diff options
Diffstat (limited to 'JavaScriptCore/wtf/dtoa.cpp')
-rw-r--r-- | JavaScriptCore/wtf/dtoa.cpp | 1831 |
1 files changed, 0 insertions, 1831 deletions
diff --git a/JavaScriptCore/wtf/dtoa.cpp b/JavaScriptCore/wtf/dtoa.cpp deleted file mode 100644 index c89c036..0000000 --- a/JavaScriptCore/wtf/dtoa.cpp +++ /dev/null @@ -1,1831 +0,0 @@ -/**************************************************************** - * - * The author of this software is David M. Gay. - * - * Copyright (c) 1991, 2000, 2001 by Lucent Technologies. - * Copyright (C) 2002, 2005, 2006, 2007, 2008, 2010 Apple Inc. All rights reserved. - * - * Permission to use, copy, modify, and distribute this software for any - * purpose without fee is hereby granted, provided that this entire notice - * is included in all copies of any software which is or includes a copy - * or modification of this software and in all copies of the supporting - * documentation for such software. - * - * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED - * WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY - * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY - * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE. - * - ***************************************************************/ - -/* Please send bug reports to David M. Gay (dmg at acm dot org, - * with " at " changed at "@" and " dot " changed to "."). */ - -/* On a machine with IEEE extended-precision registers, it is - * necessary to specify double-precision (53-bit) rounding precision - * before invoking strtod or dtoa. If the machine uses (the equivalent - * of) Intel 80x87 arithmetic, the call - * _control87(PC_53, MCW_PC); - * does this with many compilers. Whether this or another call is - * appropriate depends on the compiler; for this to work, it may be - * necessary to #include "float.h" or another system-dependent header - * file. - */ - -/* strtod for IEEE-arithmetic machines. - * - * This strtod returns a nearest machine number to the input decimal - * string (or sets errno to ERANGE). With IEEE arithmetic, ties are - * broken by the IEEE round-even rule. Otherwise ties are broken by - * biased rounding (add half and chop). - * - * Inspired loosely by William D. Clinger's paper "How to Read Floating - * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101]. - * - * Modifications: - * - * 1. We only require IEEE double-precision arithmetic (not IEEE double-extended). - * 2. We get by with floating-point arithmetic in a case that - * Clinger missed -- when we're computing d * 10^n - * for a small integer d and the integer n is not too - * much larger than 22 (the maximum integer k for which - * we can represent 10^k exactly), we may be able to - * compute (d*10^k) * 10^(e-k) with just one roundoff. - * 3. Rather than a bit-at-a-time adjustment of the binary - * result in the hard case, we use floating-point - * arithmetic to determine the adjustment to within - * one bit; only in really hard cases do we need to - * compute a second residual. - * 4. Because of 3., we don't need a large table of powers of 10 - * for ten-to-e (just some small tables, e.g. of 10^k - * for 0 <= k <= 22). - */ - -#include "config.h" -#include "dtoa.h" - -#if HAVE(ERRNO_H) -#include <errno.h> -#endif -#include <float.h> -#include <math.h> -#include <stdint.h> -#include <stdio.h> -#include <stdlib.h> -#include <string.h> -#include <wtf/AlwaysInline.h> -#include <wtf/Assertions.h> -#include <wtf/DecimalNumber.h> -#include <wtf/FastMalloc.h> -#include <wtf/MathExtras.h> -#include <wtf/Threading.h> -#include <wtf/UnusedParam.h> -#include <wtf/Vector.h> - -#if COMPILER(MSVC) -#pragma warning(disable: 4244) -#pragma warning(disable: 4245) -#pragma warning(disable: 4554) -#endif - -namespace WTF { - -#if ENABLE(JSC_MULTIPLE_THREADS) -Mutex* s_dtoaP5Mutex; -#endif - -typedef union { - double d; - uint32_t L[2]; -} U; - -#if CPU(BIG_ENDIAN) || CPU(MIDDLE_ENDIAN) -#define word0(x) (x)->L[0] -#define word1(x) (x)->L[1] -#else -#define word0(x) (x)->L[1] -#define word1(x) (x)->L[0] -#endif -#define dval(x) (x)->d - -/* The following definition of Storeinc is appropriate for MIPS processors. - * An alternative that might be better on some machines is - * *p++ = high << 16 | low & 0xffff; - */ -static ALWAYS_INLINE uint32_t* storeInc(uint32_t* p, uint16_t high, uint16_t low) -{ - uint16_t* p16 = reinterpret_cast<uint16_t*>(p); -#if CPU(BIG_ENDIAN) - p16[0] = high; - p16[1] = low; -#else - p16[1] = high; - p16[0] = low; -#endif - return p + 1; -} - -#define Exp_shift 20 -#define Exp_shift1 20 -#define Exp_msk1 0x100000 -#define Exp_msk11 0x100000 -#define Exp_mask 0x7ff00000 -#define P 53 -#define Bias 1023 -#define Emin (-1022) -#define Exp_1 0x3ff00000 -#define Exp_11 0x3ff00000 -#define Ebits 11 -#define Frac_mask 0xfffff -#define Frac_mask1 0xfffff -#define Ten_pmax 22 -#define Bletch 0x10 -#define Bndry_mask 0xfffff -#define Bndry_mask1 0xfffff -#define LSB 1 -#define Sign_bit 0x80000000 -#define Log2P 1 -#define Tiny0 0 -#define Tiny1 1 -#define Quick_max 14 -#define Int_max 14 - -#define rounded_product(a, b) a *= b -#define rounded_quotient(a, b) a /= b - -#define Big0 (Frac_mask1 | Exp_msk1 * (DBL_MAX_EXP + Bias - 1)) -#define Big1 0xffffffff - -#if CPU(PPC64) || CPU(X86_64) -// FIXME: should we enable this on all 64-bit CPUs? -// 64-bit emulation provided by the compiler is likely to be slower than dtoa own code on 32-bit hardware. -#define USE_LONG_LONG -#endif - -struct BigInt { - BigInt() : sign(0) { } - int sign; - - void clear() - { - sign = 0; - m_words.clear(); - } - - size_t size() const - { - return m_words.size(); - } - - void resize(size_t s) - { - m_words.resize(s); - } - - uint32_t* words() - { - return m_words.data(); - } - - const uint32_t* words() const - { - return m_words.data(); - } - - void append(uint32_t w) - { - m_words.append(w); - } - - Vector<uint32_t, 16> m_words; -}; - -static void multadd(BigInt& b, int m, int a) /* multiply by m and add a */ -{ -#ifdef USE_LONG_LONG - unsigned long long carry; -#else - uint32_t carry; -#endif - - int wds = b.size(); - uint32_t* x = b.words(); - int i = 0; - carry = a; - do { -#ifdef USE_LONG_LONG - unsigned long long y = *x * (unsigned long long)m + carry; - carry = y >> 32; - *x++ = (uint32_t)y & 0xffffffffUL; -#else - uint32_t xi = *x; - uint32_t y = (xi & 0xffff) * m + carry; - uint32_t z = (xi >> 16) * m + (y >> 16); - carry = z >> 16; - *x++ = (z << 16) + (y & 0xffff); -#endif - } while (++i < wds); - - if (carry) - b.append((uint32_t)carry); -} - -static void s2b(BigInt& b, const char* s, int nd0, int nd, uint32_t y9) -{ - b.sign = 0; - b.resize(1); - b.words()[0] = y9; - - int i = 9; - if (9 < nd0) { - s += 9; - do { - multadd(b, 10, *s++ - '0'); - } while (++i < nd0); - s++; - } else - s += 10; - for (; i < nd; i++) - multadd(b, 10, *s++ - '0'); -} - -static int hi0bits(uint32_t x) -{ - int k = 0; - - if (!(x & 0xffff0000)) { - k = 16; - x <<= 16; - } - if (!(x & 0xff000000)) { - k += 8; - x <<= 8; - } - if (!(x & 0xf0000000)) { - k += 4; - x <<= 4; - } - if (!(x & 0xc0000000)) { - k += 2; - x <<= 2; - } - if (!(x & 0x80000000)) { - k++; - if (!(x & 0x40000000)) - return 32; - } - return k; -} - -static int lo0bits(uint32_t* y) -{ - int k; - uint32_t x = *y; - - if (x & 7) { - if (x & 1) - return 0; - if (x & 2) { - *y = x >> 1; - return 1; - } - *y = x >> 2; - return 2; - } - k = 0; - if (!(x & 0xffff)) { - k = 16; - x >>= 16; - } - if (!(x & 0xff)) { - k += 8; - x >>= 8; - } - if (!(x & 0xf)) { - k += 4; - x >>= 4; - } - if (!(x & 0x3)) { - k += 2; - x >>= 2; - } - if (!(x & 1)) { - k++; - x >>= 1; - if (!x) - return 32; - } - *y = x; - return k; -} - -static void i2b(BigInt& b, int i) -{ - b.sign = 0; - b.resize(1); - b.words()[0] = i; -} - -static void mult(BigInt& aRef, const BigInt& bRef) -{ - const BigInt* a = &aRef; - const BigInt* b = &bRef; - BigInt c; - int wa, wb, wc; - const uint32_t* x = 0; - const uint32_t* xa; - const uint32_t* xb; - const uint32_t* xae; - const uint32_t* xbe; - uint32_t* xc; - uint32_t* xc0; - uint32_t y; -#ifdef USE_LONG_LONG - unsigned long long carry, z; -#else - uint32_t carry, z; -#endif - - if (a->size() < b->size()) { - const BigInt* tmp = a; - a = b; - b = tmp; - } - - wa = a->size(); - wb = b->size(); - wc = wa + wb; - c.resize(wc); - - for (xc = c.words(), xa = xc + wc; xc < xa; xc++) - *xc = 0; - xa = a->words(); - xae = xa + wa; - xb = b->words(); - xbe = xb + wb; - xc0 = c.words(); -#ifdef USE_LONG_LONG - for (; xb < xbe; xc0++) { - if ((y = *xb++)) { - x = xa; - xc = xc0; - carry = 0; - do { - z = *x++ * (unsigned long long)y + *xc + carry; - carry = z >> 32; - *xc++ = (uint32_t)z & 0xffffffffUL; - } while (x < xae); - *xc = (uint32_t)carry; - } - } -#else - for (; xb < xbe; xb++, xc0++) { - if ((y = *xb & 0xffff)) { - x = xa; - xc = xc0; - carry = 0; - do { - z = (*x & 0xffff) * y + (*xc & 0xffff) + carry; - carry = z >> 16; - uint32_t z2 = (*x++ >> 16) * y + (*xc >> 16) + carry; - carry = z2 >> 16; - xc = storeInc(xc, z2, z); - } while (x < xae); - *xc = carry; - } - if ((y = *xb >> 16)) { - x = xa; - xc = xc0; - carry = 0; - uint32_t z2 = *xc; - do { - z = (*x & 0xffff) * y + (*xc >> 16) + carry; - carry = z >> 16; - xc = storeInc(xc, z, z2); - z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry; - carry = z2 >> 16; - } while (x < xae); - *xc = z2; - } - } -#endif - for (xc0 = c.words(), xc = xc0 + wc; wc > 0 && !