences, with a given position and size. Numeric information
(counts, sizes, offsets) inside resources is encoded as little-endian unsigned 1-, 2- or 4-byte
integers.

As mentioned earlier, a voice is a (list of handles to the) full set of knowledge bases needed to
perform TTS. In order for the resource manager to know which knowledge base in a resource has
which role in the voice, “into which slot of the voice it should be filled in”, each knowledge base is
assigned a role identifier, which is a number between 1 and 255. Each role identifier is associated
with an informative role name.

5.4.25.4.25.4.25.4.2 Binary Structure of a Resource FileBinary Structure of a Resource FileBinary Structure of a Resource FileBinary Structure of a Resource File
The following is an exact specification of a general resource files as it lists all the contents in the exact
order and indicating the allowed sizes.

Each resource file is composed of 5 sections, with each section starting at a 4-byte aligned position.

 SVOX_Pico_architecture_and_design.docx

Copyright © 2008-2009 SVOX AG. All Rights Reserved 17/43

5.4.2.15.4.2.15.4.2.15.4.2.1 Section A: Foreign header (optional, 4Section A: Foreign header (optional, 4Section A: Foreign header (optional, 4Section A: Foreign header (optional, 4----byte aligned)byte aligned)byte aligned)byte aligned)
(1) The resource may be prepended by (e.g. vendor specific) binary header of size 0-64 bytes, in a
multiple of 4 bytes. The foreign header contents may not contain the SVOX Pico header, see B(2).
Header.

5.4.2.25.4.2.25.4.2.25.4.2.2 Section B: Pico Header (4Section B: Pico Header (4Section B: Pico Header (4Section B: Pico Header (4----byte aligned)byte aligned)byte aligned)byte aligned)
The Pico header contains a constant string that marks its start plus information about the resource,
e.g. date and time of its release, and its name, in form of key/value pairs. These key/value pairs are
inserted as clear text so that the contents of a resource file can be verified at a glance without a
special tool. The Pico header is composed of

(2) SVOX Pico header: constant 13-byte string (it is actually " (C) SVOX AG ", with each char lowered
by 32)

(3) length of the rest of the header (2 byte, excluding length itself)

(4) number of fields (1 byte, number must be <= 10)

(5) a sequence of key/value pairs

• as many pairs as indicated in B(4)

• keys and values must be alphanumeric strings of size 1-32 bytes

• each key and each value is terminated by a space (" ").

The following key/value pairs must be present:

Key Possible Value example details

NAME Any alphanumeric de-DE_gl0_sg_1.0.0.0-
0-1

should be a unique
name for each content

VERSION any 1.0.0.0-0-1 See SDK Manual

DATE YYYY-MM-DD 2009-04-01 release date

TIME HH:MM:SS.xxx 17:01:00.000 release time

CONTENT_TYPE any SIGGEN Usually one of
TEXTANA, SIGGEN

(6) filler (0-3 bytes) to make the section size a multiple of 4 bytes.

5.4.2.35.4.2.35.4.2.35.4.2.3 Section C: Length of remaining contentSection C: Length of remaining contentSection C: Length of remaining contentSection C: Length of remaining content
(7) 4-byte number, counting number of remaining bytes in resource (Section D + Section E)

5.4.2.45.4.2.45.4.2.45.4.2.4 Section D: Index of knowledge bases in ESection D: Index of knowledge bases in ESection D: Index of knowledge bases in ESection D: Index of knowledge bases in E
 (8) number of knowledge bases in E (1 byte)

 (9) sequence of role names of knowledge bases in E (informative)

• each role name is an alphanumeric strings of max 15 chars plus closing space

• as many names as indicated in D(8).

 SVOX_Pico_architecture_and_design.docx

Copyright © 2008-2009 SVOX AG. All Rights Reserved 18/43

• order corresponds to order of knowledge bases in E

 (10) a sequence of kb directory entries

• - as many entries as indicated in D(8).

• - each entry consists of a knowledge base identifier (1 byte), offset (4 bytes) and size (4 bytes)

• - the offset of a knowledge base is the position of the first byte of that knowledge base in E
relative to the first byte of C(7).

(11) filler (0-3 bytes) to make the section size a multiple of 4 bytes.

5.4.2.55.4.2.55.4.2.55.4.2.5 Section E: knowledge bases Section E: knowledge bases Section E: knowledge bases Section E: knowledge bases
(12) sequence of knowledge bases (byte arrays), each 4-byte aligned

 SVOX_Pico_architecture_and_design.docx

Copyright © 2008-2009 SVOX AG. All Rights Reserved 19/43

6666 RunRunRunRun----Time Processing LayerTime Processing LayerTime Processing LayerTime Processing Layer

6.16.16.16.1 OvervOvervOvervOverviewiewiewiew

6.1.16.1.16.1.16.1.1 Modules of the RunModules of the RunModules of the RunModules of the Run----Time Processing LayerTime Processing LayerTime Processing LayerTime Processing Layer

The SVOX Pico runtime processing layer can be subdivided into 3 sub-layers:

• Processing Units Layer: deals with the elementary steps implementing TTS processing. The
elementary steps are defined according to the linguistic view of the TTS process.

• Data Structures and Basic Operations: deals with the definitions of the data structures
involved in the processing unit mechanism, and with the operations needed to build, manage
and dispose these structrures, for instance buffers, items etc.

• Control Layer : deals with controlling the elementary steps in a way such that
responsiveness and efficiency is guaranteed. It also deals with the initial startup phase of the
system, and with the input and output from and to the application requesting the TTS service.