*--xc; --wc) { } - c.resize(wc); - aRef = c; -} - -struct P5Node : Noncopyable { - BigInt val; - P5Node* next; -}; - -static P5Node* p5s; -static int p5sCount; - -static ALWAYS_INLINE void pow5mult(BigInt& b, int k) -{ - static int p05[3] = { 5, 25, 125 }; - - if (int i = k & 3) - multadd(b, p05[i - 1], 0); - - if (!(k >>= 2)) - return; - -#if ENABLE(JSC_MULTIPLE_THREADS) - s_dtoaP5Mutex->lock(); -#endif - P5Node* p5 = p5s; - - if (!p5) { - /* first time */ - p5 = new P5Node; - i2b(p5->val, 625); - p5->next = 0; - p5s = p5; - p5sCount = 1; - } - - int p5sCountLocal = p5sCount; -#if ENABLE(JSC_MULTIPLE_THREADS) - s_dtoaP5Mutex->unlock(); -#endif - int p5sUsed = 0; - - for (;;) { - if (k & 1) - mult(b, p5->val); - - if (!(k >>= 1)) - break; - - if (++p5sUsed == p5sCountLocal) { -#if ENABLE(JSC_MULTIPLE_THREADS) - s_dtoaP5Mutex->lock(); -#endif - if (p5sUsed == p5sCount) { - ASSERT(!p5->next); - p5->next = new P5Node; - p5->next->next = 0; - p5->next->val = p5->val; - mult(p5->next->val, p5->next->val); - ++p5sCount; - } - - p5sCountLocal = p5sCount; -#if ENABLE(JSC_MULTIPLE_THREADS) - s_dtoaP5Mutex->unlock(); -#endif - } - p5 = p5->next; - } -} - -static ALWAYS_INLINE void lshift(BigInt& b, int k) -{ - int n = k >> 5; - - int origSize = b.size(); - int n1 = n + origSize + 1; - - if (k &= 0x1f) - b.resize(b.size() + n + 1); - else - b.resize(b.size() + n); - - const uint32_t* srcStart = b.words(); - uint32_t* dstStart = b.words(); - const uint32_t* src = srcStart + origSize - 1; - uint32_t* dst = dstStart + n1 - 1; - if (k) { - uint32_t hiSubword = 0; - int s = 32 - k; - for (; src >= srcStart; --src) { - *dst-- = hiSubword | *src >> s; - hiSubword = *src << k; - } - *dst = hiSubword; - ASSERT(dst == dstStart + n); - - b.resize(origSize + n + !!b.words()[n1 - 1]); - } - else { - do { - *--dst = *src--; - } while (src >= srcStart); - } - for (dst = dstStart + n; dst != dstStart; ) - *--dst = 0; - - ASSERT(b.size() <= 1 || b.words()[b.size() - 1]); -} - -static int cmp(const BigInt& a, const BigInt& b) -{ - const uint32_t *xa, *xa0, *xb, *xb0; - int i, j; - - i = a.size(); - j = b.size(); - ASSERT(i <= 1 || a.words()[i - 1]); - ASSERT(j <= 1 || b.words()[j - 1]); - if (i -= j) - return i; - xa0 = a.words(); - xa = xa0 + j; - xb0 = b.words(); - xb = xb0 + j; - for (;;) { - if (*--xa != *--xb) - return *xa < *xb ? -1 : 1; - if (xa <= xa0) - break; - } - return 0; -} - -static ALWAYS_INLINE void diff(BigInt& c, const BigInt& aRef, const BigInt& bRef) -{ - const BigInt* a = &aRef; - const BigInt* b = &bRef; - int i, wa, wb; - uint32_t* xc; - - i = cmp(*a, *b); - if (!i) { - c.sign = 0; - c.resize(1); - c.words()[0] = 0; - return; - } - if (i < 0) { - const BigInt* tmp = a; - a = b; - b = tmp; - i = 1; - } else - i = 0; - - wa = a->size(); - const uint32_t* xa = a->words(); - const uint32_t* xae = xa + wa; - wb = b->size(); - const uint32_t* xb = b->words(); - const uint32_t* xbe = xb + wb; - - c.resize(wa); - c.sign = i; - xc = c.words(); -#ifdef USE_LONG_LONG - unsigned long long borrow = 0; - do { - unsigned long long y = (unsigned long long)*xa++ - *xb++ - borrow; - borrow = y >> 32 & (uint32_t)1; - *xc++ = (uint32_t)y & 0xffffffffUL; - } while (xb < xbe); - while (xa < xae) { - unsigned long long y = *xa++ - borrow; - borrow = y >> 32 & (uint32_t)1; - *xc++ = (uint32_t)y & 0xffffffffUL; - } -#else - uint32_t borrow = 0; - do { - uint32_t y = (*xa & 0xffff) - (*xb & 0xffff) - borrow; - borrow = (y & 0x10000) >> 16; - uint32_t z = (*xa++ >> 16) - (*xb++ >> 16) - borrow; - borrow = (z & 0x10000) >> 16; - xc = storeInc(xc, z, y); - } while (xb < xbe); - while (xa < xae) { - uint32_t y = (*xa & 0xffff) - borrow; - borrow = (y & 0x10000) >> 16; - uint32_t z = (*xa++ >> 16) - borrow; - borrow = (z & 0x10000) >> 16; - xc = storeInc(xc, z, y); - } -#endif - while (!