Control

In
p

u
t

B
u

ff
e

r

P
ro

ce
ss

in
g

 U
n

it
 2

In
te

rm
e

d
ia

te
 B

u
ff

e
r

1

P
ro

ce
ss

in
g

 U
n

it
 n

O
u

tp
u

t
B

u
ff

e
r

P
ro

ce
ss

in
g

 U
n

it

Data Structures and Basic Operations

Figure 6.1 Block diagram of the SVOX Pico runtime processing layer.

 SVOX_Pico_architecture_and_design.docx

Copyright © 2008-2009 SVOX AG. All Rights Reserved 20/43

6.1.26.1.26.1.26.1.2 Basic TTS processing SchemeBasic TTS processing SchemeBasic TTS processing SchemeBasic TTS processing Scheme

TTS processing in the SVOX Pico system is based on a chain of Processing Units (PU), passing
intermediate data from one PU of the TTS chain to the following. Each PU transforms its input data in
some way, using some of the knowledge bases, and passes the resulting data on to the next PU in the
chain. The input data for the first processing unit are single characters and the output data of the last
are sampled signal data.

Passing data from one unit to the next is done via dedicated buffers to decouple units from each other.
The data passed through the intermediate buffers is represented in terms of items that can hold data
of different nature (see 6.2.1 for the definition of item).

A control unit handles the parallel operation of the processing units, in a way that the TTS requests
are served as soon as possible, balancing the load among the different PUs and leaving room for the
calling application tasks (i.e. leaving enough CPU power to the application or to the environment, i.e.
to perform system functions). This is obtained through a mechanism triggered by the application to
check at any time if there are available samples, after a TTS synthesis command has been issued.

The control unit also handles the system start-up phase, the creation, initialization, and disposal of the
processing units and the intermediate data buffers, their chaining together. Furthermore it provides all
the functions that are visible in the API, in particular the input from and the output to the calling
application.

The Data Structures and Basic Operations layer provides data structures commonly used by the
processing units and basic operations to manipulate them.

In order to better explain the behaviour of the Control Unit, let’s introduce some fundamental concepts
about items, processing steps, and processing unit structure.

6.26.26.26.2 Fundamental Data structuresFundamental Data structuresFundamental Data structuresFundamental Data structures

6.2.16.2.16.2.16.2.1 ItemsItemsItemsItems

Data is passed from one PU to the next in blocks named items, whose structure is depicted in figure
6.2.

Figure 6.2. The structure of the item object.

Data types: all bytes are of type picoos_char

A (non exhaustive) list of possible item types follows, the full set is defined in picodata.h

Type info1 info2 length ...

4 bytes header item content (length==0�no data)

 SVOX_Pico_architecture_and_design.docx

Copyright © 2008-2009 SVOX AG. All Rights Reserved 21/43

• PICODATA_ITEM_WSEQ_GRAPH a sequence of graphemic words

• PICODATA_ITEM_WORDGRAPH a graphemic word

• PICODATA_ITEM_WORDPHON a phonetic word

• PICODATA_ITEM_SYLLPHON a phonetic syllable

• PICODATA_ITEM_PHONE a phone

• PICODATA_ITEM_PUNC a punctuation symbol

• PICODATA_ITEM_CMD a command

• PICODATA_ITEM_BOUND a boundary

• PICODATA_ITEM_FRAME_PAR a parametric frame (before synthesis)

• PICODATA_ITEM_FRAME a frame (output samples after synthesis)

.....

The structure of the item is of variable size and content.

For instance, if the item is PICODATA_ITEM_WORD, the field info1 would bring some information
about the POS (values are language-dependent and defined by the lingware).

The item content would bring the representation of the word in graphemic form.

Given that a set of sufficiently large and comprehensive set of types is given, information passing from
one PU to the next could be serialized as a sequence of items, whose structure can be reconstructed
from the headers.

Then each PU has to deal with an input stream of items that could be managed in several ways. The
generic processing of a PU is then:

• Check about the presence of at least one input item.

o If any

� Check if the item has to be processed by the PU.

• If not pass the item to the following PUs.

• If yes either

o Consume the input item without producing a corresponding
output item (generally buffering it in its local PU storage or
altering the state of the local PU storage depending on the
content of the input item)

o Consume the input item and provide items to the following
PUs.

o Interpret the input item as a command and eventually
produce one or more output items for the next PUs (i.e.
FLUSH).

o If none

� return control to the control unit with an IDLE return code

 SVOX_Pico_architecture_and_design.docx

Copyright © 2008-2009 SVOX AG. All Rights Reserved 22/43

6.2.26.2.26.2.26.2.2 Processing UnitProcessing UnitProcessing UnitProcessing Unit

We use the term “units” to indicate that processing units are not modules. We should rather think of
processing units and intermediate buffers as objects (in the OO sense), having an internal state and
“methods” assigned to it. One implication is that several processing units can coexist, each with its
own state. Also, while the internal functionality might be very different between different processing
units, they have a common external behaviour, e.g. their interaction with the control unit.

From the point of view of the Control Unit, the Processing Unit is an OO-like object that has a uniform
interface, independent of the specific processing task. The main interface of the PU is represented by

• An initialization function, to do specific PU initialization and memory allocations

• A stepping function to do the processing of input items.

• A termination function to do the cleanup of allocated memory.

In order to conform to the “polling” paradigm mentioned earlier, each processing unit then offers a
stepping function, that the Control unit may call repeatedly until the processing unit’s operation is
completed.

If we look at the PU form inside, it could be considered as a chunk of code that uses a certain amount
of local storage, that gets called from the control unit to do a step, and when input data is available
performs the step and eventually produces some output.

The Control Unit itself could be seen as a Processing Unit, in that it has his initialization and
termination functions, called at system startup, and has a stepping function called from the application
requesting the TTS service.

6.36.36.36.3 Control Unit processingControl Unit processingControl Unit processingControl Unit processing

6.3.16.3.16.3.16.3.1 OverviewOverviewOverviewOverview

The typical scenario is then the following

• TTS startup

o The application initiates the TTS service, by requesting the creation of a voice engine

o The Control Unit is initiated.

o The PUs implementing the TTS processing chain are initiated

o All the PUs and the Control Unit are idle, and do not consume CPU power unless the
application calls the Control Unit step function.

• The application puts some character in the input buffer by calling the appropriate TTS API
function. The text is copied into the input buffer in the appropriate format, and nothing is
processed so far.

• The application checks sometimes the availability of output data, by calling the appropriate
TTS API function. This triggers the Control Unit stepping function.

• The Control Unit takes control of the CPU and

1. Checks his list of processing units

2. Determines the PU to be activated and calls his stepping function

 SVOX_Pico_architecture_and_design.docx

Copyright © 2008-2009 SVOX AG. All Rights Reserved 23/43

3. Updates the status of the called PU and of the next PU to be activated at next call.

4. Returns control to the application, returning also the number of samples available on
the output buffer, if any (otherwise 0)

• If there are samples available, the application gets the data calling the appropriate TTS API
function and buffers them on his system memory.

The key points are

• Duration of the stepping function for each PU. This should be known in advance, or could be
calculated during the initialization phase by the Control Unit.

• A suitable strategy to achieve the good balancing among the time needed for each
processing unit to complete a step, the time needed for the whole processing chain to
produce an output, and the response time to a single step of the Control Unit towards the
application.

Some example could explain better this load balancing problem. In figure 6.3 the scenario after
insertion of some text on the TTS processing chain input buffer is shown.

When the control unit receives control from the application, it has to decide which PU has to be
“stepped”. The unique PU that could be activated in this scenario is the first one, i.e. the tokenizer,
Then the stepping function of it is called: in the simplest case it could perform a stepping function
dealing with a single character. This would take a few milliseconds.

After that, the Control Unit returns to the caller.

 SVOX_Pico_architecture_and_design.docx

Copyright © 2008-2009 SVOX AG. All Rights Reserved 24/43

Figure 6.3 Pus and input/output buffers, after text insertion and before first call of the Control Unit
stepping function.

After a while the Control Unit (CU) will be called again, and then will have to decide who should be
“stepped”. Again, it will be the Tokenizer that will continue to buffer his input characters in local
storage, unless it is able to separate a token and store it as an item in the output buffer.

At the end of this phase the situation would be similar to what is reported in figure 6.4, where both the
input buffers of tokenizer PU and Text Pre Processing PU are partially full.

Token

xxxxxxxxx

Tpp

Lexicon

PosPred

............

SigGen

items present

void

void

void

void

void

Input char buff �

Output smp buff �

 SVOX_Pico_architecture_and_design.docx

Copyright © 2008-2009 SVOX AG. All Rights Reserved 25/43

Figure 6.4 Pus and input/output buffers, after text insertion and after some steps of the first PU, i.e.
when both the first and the second PU could be triggered.

In this case, when the Control Unit gets called by the application it has to decide who comes first
between Tokenizer PU and Text Pre Processing PU. In general priority is given to the non idle down-
most PU on the processing chain.

Token

xxx

Tpp

x

Lexicon

PosPred

............

SigGen

items present

void

void

void

void

Input char buff �

Output smp buff �

items present

 SVOX_Pico_architecture_and_design.docx

Copyright © 2008-2009 SVOX AG. All Rights Reserved 26/43

6.3.26.3.26.3.26.3.2 Control Unit Control Unit Control Unit Control Unit Details and code samplesDetails and code samplesDetails and code samplesDetails and code samples

The current approach is described with some detail below.

6.3.2.16.3.2.16.3.2.16.3.2.1 PU return codesPU return codesPU return codesPU return codes

In order to allow the Control Unit to manage in a simple way the status of each PU, we define the
following set of return codes

typedef enum picodata_step_result {

PICODATA_PU_ERROR, /* this control unit produced an error */

PICODATA_PU_IDLE, /* need more input to process internal data */

PICODATA_PU_BUSY, /* processing internal data */

PICODATA_PU_ATOMIC, /* same as BUSY, but wants to get next time
slot i.e. while in an "atomar" operation) */

PICODATA_PU_OUT_FULL /* can't proceed because output is full.
(next time slot to be assigned to pu's
output's consumer) */

} picodata_step_result_t;

6.3.2.26.3.2.26.3.2.26.3.2.2 PU step functionPU step functionPU step functionPU step function

Then we define an interface function between the Control Unit and the generic PU like this

typedef picodata_step_result_t (* picodata_puStep) (

register picodata_ProcessingUnit this, /*pointer to PU object*/

picoos_int16 mode, /*activation mode */

picoos_uint16 * numBytesOutput); /*# of produced bytes*/

This is the function that is invoked for a PU at each step of the corresponding processing unit.

6.3.2.36.3.2.36.3.2.36.3.2.3 PU list in Control UnitPU list in Control UnitPU list in Control UnitPU list in Control Unit

FInally we define, in the local storage of the Control Unit processor, an area where to store information
about the active list of current PUs. An example of this follows, where the maximum allowed number
of active PU is defined in PICOCTRL_MAX_PROC_UNITS.

typedef struct ctrl_subobj
{
 picoos_uint8 numProcUnits; /*actual number of Pus*/
 picoos_uint8 curPU ; /*currently active PU*/
 picodata_ProcessingUnit procUnit [PICOCTRL_MAX_PROC_UNITS];
 picodata_step_result_t procStatus [PICOCTRL_MAX_PROC_UNITS];
 picodata_CharBuffer procCbOut [PICOCTRL_MAX_PROC_UNITS];
} ctrl_subobj_t ;

 SVOX_Pico_architecture_and_design.docx

Copyright © 2008-2009 SVOX AG. All Rights Reserved 27/43

Inside this area, we define a status variable curPU telling which is the PU to be activated at the next

call of the control unit. At system startup curPU =0 (first PU).