*--xc) - wa--; - c.resize(wa); -} - -static double ulp(U *x) -{ - register int32_t L; - U u; - - L = (word0(x) & Exp_mask) - (P - 1) * Exp_msk1; - word0(&u) = L; - word1(&u) = 0; - return dval(&u); -} - -static double b2d(const BigInt& a, int* e) -{ - const uint32_t* xa; - const uint32_t* xa0; - uint32_t w; - uint32_t y; - uint32_t z; - int k; - U d; - -#define d0 word0(&d) -#define d1 word1(&d) - - xa0 = a.words(); - xa = xa0 + a.size(); - y = *--xa; - ASSERT(y); - k = hi0bits(y); - *e = 32 - k; - if (k < Ebits) { - d0 = Exp_1 | (y >> (Ebits - k)); - w = xa > xa0 ? *--xa : 0; - d1 = (y << (32 - Ebits + k)) | (w >> (Ebits - k)); - goto returnD; - } - z = xa > xa0 ? *--xa : 0; - if (k -= Ebits) { - d0 = Exp_1 | (y << k) | (z >> (32 - k)); - y = xa > xa0 ? *--xa : 0; - d1 = (z << k) | (y >> (32 - k)); - } else { - d0 = Exp_1 | y; - d1 = z; - } -returnD: -#undef d0 -#undef d1 - return dval(&d); -} - -static ALWAYS_INLINE void d2b(BigInt& b, U* d, int* e, int* bits) -{ - int de, k; - uint32_t* x; - uint32_t y, z; - int i; -#define d0 word0(d) -#define d1 word1(d) - - b.sign = 0; - b.resize(1); - x = b.words(); - - z = d0 & Frac_mask; - d0 &= 0x7fffffff; /* clear sign bit, which we ignore */ - if ((de = (int)(d0 >> Exp_shift))) - z |= Exp_msk1; - if ((y = d1)) { - if ((k = lo0bits(&y))) { - x[0] = y | (z << (32 - k)); - z >>= k; - } else - x[0] = y; - if (z) { - b.resize(2); - x[1] = z; - } - - i = b.size(); - } else { - k = lo0bits(&z); - x[0] = z; - i = 1; - b.resize(1); - k += 32; - } - if (de) { - *e = de - Bias - (P - 1) + k; - *bits = P - k; - } else { - *e = de - Bias - (P - 1) + 1 + k; - *bits = (32 * i) - hi0bits(x[i - 1]); - } -} -#undef d0 -#undef d1 - -static double ratio(const BigInt& a, const BigInt& b) -{ - U da, db; - int k, ka, kb; - - dval(&da) = b2d(a, &ka); - dval(&db) = b2d(b, &kb); - k = ka - kb + 32 * (a.size() - b.size()); - if (k > 0) - word0(&da) += k * Exp_msk1; - else { - k = -k; - word0(&db) += k * Exp_msk1; - } - return dval(&da) / dval(&db); -} - -static const double tens[] = { - 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, - 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, - 1e20, 1e21, 1e22 -}; - -static const double bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 }; -static const double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128, - 9007199254740992. * 9007199254740992.e-256 - /* = 2^106 * 1e-256 */ -}; - -/* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */ -/* flag unnecessarily. It leads to a song and dance at the end of strtod. */ -#define Scale_Bit 0x10 -#define n_bigtens 5 - -double strtod(const char* s00, char** se) -{ - int scale; - int bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, dsign, - e, e1, esign, i, j, k, nd, nd0, nf, nz, nz0, sign; - const char *s, *s0, *s1; - double aadj, aadj1; - U aadj2, adj, rv, rv0; - int32_t L; - uint32_t y, z; - BigInt bb, bb1, bd, bd0, bs, delta; - - sign = nz0 = nz = 0; - dval(&rv) = 0; - for (s = s00; ; s++) { - switch (*s) { - case '-': - sign = 1; - /* no break */ - case '+': - if (*++s) - goto break2; - /* no break */ - case 0: - goto ret0; - case '\t': - case '\n': - case '\v': - case '\f': - case '\r': - case ' ': - continue; - default: - goto break2; - } - } -break2: - if (*s == '0') { - nz0 = 1; - while (*++s == '0') { } - if (!*s) - goto ret; - } - s0 = s; - y = z = 0; - for (nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++) - if (nd < 9) - y = (10 * y) + c - '0'; - else if (nd < 16) - z = (10 * z) + c - '0'; - nd0 = nd; - if (c == '.') { - c = *++s; - if (!nd) { - for (; c == '0'; c = *++s) - nz++; - if (c > '0' && c <= '9') { - s0 = s; - nf += nz; - nz = 0; - goto haveDig; - } - goto digDone; - } - for (; c >= '0' && c <= '9'; c = *++s) { -haveDig: - nz++; - if (c -= '0') { - nf += nz; - for (i = 1; i < nz; i++) - if (nd++ < 9) - y *= 10; - else if (nd <= DBL_DIG + 1) - z *= 10; - if (nd++ < 9) - y = (10 * y) + c; - else if (nd <= DBL_DIG + 1) - z = (10 * z) + c; - nz = 0; - } - } - } -digDone: - e = 0; - if (c == 'e' || c == 'E') { - if (!nd && !nz && !nz0) - goto ret0; - s00 = s; - esign = 0; - switch (c = *++s) { - case '-': - esign = 1; - case '+': - c = *++s; - } - if (c >= '0' && c <= '9') { - while (c == '0') - c = *++s; - if (c > '0' && c <= '9') { - L = c - '0'; - s1 = s; - while ((c = *++s) >= '0' && c <= '9') - L = (10 * L) + c - '0'; - if (s - s1 > 8 || L > 19999) - /* Avoid confusion from exponents - * so large that e might overflow. - */ - e = 19999; /* safe for 16 bit ints */ - else - e = (int)L; - if (esign) - e = -e; - } else - e = 0; - } else - s = s00; - } - if (!nd) { - if (!nz && !nz0) { -ret0: - s = s00; - sign = 0; - } - goto ret; - } - e1 = e -= nf; - - /* Now we have nd0 digits, starting at s0, followed by a - * decimal point, followed by nd-nd0 digits. The number we're - * after is the integer represented by those digits times - * 10**e */ - - if (!nd0) - nd0 = nd; - k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1; - dval(&rv) = y; - if (k > 9) - dval(&rv) = tens[k - 9] * dval(&rv) + z; - if (nd <= DBL_DIG) { - if (!e) - goto ret; - if (e > 0) { - if (e <= Ten_pmax) { - /* rv = */ rounded_product(dval(&rv), tens[e]); - goto ret; - } - i = DBL_DIG - nd; - if (e <= Ten_pmax + i) { - /* A fancier test would sometimes let us do - * this for larger i values. - */ - e -= i; - dval(&rv) *= tens[i]; - /* rv = */ rounded_product(dval(&rv), tens[e]); - goto ret; - } - } else if (e >= -Ten_pmax) { - /* rv = */ rounded_quotient(dval(&rv), tens[-e]); - goto ret; - } - } - e1 += nd - k; - - scale = 0; - - /* Get starting approximation = rv * 10**e1 */ - - if (e1 > 0) { - if ((i = e1 & 15)) - dval(&rv) *= tens[i]; - if (e1 &= ~15) { - if (e1 > DBL_MAX_10_EXP) { -ovfl: -#if HAVE(ERRNO_H) - errno = ERANGE; -#endif - /* Can't trust HUGE_VAL */ - word0(&rv) = Exp_mask; - word1(&rv) = 0; - goto ret; - } - e1 >>= 4; - for (j = 0; e1 > 1; j++, e1 >>= 1) - if (e1 & 1) - dval(&rv) *= bigtens[j]; - /* The last multiplication could overflow. */ - word0(&rv) -= P * Exp_msk1; - dval(&rv) *= bigtens[j]; - if ((z = word0(&rv) & Exp_mask) > Exp_msk1 * (DBL_MAX_EXP + Bias - P)) - goto ovfl; - if (z > Exp_msk1 * (DBL_MAX_EXP + Bias - 1 - P)) { - /* set to largest number */ - /* (Can't trust DBL_MAX) */ - word0(&rv) = Big0; - word1(&rv) = Big1; - } else - word0(&rv) += P * Exp_msk1; - } - } else if (e1 < 0) { - e1 = -e1; - if ((i = e1 & 15)) - dval(&rv) /= tens[i]; - if (e1 >>= 4) { - if (e1 >= 1 << n_bigtens) - goto undfl; - if (e1 & Scale_Bit) - scale = 2 * P; - for (j = 0; e1 > 0; j++, e1 >>= 1) - if (e1 & 1) - dval(&rv) *= tinytens[j]; - if (scale && (j = (2 * P) + 1 - ((word0(&rv) & Exp_mask) >> Exp_shift)) > 0) { - /* scaled rv is denormal; clear j low bits */ - if (j >= 32) { - word1(&rv) = 0; - if (j >= 53) - word0(&rv) = (P + 2) * Exp_msk1; - else - word0(&rv) &= 0xffffffff << (j - 32); - } else - word1(&rv) &= 0xffffffff << j; - } - if (!dval(&rv)) { -undfl: - dval(&rv) = 0.; -#if HAVE(ERRNO_H) - errno = ERANGE; -#endif - goto ret; - } - } - } - - /* Now the hard part -- adjusting rv to the correct value.*/ - - /* Put digits into bd: true value = bd * 10^e */ - - s2b(bd0, s0, nd0, nd, y); - - for (;;) { - bd = bd0; - d2b(bb, &rv, &bbe, &bbbits); /* rv = bb * 2^bbe */ - i2b(bs, 1); - - if (e >= 0) { - bb2 = bb5 = 0; - bd2 = bd5 = e; - } else { - bb2 = bb5 = -e; - bd2 = bd5 = 0; - } - if (bbe >= 0) - bb2 += bbe; - else - bd2 -= bbe; - bs2 = bb2; - j = bbe - scale; - i = j + bbbits - 1; /* logb(rv) */ - if (i < Emin) /* denormal */ - j += P - Emin; - else - j = P + 1 - bbbits; - bb2 += j; - bd2 += j; - bd2 += scale; - i = bb2 < bd2 ? bb2 : bd2; - if (i > bs2) - i = bs2; - if (i > 0) { - bb2 -= i; - bd2 -= i; - bs2 -= i; - } - if (bb5 > 0) { - pow5mult(bs, bb5); - mult(bb, bs); - } - if (bb2 > 0) - lshift(bb, bb2); - if (bd5 > 0) - pow5mult(bd, bd5); - if (bd2 > 0) - lshift(bd, bd2); - if (bs2 > 0) - lshift(bs, bs2); - diff(delta, bb, bd); - dsign = delta.sign; - delta.sign = 0; - i = cmp(delta, bs); - - if (i < 0) { - /* Error is less than half an ulp -- check for - * special case of mantissa a power of two. - */ - if (dsign || word1(&rv) || word0(&rv) & Bndry_mask - || (word0(&rv) & Exp_mask) <= (2 * P + 1) * Exp_msk1 - ) { - break; - } - if (!delta.words()[0] && delta.size() <= 1) { - /* exact result */ - break; - } - lshift(delta, Log2P); - if (cmp(delta, bs) > 0) - goto dropDown; - break; - } - if (!i) { - /* exactly half-way between */ - if (dsign) { - if ((word0(&rv) & Bndry_mask1) == Bndry_mask1 - && word1(&rv) == ( - (scale && (y = word0(&rv) & Exp_mask) <= 2 * P * Exp_msk1) - ? (0xffffffff & (0xffffffff << (2 * P + 1 - (y >> Exp_shift)))) : - 0xffffffff)) { - /*boundary case -- increment exponent*/ - word0(&rv) = (word0(&rv) & Exp_mask) + Exp_msk1; - word1(&rv) = 0; - dsign = 0; - break; - } - } else if (!(word0(&rv) & Bndry_mask) && !word1(&rv)) { -dropDown: - /* boundary case -- decrement exponent */ - if (scale) { - L = word0(&rv) & Exp_mask; - if (L <= (2 * P + 1) * Exp_msk1) { - if (L > (P + 2) * Exp_msk1) - /* round even ==> */ - /* accept rv */ - break; - /* rv = smallest denormal */ - goto undfl; - } - } - L = (word0(&rv) & Exp_mask) - Exp_msk1; - word0(&rv) = L | Bndry_mask1; - word1(&rv) = 0xffffffff; - break; - } - if (!