6.3.2.46.3.2.46.3.2.46.3.2.4 Control UnitControl UnitControl UnitControl Unit scheduling approachscheduling approachscheduling approachscheduling approach

At each request of the calling application the control unit will

• activate the PU corresponding to curPU by calling the corresponding step function. This will

both return a code indicating the processing status of the PU and puBytesOutput , the
number of produced bytes (if any).

• Depending on the output of this PU, the curPU could change to

o the following PU (if output items have been produced)

 if (puBytesOutput) {
 if (ctrl-> curPU < ctrl-> numProcUnits -1) {

/* data was output to internal buffer */
 /* set following pu to busy */
 ctrl-> procStatus [ctrl-> curPU + 1] = PICODATA_PU_BUSY;

ctrl->curPU++;
 } else {
 /* data was output to caller output buffer */
 *bytesOutput = puBytesOutput;
 }
 ctrl->curPU++;

}

o the current one = curPU (if it has still to consume his inputs:PICODATA_PU_BUSY/
PICODATA_PU_ATOMIC).

o the previous non idle one = (nothing produced on his outputs and nothing on his
inputs: PICODATA_PU_IDLE).

 while ((ctrl-> curPU > 0) &&
(PICODATA_PU_IDLE == ctrl-> procStatus [ctrl-> curPU])) {

 ctrl-> curPU --;
 }

This forces the processing chain to produce outputs as soon as possible. On the other hand different
strategies are also possible by customizing the Control Unit.

 SVOX_Pico_architecture_and_design.docx

Copyright © 2008-2009 SVOX AG. All Rights Reserved 28/43

6.46.46.46.4 TTS Processing TTS Processing TTS Processing TTS Processing ChainChainChainChain

Let’s now concentrate on the processing chain content, shown in Figure 6.4.1 .

The order and functionality of the processing units, together with the kind and content of the
corresponding lingware, is obviously determined by linguistic considerations, taking into account the
required limitations for SVOX Pico.

6.4.16.4.16.4.16.4.1 Some Some Some Some RRRRemarks on the emarks on the emarks on the emarks on the PPPProcessing rocessing rocessing rocessing UUUUnitsnitsnitsnits
Some PUs make use of general technologies like FST (Finite State Transducers) or DT (Decision
Trees).

Decision Tree: the Decision Tree itself is universal (suitable for all instances). There is a trade-off
between preparing all data (feature list) potentially needed by the decision tree, with only a small set of
simple questions, and a smaller feature list but more complicated questions (essentially calculating
features just in time). This is reflected by the implementation.

FST: Sometimes the FST source includes several FST’s (offline composition, successive application
or online composition)

Lexicon: Because of memory limitations, the lexicon is restricted to function words and frequently
used “irregular” words. For the main part of the vocabulary, the part-of-speech, phonemic
transcription, morpheme and compound boundaries have to be predicted by appropriate decision
trees and tuned by appropriate FSTs.

6.4.26.4.26.4.26.4.2 LLLList of Pist of Pist of Pist of PUUUUssss in in in in PicoPicoPicoPico
Processing units for the Pico prototype implementation are identified first as a list of elementary steps
needed to complete the TTS conversion. This list is in Figure 6.4.1, and reports also the technologies
that are used for each elementary step. In the product implementation this list could be changed by
incorporating one or more elementary steps into one single PU, in order to reduce the number of
buffers between PUs. The “incorporation” has to be made on a CPU time consumption base, to be
calculated on a “per platform” base, in order to guarantee the < 200 msec requirement for each PU.

 SVOX_Pico_architecture_and_design.docx

Copyright © 2008-2009 SVOX AG. All Rights Reserved 29/43

Figure 6.4.1 SVOX Pico Processing Chain represented as a sequence of processing units. Items
produced by each PU are listed AFTER the PU itself.

6.56.56.56.5 Processing Unit InterfaceProcessing Unit InterfaceProcessing Unit InterfaceProcessing Unit Interface (Data Transformations)(Data Transformations)(Data Transformations)(Data Transformations)

In this section, the content (not the data structures used in the implementation) of the data passed
from one processing unit to the next is described.

Input Text

TOK
 -Tokenizer
 -character based TPP

SA / ACPH
 -POS disambiguation
 -Grapheme2Phoneme
 -Accent. & phrasing

PAM
 -Dur prediction
 -F0 prediction
 -Cepstral Prediction

SIG
 - Signal generation

WA
 -Pico Lexicon
 -POS prediction

SPHO
 -Syllabification
 -Phonotactic constraints

PR
 -Token based Text Pre Processing

 CEP
 -Cepstrum smoothing

Output Speech

 WORD_GRAPH WSEQ_GRAPH

 WORD_INDEX

 WORD_PHON

 PUNC

 BOUND

 FRAME_PAR

 PHONE

 BOUND

 SYLL_PHON

 FRAME

 BOUND

 SYLL_PHON

 SVOX_Pico_architecture_and_design.docx

Copyright © 2008-2009 SVOX AG. All Rights Reserved 30/43

How to read:

-- item types that are consumed by the processing layer

+ item types that are produced by the processing layer

= items that keep their type but their content is modified

Item types not explicitly mentioned are passed without change.