(word1(&rv) & LSB)) - break; - if (dsign) - dval(&rv) += ulp(&rv); - else { - dval(&rv) -= ulp(&rv); - if (!dval(&rv)) - goto undfl; - } - dsign = 1 - dsign; - break; - } - if ((aadj = ratio(delta, bs)) <= 2.) { - if (dsign) - aadj = aadj1 = 1.; - else if (word1(&rv) || word0(&rv) & Bndry_mask) { - if (word1(&rv) == Tiny1 && !word0(&rv)) - goto undfl; - aadj = 1.; - aadj1 = -1.; - } else { - /* special case -- power of FLT_RADIX to be */ - /* rounded down... */ - - if (aadj < 2. / FLT_RADIX) - aadj = 1. / FLT_RADIX; - else - aadj *= 0.5; - aadj1 = -aadj; - } - } else { - aadj *= 0.5; - aadj1 = dsign ? aadj : -aadj; - } - y = word0(&rv) & Exp_mask; - - /* Check for overflow */ - - if (y == Exp_msk1 * (DBL_MAX_EXP + Bias - 1)) { - dval(&rv0) = dval(&rv); - word0(&rv) -= P * Exp_msk1; - adj.d = aadj1 * ulp(&rv); - dval(&rv) += adj.d; - if ((word0(&rv) & Exp_mask) >= Exp_msk1 * (DBL_MAX_EXP + Bias - P)) { - if (word0(&rv0) == Big0 && word1(&rv0) == Big1) - goto ovfl; - word0(&rv) = Big0; - word1(&rv) = Big1; - goto cont; - } - word0(&rv) += P * Exp_msk1; - } else { - if (scale && y <= 2 * P * Exp_msk1) { - if (aadj <= 0x7fffffff) { - if ((z = (uint32_t)aadj) <= 0) - z = 1; - aadj = z; - aadj1 = dsign ? aadj : -aadj; - } - dval(&aadj2) = aadj1; - word0(&aadj2) += (2 * P + 1) * Exp_msk1 - y; - aadj1 = dval(&aadj2); - } - adj.d = aadj1 * ulp(&rv); - dval(&rv) += adj.d; - } - z = word0(&rv) & Exp_mask; - if (!scale && y == z) { - /* Can we stop now? */ - L = (int32_t)aadj; - aadj -= L; - /* The tolerances below are conservative. */ - if (dsign || word1(&rv) || word0(&rv) & Bndry_mask) { - if (aadj < .4999999 || aadj > .5000001) - break; - } else if (aadj < .4999999 / FLT_RADIX) - break; - } -cont: - {} - } - if (scale) { - word0(&rv0) = Exp_1 - 2 * P * Exp_msk1; - word1(&rv0) = 0; - dval(&rv) *= dval(&rv0); -#if HAVE(ERRNO_H) - /* try to avoid the bug of testing an 8087 register value */ - if (!word0(&rv) && !word1(&rv)) - errno = ERANGE; -#endif - } -ret: - if (se) - *se = const_cast<char*>(s); - return sign ? -dval(&rv) : dval(&rv); -} - -static ALWAYS_INLINE int quorem(BigInt& b, BigInt& S) -{ - size_t n; - uint32_t* bx; - uint32_t* bxe; - uint32_t q; - uint32_t* sx; - uint32_t* sxe; -#ifdef USE_LONG_LONG - unsigned long long borrow, carry, y, ys; -#else - uint32_t borrow, carry, y, ys; - uint32_t si, z, zs; -#endif - ASSERT(b.size() <= 1 || b.words()[b.size() - 1]); - ASSERT(S.size() <= 1 || S.words()[S.size() - 1]); - - n = S.size(); - ASSERT_WITH_MESSAGE(b.size() <= n, "oversize b in quorem"); - if (b.size() < n) - return 0; - sx = S.words(); - sxe = sx + --n; - bx = b.words(); - bxe = bx + n; - q = *bxe / (*sxe + 1); /* ensure q <= true quotient */ - ASSERT_WITH_MESSAGE(q <= 9, "oversized quotient in quorem"); - if (q) { - borrow = 0; - carry = 0; - do { -#ifdef USE_LONG_LONG - ys = *sx++ * (unsigned long long)q + carry; - carry = ys >> 32; - y = *bx - (ys & 0xffffffffUL) - borrow; - borrow = y >> 32 & (uint32_t)1; - *bx++ = (uint32_t)y & 0xffffffffUL; -#else - si = *sx++; - ys = (si & 0xffff) * q + carry; - zs = (si >> 16) * q + (ys >> 16); - carry = zs >> 16; - y = (*bx & 0xffff) - (ys & 0xffff) - borrow; - borrow = (y & 0x10000) >> 16; - z = (*bx >> 16) - (zs & 0xffff) - borrow; - borrow = (z & 0x10000) >> 16; - bx = storeInc(bx, z, y); -#endif - } while (sx <= sxe); - if (!*bxe) { - bx = b.words(); - while (--bxe > bx && !*bxe) - --n; - b.resize(n); - } - } - if (cmp(b, S) >= 0) { - q++; - borrow = 0; - carry = 0; - bx = b.words(); - sx = S.words(); - do { -#ifdef USE_LONG_LONG - ys = *sx++ + carry; - carry = ys >> 32; - y = *bx - (ys & 0xffffffffUL) - borrow; - borrow = y >> 32 & (uint32_t)1; - *bx++ = (uint32_t)y & 0xffffffffUL; -#else - si = *sx++; - ys = (si & 0xffff) + carry; - zs = (si >> 16) + (ys >> 16); - carry = zs >> 16; - y = (*bx & 0xffff) - (ys & 0xffff) - borrow; - borrow = (y & 0x10000) >> 16; - z = (*bx >> 16) - (zs & 0xffff) - borrow; - borrow = (z & 0x10000) >> 16; - bx = storeInc(bx, z, y); -#endif - } while (sx <= sxe); - bx = b.words(); - bxe = bx + n; - if (!*bxe) { - while (--bxe > bx && !*bxe) - --n; - b.resize(n); - } - } - return q; -} - -/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string. - * - * Inspired by "How to Print Floating-Point Numbers Accurately" by - * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126]. - * - * Modifications: - * 1. Rather than iterating, we use a simple numeric overestimate - * to determine k = floor(log10(d)). We scale relevant - * quantities using O(log2(k)) rather than O(k) multiplications. - * 2. For some modes > 2 (corresponding to ecvt and fcvt), we don't - * try to generate digits strictly left to right. Instead, we - * compute with fewer bits and propagate the carry if necessary - * when rounding the final digit up. This is often faster. - * 3. Under the assumption that input will be rounded nearest, - * mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22. - * That is, we allow equality in stopping tests when the - * round-nearest rule will give the same floating-point value - * as