Input:

+ Text (with textual markup); utf8 or utf16 (two separate API functions)

6.5.16.5.16.5.16.5.1 TOK/PRTOK/PRTOK/PRTOK/PR: Tokenizer/Text: Tokenizer/Text: Tokenizer/Text: Tokenizer/Text PreprocessingPreprocessingPreprocessingPreprocessing
Normalized Input:

-- Text

+ Graphemic Tokens containing:

word sequences: sequence of (graphemic) characters (only one of utf8 or utf16); containing
word separators if they are known

+ Symbol Tokens containing:

• numbers

• punctuation

• symbols (like "$")

Remark: We will always assume a word sequence in a Token

-> uniform treatment (europ. <-> asian)

-> Later we need word sequence again, anyway

Word separators may be introduced by the Tokenizer/TPP but some or all may be added later.
Word separators will actually be POS symbols (assuming up to 50-100 different POS) with
"Unknown Word" as the default.

+ Commands

• set speed (absolute value 200-5000; base 1000)

• set pitch (absolute value 200-5000; base 1000)

• set volume (absolute value 200-1200; base 1000)

• set break (type and or pause length)

• wrapper containing Phonetic Token (as if coming from lexicon, ProcUnit B), details to
be defined

• set speaker characteristics

• in the future, there will be a need to add additional commands, if additional commands
can be added without compromising on higher priority needs they should be added to
the system

 SVOX_Pico_architecture_and_design.docx

Copyright © 2008-2009 SVOX AG. All Rights Reserved 31/43

Other items as ’commands’ (except the ones that has to be managed by this PU), have to be
‘transparently’ passed to next PUs.

6.5.26.5.26.5.26.5.2 WAWAWAWA: Lexicon + POS: Lexicon + POS: Lexicon + POS: Lexicon + POS predictionpredictionpredictionprediction
= Word Graphemic Tokens, but

• all words separated (POS assigned)

• word sequence tokens contain morpheme, compound boundary and accent symbols

+ Word Phonetic Tokens: words found in lexicon have phones/phonemes instead of graphemes (see
next ProcUnit), numbers and symbols are already transcribed here

Other items as “commands” (except the ones that has to be managed by this PU), have to be
"transparently" passed to next PUs.

6.5.36.5.36.5.36.5.3 SASASASA/ACPH/ACPH/ACPH/ACPH: : : : POS disambiguation +POS disambiguation +POS disambiguation +POS disambiguation + G2P G2P G2P G2P + Accentuation & Phrasing+ Accentuation & Phrasing+ Accentuation & Phrasing+ Accentuation & Phrasing
-- Word Graphemic Tokens

+ Word Phonetic Tokens:

• Sequence of Phones/Phonemes + Non-Segmental Symbols (POS, Accents,
Compound-Boundaries) corresponding word sequences

Other items as ’commands’ (except the ones that has to be managed by this PU), have to be
"transparently" passed to next PUs.

6.5.46.5.46.5.46.5.4 SPHOSPHOSPHOSPHO: Transducer: Transducer: Transducer: Transducerssss for for for for SyllabificationSyllabificationSyllabificationSyllabification and and and and PPPPhonotactic honotactic honotactic honotactic CCCConstraintsonstraintsonstraintsonstraints

-- Word Phonetic Tokens:

+ Syllable Phonetic tokens

= Boundary tokens modified adding syllable boundaries

Other items as ‘commands’ (except the ones that has to be managed by this PU), have to be
"transparently" passed to next PUs.

6.5.56.5.56.5.56.5.5 PAMPAMPAMPAM: tree(s) for duration, f0, spectrum (+ tree adapter): tree(s) for duration, f0, spectrum (+ tree adapter): tree(s) for duration, f0, spectrum (+ tree adapter): tree(s) for duration, f0, spectrum (+ tree adapter)

-- Syllable Phonetic Tokens

-- Boundary tokens

+ "Phone Descriptions":

 SVOX_Pico_architecture_and_design.docx

Copyright © 2008-2009 SVOX AG. All Rights Reserved 32/43

• Phon id

• duration (in number of frames)

• Pitch identifier

• HMM state identifier

Other items as ‘commands’ (except the ones that has to be managed by this PU), have to be
"transparently" passed to next PUs.

6.5.66.5.66.5.66.5.6 CEPCEPCEPCEP: : : : Cepstral smoothing and frame transformationCepstral smoothing and frame transformationCepstral smoothing and frame transformationCepstral smoothing and frame transformation
Prepare vectors for final synthesis

-- "Phone Descriptions":

+ "Frames" of parametric data, one item�one frame

• Phon id

• Pitch identifier

• HMM state identifier

Other items as ‘commands’ (except the ones that has to be managed by this PU), have to be
"transparently" passed to next PUs.

6.5.76.5.76.5.76.5.7 SIGSIGSIGSIG: : : : SynthesisSynthesisSynthesisSynthesis

Generates the sampled data output:

-- "Chunks" of of parametric data, one item�one frame

+ Samples (byte sequence, w/o item structure)

Other items as “commands” (except the ones that has to be managed by this PU), have to be
"transparently" passed to next PUs.

There may be PUs following this one, just for debug purposes.

 SVOX_Pico_architecture_and_design.docx

Copyright © 2008-2009 SVOX AG. All Rights Reserved 33/43

6.5.86.5.86.5.86.5.8 ResumeResumeResumeResume

The following table summerizes the items consumed, produced, modified or passed on at each
Processing Unit:

 TOK PR WA SA/ACPH SPHO PAM CEP SIG

Input text

--

WSEQ_GRAPH

+ � --

WORD_GRAPH

+ � � --

PUNC + � � --
WORDINDEX + --
WORDPHON + --
BOUND + = --
SYLL_PHON + --
PHONE + --
FRAME_PAR + --
FRAME +

CMD � � � � � � � �

OTHER � � � � � � � �

ERR � � � � � � � �

-- consume
+ produce
= modify
� Pass or

consume

 SVOX_Pico_architecture_and_design.docx

Copyright © 2008-2009 SVOX AG. All Rights Reserved 34/43

6.66.66.66.6 Implementing a new Processing Unit Implementing a new Processing Unit Implementing a new Processing Unit Implementing a new Processing Unit

In this chapter, we will give the roadmap to insert a new processing unit into the Pico system.

6.6.16.6.16.6.16.6.1 Processing Unit definitionProcessing Unit definitionProcessing Unit definitionProcessing Unit definition
In general, each Processing Unit goes into its own module. The processing unit definition should be
made in a corresponding ANSI C header file, i.e. for a new processing XXX unit we should have a
“picoXXX.h” file including the following declarations:

picodata_ProcessingUnit picoXXX_newXXXUnit (
 picoos_MemoryManager mm,
 picoos_Common common,
 picodata_CharBuffer cbIn,
 picodata_CharBuffer cbOut);

6.6.26.6.26.6.26.6.2 Processing Unit Processing Unit Processing Unit Processing Unit implementationimplementationimplementationimplementation
The implementation should coded in “picoXXX.c”

First, we have to define the sub object, i.e. the data that maintains the state of the specialized PU
(other than the data common to all Pus). Here is an example that includes a state variable, local input
and output buffers with associated pointers, and some useful flags.

typedef struct xxx_subobj
{

/* where to take up work at next processing step */
 picoos_uint8 procState ;

 picoos_char inBuf [IN_XXX_SIZE]; /*internal in buff */
 picoos_uint16 inBufSize ; /*allocated size */
 picoos_uint16 inReadPos; /*next pos to read from*/
 picoos_uint16 inWritePos; /*next pos to write to*/

 picoos_char outBuf [IN_XXX_SIZE]; /*internal output buffer */
 picoos_uint16 outBufSize ; /*allocated size */
 picoos_uint16 outReadPos; /*next pos to read from*/
 picoos_uint16 out WritePos; /*next pos to write to*/

 picoos_uint8 needMoreInput , /*more data needed flag*/

} xxx_subobj_t ;

We have to implement an initialization method for the sub object

pico_status_t xxxInitialize (register picodata_ProcessingUnit this)
{
 xxx_subobj_t * xxx;
 if (NULL == this || NULL == this-> subObj) {
 return PICO_ERR_OTHER;
 }
 xxx = (xxx_subobj_t *) this-> subObj ;
 xxx-> inBufSize = IN_XXX_SIZE;
 xxx-> outBufSize = IN_XXX_SIZE + Y * PICODATA_ITEM_HEADSIZE + 3;
 xxx-> inReadPos = 0;

 SVOX_Pico_architecture_and_design.docx

Copyright © 2008-2009 SVOX AG. All Rights Reserved 35/43

 xxx-> inWritePos = 0;
 xxx-> outReadPos = 0;
 xxx-> outWritePos = 0;
 xxx-> needMoreInput = 0;
 xxx-> procState = 0;
 return PICO_OK;
} /* xxxInitialize */

Then, we have to implement de-initialization and termination methods for the sub object

pico_status_t xxxSubObjDeallocate (register picodata_ProcessingUnit this,
 picoos_MemoryManager mm)
{

 if (NULL != this) {
 picoos_deallocate(this->common-> mm, (void *) &this-> subObj);
 }
 return PICO_OK;
}

pico_status_t xxxTerminate (register picodata_ProcessingUnit this)
{
 return PICO_OK;
}

Then, we have to define a method to create an instance of the PU sub object

picodata_ProcessingUnit picoxxx_newXXXUnit (picoos_MemoryManager mm,
 picodata_CharBuffer cbIn, picodata_CharBuffer cbOut)
{
 picodata_ProcessingUnit this =

picodata_newProcessingUnit(mm, cbIn, cbOut);
 if (this == NULL) {
 return NULL;
 }
 this-> initialize = xxxInitialize;
 this-> step = xxxStep;
 this-> terminate = xxxTerminate;
 this-> subDeallocate = xxxSubObjDeallocate;
 this-> subObj = picoos_allocate(mm, sizeof (xxx_subobj_t));
 if (this-> subObj == NULL) {
 picoos_deallocate(mm, (void **)&this);
 return NULL;
 }
 xxxInitialize(this);
 return this;
}

And finally, we have to insert the real code i.e. the step method

picodata_step_result_t xxxStep (
register picodata_ProcessingUnit this,
picoos_int16 mode,
picoos_uint16 * numBytesOutput)

{
 register xxx_subobj_t * xxx;
 picoos_int16 xxxlen;
 picoos_uint8 xxxtype, xxxsubtype;
 if (NULL == this || NULL == this-> subObj) {

 SVOX_Pico_architecture_and_design.docx

Copyright © 2008-2009 SVOX AG. All Rights Reserved 36/43

 return PICODATA_PU_ERROR;
 }
 xxx = (xxx_subobj_t *) this-> subObj ;

 /* TODO real step code */

 return PICODATA_PU_IDLE;
}

6.6.36.6.36.6.36.6.3 Processing Unit insertion on the Control Unit processing chain Processing Unit insertion on the Control Unit processing chain Processing Unit insertion on the Control Unit processing chain Processing Unit insertion on the Control Unit processing chain

6.6.3.16.6.3.16.6.3.16.6.3.1 picodata.hpicodata.hpicodata.hpicodata.h
We should first include the appropriate definitions in “picodata.h”. First, we have to specify the
processing unit type by adding at:

/* different types of processing units */

typedef enum picodata_putype {
 PICODATA_PUTYPE_TEXT, /* text */
 PICODATA_PUTYPE_TOK, /* tokenizer output */
 PICODATA_PUTYPE_ITMW, /* item write output */
 PICODATA_PUTYPE_PREP, /* preprocessor output */
 PICODATA_PUTYPE_DT, /* decision tree output */
 PICODATA_PUTYPE_SYNT /* synthesis output */
 /* …… here it follows the new PU type */
 PICODATA_PUTYPE_XXX /* new processing unit */
 /* etc. */
} picodata_putype_t;

Then, we should define the default size of the intermediate buffer by adding it under the following
group of defines:

/* default buffer size per processing unit */
#define PICODATA_BUFSIZE_DEFAULT (picoos_uint16) 128
#define PICODATA_BUFSIZE_TEXT (picoos_uint16) 1 * PICO DATA_BUFSIZE_DEFAULT
#define PICODATA_BUFSIZE_TOK (picoos_uint16) 2 * PICO DATA_BUFSIZE_DEFAULT
#define PICODATA_BUFSIZE_ITMW (picoos_uint16) 2 * PICO DATA_BUFSIZE_DEFAULT
#define PICODATA_BUFSIZE_PREP (picoos_uint16) 2 * PICO DATA_BUFSIZE_DEFAULT
#define PICODATA_BUFSIZE_DT (picoos_uint16) 4 * PICO DATA_BUFSIZE_DEFAULT
#define PICODATA_BUFSIZE_SYNT (picoos_uint16) 16 * PICO DATA_BUFSIZE_DEFAULT
/* …… here it follows the new buffer size */
#define PICODATA_BUFSIZE_XXX (picoos_uint16) xx * PICOD ATA_BUFSIZE_DEFAULT

Picodata.c
Add PUTYPE handling to get_default_buf_size ???

6.6.3.26.6.3.26.6.3.26.6.3.2 picoctrl.cpicoctrl.cpicoctrl.cpicoctrl.c
Check first the definition of PICOCTRL_MAX_PROC_UNITS in “picoctrl.h” to check against the

maximum limit. This value defines internal buffers of the Control Unit list of active PUs and should
never be reached.

We should then perform the appropriate modifications in “picoctrl.c”.

First of all include the new PU definition by adding the corresponding include file

/* processing unit definitions */
#include "picotok.h"
#include "picoitmw.h"

 SVOX_Pico_architecture_and_design.docx

Copyright © 2008-2009 SVOX AG. All Rights Reserved 37/43

#include "picoxxx.h" /* */

Then, invoke creation method for the newly created PU Type under ctrlAddPU for the appropriate type

static pico_status_t ctrlAddPU (
register picodata_ProcessingUnit this,
picodata_putype_t puType,

 picoos_int16 last)

 /*...............*/
 switch (puType) {
 /*...............*/
 case PICODATA_PUTYPE_XXX:

 ctrl-> procUnit [newPU] =

picoxxx_newXXXUnit(this->common-> mm,
 cbIn, ctrl-> procCbOut [newPU]);
 break ;

Then, we should call this creation method in the picoctrl_newControl

 ctrl-> numProcUnits = 0;
 if (
 (PICO_OK == ctrlAddPU(this, PICODATA_PUTYPE_TOK, /*last*/ 0)) &&
 (PICO_OK == ctrlAddPU(this, PICODATA_PUTYPE_XXX, /*last*/ 0)) &&
 (PICO_OK == ctrlAddPU(this, PICODATA_PUTYPE_YYY, /*last*/ 1))) {

 return this;
 } else {
 picoctrl_disposeControl(this-> mm,&this);
 return NULL;
 }

 SVOX_Pico_architecture_and_design.docx

Copyright © 2008-2009 SVOX AG. All Rights Reserved 38/43

6.6.46.6.46.6.46.6.4 Inside the PUInside the PUInside the PUInside the PU

Once the PU interface is specified, and after its insertion in the processing chain, there is the need to
implement the internal of the PU, i.e. its “step” method.

A general, non mandatory, skeleton for a PU, in a conceptual finite state machine representation,
could be the one in Figure 6.6.1, in which the states are identified by circles and state transition by
arcs, and in figure 6.6.2, in which the PU input, output buffers and local buffers are shown.

This skeleton assumes that for the generic PU:

• There should be (mandatory) a PU input buffer, in which items are written by the previous PU.

• There should be (mandatory) a PU output buffer, in which items are written by the PU itself.
There could be (optional) a number of state variables of the PU among which

o Current state

o input and an output local buffers, managed by the PU itself

o Other PU specific state variables

In state 0 (collect), we wait for the availability of one or more items in input. If one item is found then
the item is copied into a local Input buffer and state changes to 1. The original item in the PU input
buffer is removed (actually only pointers are moved), making room for more input items to be
produced by the previous PUs.

Figure 6.6.1: A finite states representation of the PU “step” processing

Once an item has been identified on the input source, and it is moved in the local PU input buffer,
state is moved to 1.

In state 1 (process) we elaborate a processing on the item (or items) that are currently on the local
input buffer.

0 1

2

Collecting item

Item collected

Processing item

feeding item

Item processed
Item fed

 SVOX_Pico_architecture_and_design.docx

Copyright © 2008-2009 SVOX AG. All Rights Reserved 39/43

We may, at this stage, analyze the currently available items and just copy them in the local output
buffer because they cannot be dealth with by this PU, Or we may decide that the number of
accumulated items so far are not sufficient to provide an output and as such we may ask for additional
input, returning to state 0. Or we may process each item as soon as it arrives, and provide a
corresponding output item in the local output buffer. Once some of the input items generate one or
more output items, then we could move to state 2, where the actual produced (or copied) items are
sent to the output buffer.

In state 2 (feed) we have the only task of sending the produced items to the output buffer, managing
and updating the appropriate buffer pointers, and then to switch back to state 0 for getting more input.

6.6.4.16.6.4.16.6.4.16.6.4.1 PU return codesPU return codesPU return codesPU return codes
The generic PU could split its processing in several steps and also in sub steps; this is normally
achieved by controlling the internal state of the PU and returning to caller even before the completion
of item processing. It is important then to understand better what return code to expose to the caller.

The possible return code choices are among the following

• ATOMIC

o The PU is still processing data and wants to remain scheduled in order to complete
the processing.

• BUSY

o The PU has still items to process but it may yield control to other PU’s. The scheduler
is free to look for another PU to activate, but will remember that this PU has to be
scheduled sooner or later.

• IDLE

o The PU has no more items to process. The scheduler is free to look for another PU to
activate.

• OUT_FULL

o The PU cannot proceed because the output buffer is full: the scheduler should then
activate other PUs in order to consume the items in this PU output buffer.

6.6.4.26.6.4.26.6.4.26.6.4.2 PU returned data PU returned data PU returned data PU returned data vsvsvsvs control control control control unitunitunitunit
The PU step function returns a code, already described in 6.6.4.1, and a number of bytes produced in
its output buffer. It is important to consider the combination of the return code and of the amount of
data produced, in order to understand the effects of the PU on the overall scheduling strategy.

The control unit will manage the current PU and analyze its return values, i.e. the status and the
amount of bytes. The combination of the two will determine the scheduling strategy.

PU returns Data produced Control Unit scheduling Action

ATOMIC Any The current PU is not changed

BUSY >0 The current PU is changed to following one

BUSY 0 The current PU is not changed

IDLE >0 The current PU is changed to following one

IDLE 0 The current PU is changed to the first preceding

 SVOX_Pico_architecture_and_design.docx

Copyright © 2008-2009 SVOX AG. All Rights Reserved 40/43

PU that has a status !=IDLE

OUT_FULL Any The current PU is changed to following one

ERROR Any The current PU is not changed

6.6.56.6.56.6.56.6.5 Commands for the PUCommands for the PUCommands for the PUCommands for the PU
Among the possible items that a PU may encounter, there are a number that are devoted to support a
sort of command interface, that the application can use to control the behavior of the processing chain.

We list in the following some example commands implemented in some of the PU processing stages.

Command Notes

PLAY Allows PU_ID to get inputs from file with “name.ext”

SAVE Allows PU_ID to store outputs to file “name.ext”

UNSAVE Allows PU_ID to stop storing outputs to file “name.ext”

PITCH Sets the value of baseline pitch

SPEED Sets the value of baseline speed rate

VOLUME Sets the value of baseline volume

SPEAKER Sets the value of speaker modification factor

 SVOX_Pico_architecture_and_design.docx

Copyright © 2008-2009 SVOX AG. All Rights Reserved 41/43

7777 ApplicApplicApplicApplication Programming Interface ation Programming Interface ation Programming Interface ation Programming Interface LayerLayerLayerLayer
Section 3.3 of the SVOX Pico Manual lists all API functions, giving for each entry a brief explanation of
the parameters, input and output, some with additional comments.

 SVOX_Pico_architecture_and_design.docx

Copyright © 2008-2009 SVOX AG. All Rights Reserved 42/43

Appendix AAppendix AAppendix AAppendix A:::: Pico ModulesPico ModulesPico ModulesPico Modules

Layer Name Module Name Notes

Application
Layer

testpico Any application able to interface the engine via the api

API Layer picoapi Application programming interface

Run-Time
Processing
Layer

picoctrl Runtime Processing Units Scheduler: takes care of
scheduling the suitable processing at each time slice
available and to return suitable values to the caller.

 picotok Tokenizer breaks input text in tokens.

 picopr Text Pre Processor, partial interpretation of some of the
tokens

 picowa Word analysis, dictionary check for PartOfSpeech assign OR
automatic POS prediction

 picosa Sentence analysis: POS disambiguation, G2P prediction or
Lexicon Lookup for G2P, preliminary Syllabification

 picoacph Accentuation and Phrasing: prominence prediction is carried
out and added to words info; boundary prediction is carried
out and boundary items between words may be added.

 picospho Sentence phonology: Phonotactical constraints and final
Syllabification. Output items are mainly syllables or
boundaries.

 picopam Phonetic to acoustic mapping: Syllables are mapped to
phonemes, phonemes are mapped to sub phonemes, for
each sub phoneme spectral, pitch and duration indexes and
values are predicted. Output items are mainly phones.

 picocep Spectral Smoother: Phonemes data are converted to
parametric frames according to duration information. Pitch
and spectral parametric data is converted from indices to
actual values for each frame. A smoothing then is applied to
the frame values. Output items are mainly parametric
frames..

 picosig Signal generator: each input smoothed parametric frame is
converted into a corresponding output signal buffer. Output
items are mainly signal buffers.

Knowledge
Layer

picorsrc Basic resource management

 SVOX_Pico_architecture_and_design.docx

Copyright © 2008-2009 SVOX AG. All Rights Reserved 43/43

 picoknow Basic knowledge management

 picokdt Decision tree knowledge management

 picokfst FST knowledge management

 picoklex Lexicon knowledge management

 picokpdf Prob. Density functions knowledge management

 picokdbg.c Knowledge management debugging functions

Basic
Functions
Layer

picobase common functionalities like string conversion

 picodata Data management for buffers, items and other

 picotrns Finite State Transducers management

Operating
System Layer

picoos.c High Level OS-near functionalities

 picopal.c OS implementation functions (platform specific)

 picodbg.c Debugging functions