would satisfaction of the stopping test with strict - * inequality. - * 4. We remove common factors of powers of 2 from relevant - * quantities. - * 5. When converting floating-point integers less than 1e16, - * we use floating-point arithmetic rather than resorting - * to multiple-precision integers. - * 6. When asked to produce fewer than 15 digits, we first try - * to get by with floating-point arithmetic; we resort to - * multiple-precision integer arithmetic only if we cannot - * guarantee that the floating-point calculation has given - * the correctly rounded result. For k requested digits and - * "uniformly" distributed input, the probability is - * something like 10^(k-15) that we must resort to the int32_t - * calculation. - * - * Note: 'leftright' translates to 'generate shortest possible string'. - */ -template<bool roundingNone, bool roundingSignificantFigures, bool roundingDecimalPlaces, bool leftright> -void dtoa(DtoaBuffer result, double dd, int ndigits, bool& signOut, int& exponentOut, unsigned& precisionOut) -{ - // Exactly one rounding mode must be specified. - ASSERT(roundingNone + roundingSignificantFigures + roundingDecimalPlaces == 1); - // roundingNone only allowed (only sensible?) with leftright set. - ASSERT(!roundingNone || leftright); - - ASSERT(!isnan(dd) && !isinf(dd)); - - int bbits, b2, b5, be, dig, i, ieps, ilim = 0, ilim0, ilim1 = 0, - j, j1, k, k0, k_check, m2, m5, s2, s5, - spec_case; - int32_t L; - int denorm; - uint32_t x; - BigInt b, delta, mlo, mhi, S; - U d2, eps, u; - double ds; - char* s; - char* s0; - - u.d = dd; - - /* Infinity or NaN */ - ASSERT((word0(&u) & Exp_mask) != Exp_mask); - - // JavaScript toString conversion treats -0 as 0. - if (!dval(&u)) { - signOut = false; - exponentOut = 0; - precisionOut = 1; - result[0] = '0'; - result[1] = '\0'; - return; - } - - if (word0(&u) & Sign_bit) { - signOut = true; - word0(&u) &= ~Sign_bit; // clear sign bit - } else - signOut = false; - - d2b(b, &u, &be, &bbits); - if ((i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask >> Exp_shift1)))) { - dval(&d2) = dval(&u); - word0(&d2) &= Frac_mask1; - word0(&d2) |= Exp_11; - - /* log(x) ~=~ log(1.5) + (x-1.5)/1.5 - * log10(x) = log(x) / log(10) - * ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10)) - * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2) - * - * This suggests computing an approximation k to log10(d) by - * - * k = (i - Bias)*0.301029995663981 - * + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 ); - * - * We want k to be too large rather than too small. - * The error in the first-order Taylor series approximation - * is in our favor, so we just round up the constant enough - * to compensate for any error in the multiplication of - * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077, - * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14, - * adding 1e-13 to the constant term more than suffices. - * Hence we adjust the constant term to 0.1760912590558. - * (We could get a more accurate k by invoking log10, - * but this is probably not worthwhile.) - */ - - i -= Bias; - denorm = 0; - } else { - /* d is denormalized */ - - i = bbits + be + (Bias + (P - 1) - 1); - x = (i > 32) ? (word0(&u) << (64 - i)) | (word1(&u) >> (i - 32)) - : word1(&u) << (32 - i); - dval(&d2) = x; - word0(&d2) -= 31 * Exp_msk1; /* adjust exponent */ - i -= (Bias + (P - 1) - 1) + 1; - denorm = 1; - } - ds = (dval(&d2) - 1.5) * 0.289529654602168 + 0.1760912590558 + (i * 0.301029995663981); - k = (int)ds; - if (ds < 0. && ds != k) - k--; /* want k = floor(ds) */ - k_check = 1; - if (k >= 0 && k <= Ten_pmax) { - if (dval(&u) < tens[k]) - k--; - k_check = 0; - } - j = bbits - i - 1; - if (j >= 0) { - b2 = 0; - s2 = j; - } else { - b2 = -j; - s2 = 0; - } - if (k >= 0) { - b5 = 0; - s5 = k; - s2 += k; - } else { - b2 -= k; - b5 = -k; - s5 = 0; - } - - if (roundingNone) { - ilim = ilim1 = -1; - i = 18; - ndigits = 0; - } - if (roundingSignificantFigures) { - if (ndigits <= 0) - ndigits = 1; - ilim = ilim1 = i = ndigits; - } - if (roundingDecimalPlaces) { - i = ndigits + k + 1; - ilim = i; - ilim1 = i - 1; - if (i <= 0) - i = 1; - } - - s = s0 = result; - - if (ilim >= 0 && ilim <= Quick_max) { - /* Try to get by with floating-point arithmetic. */ - - i = 0; - dval(&d2) = dval(&u); - k0 = k; - ilim0 = ilim; - ieps = 2; /* conservative */ - if (k > 0) { - ds = tens[k & 0xf]; - j = k >> 4; - if (j & Bletch) { - /* prevent overflows */ - j &= Bletch - 1; - dval(&u) /= bigtens[n_bigtens - 1]; - ieps++; - } - for (; j; j >>= 1, i++) { - if (j & 1) { - ieps++; - ds *= bigtens[i]; - } - } - dval(&u) /= ds; - } else if ((j1 = -k)) { - dval(&u) *= tens[j1 & 0xf]; - for (j = j1 >> 4; j; j >>= 1, i++) { - if (j & 1) { - ieps++; - dval(&u) *= bigtens[i]; - } - } - } - if (k_check && dval(&u) < 1. && ilim > 0) { - if (ilim1 <= 0) - goto fastFailed; - ilim = ilim1; - k--; - dval(&u) *= 10.; - ieps++; - } - dval(&eps) = (ieps * dval(&u)) + 7.; - word0(&eps) -= (P - 1) * Exp_msk1; - if (!ilim) { - S.clear(); - mhi.clear(); - dval(&u) -= 5.; - if (dval(&u) > dval(&eps)) - goto oneDigit; - if (dval(&u) < -dval(&eps)) - goto noDigits; - goto fastFailed; - } - if (leftright) { - /* Use Steele & White method of only - * generating digits needed. - */ - dval(&eps) = (0.5 / tens[ilim - 1]) - dval(&eps); - for (i = 0;;) { - L = (long int)dval(&u); - dval(&u) -= L; - *s++ = '0' + (int)L; - if (dval(&u) < dval(&eps)) - goto ret; - if (1. - dval(&u) < dval(&eps)) - goto bumpUp; - if (++i >= ilim) - break; - dval(&eps) *= 10.; - dval(&u) *= 10.; - } - } else { - /* Generate ilim digits, then fix them up. */ - dval(&eps) *= tens[ilim - 1]; - for (i = 1;; i++, dval(&u) *= 10.) { - L = (int32_t)(dval(&u)); - if (!(dval(&u) -= L)) - ilim = i; - *s++ = '0' + (int)L; - if (i == ilim) { - if (dval(&u) > 0.5 + dval(&eps)) - goto bumpUp; - if (dval(&u) < 0.5 - dval(&eps)) { - while (*--s == '0') { } - s++; - goto ret; - } - break; - } - } - } -fastFailed: - s = s0; - dval(&u) = dval(&d2); - k = k0; - ilim = ilim0; - } - - /* Do we have a "small" integer? */ - - if (be >= 0 && k <= Int_max) { - /* Yes. */ - ds = tens[k]; - if (ndigits < 0 && ilim <= 0) { - S.clear(); - mhi.clear(); - if (ilim < 0 || dval(&u) <= 5 * ds) - goto noDigits; - goto oneDigit; - } - for (i = 1;; i++, dval(&u) *= 10.) { - L = (int32_t)(dval(&u) / ds); - dval(&u) -= L * ds; - *s++ = '0' + (int)L; - if (!dval(&u)) { - break; - } - if (i == ilim) { - dval(&u) += dval(&u); - if (dval(&u) > ds || (dval(&u) == ds && (L & 1))) { -bumpUp: - while (*--s == '9') - if (s == s0) { - k++; - *s = '0'; - break; - } - ++*s++; - } - break; - } - } - goto ret; - } - - m2 = b2; - m5 = b5; - mhi.clear(); - mlo.clear(); - if (leftright) { - i = denorm ? be + (Bias + (P - 1) - 1 + 1) : 1 + P - bbits; - b2 += i; - s2 += i; - i2b(mhi, 1); - } - if (m2 > 0 && s2 > 0) { - i = m2 < s2 ? m2 : s2; - b2 -= i; - m2 -= i; - s2 -= i; - } - if (b5 > 0) { - if (leftright) { - if (m5 > 0) { - pow5mult(mhi, m5); - mult(b, mhi); - } - if ((j = b5 - m5)) - pow5mult(b, j); - } else - pow5mult(b, b5); - } - i2b(S, 1); - if (s5 > 0) - pow5mult(S, s5); - - /* Check for special case that d is a normalized power of 2. */ - - spec_case = 0; - if ((roundingNone || leftright) && (!word1(&u) && !(word0(&u) & Bndry_mask) && word0(&u) & (Exp_mask & ~Exp_msk1))) { - /* The special case */ - b2 += Log2P; - s2 += Log2P; - spec_case = 1; - } - - /* Arrange for convenient computation of quotients: - * shift left if necessary so divisor has 4 leading 0 bits. - * - * Perhaps we should just compute leading 28 bits of S once - * and for all and pass them and a shift to quorem, so it - * can do shifts and ors to compute the numerator for q. - */ - if ((i = ((s5 ? 32 - hi0bits(S.words()[S.size() - 1]) : 1) + s2) & 0x1f)) - i = 32 - i; - if (i > 4) { - i -= 4; - b2 += i; - m2 += i; - s2 += i; - } else if (i < 4) { - i += 28; - b2 += i; - m2 += i; - s2 += i; - } - if (b2 > 0) - lshift(b, b2); - if (s2 > 0) - lshift(S, s2); - if (k_check) { - if (cmp(b, S) < 0) { - k--; - multadd(b, 10, 0); /* we botched the k estimate */ - if (leftright) - multadd(mhi, 10, 0); - ilim = ilim1; - } - } - if (ilim <= 0 && roundingDecimalPlaces) { - if (ilim < 0) - goto noDigits; - multadd(S, 5, 0); - // For IEEE-754 unbiased rounding this check should be <=, such that 0.5 would flush to zero. - if (cmp(b, S) < 0) - goto noDigits; - goto oneDigit; - } - if (leftright) { - if (m2 > 0) - lshift(mhi, m2); - - /* Compute mlo -- check for special case - * that d is a normalized power of 2. - */ - - mlo = mhi; - if (spec_case) - lshift(mhi, Log2P); - - for (i = 1;;i++) { - dig = quorem(b, S) + '0'; - /* Do we yet have the shortest decimal string - * that will round to d? - */ - j = cmp(b, mlo); - diff(delta, S, mhi); - j1 = delta.sign ? 1 : cmp(b, delta); -#ifdef DTOA_ROUND_BIASED - if (j < 0 || !j) { -#else - // FIXME: ECMA-262 specifies that equidistant results round away from - // zero, which probably means we shouldn't be on the unbiased code path - // (the (word1(&u) & 1) clause is looking highly suspicious). I haven't - // yet understood this code well enough to make the call, but we should - // probably be enabling DTOA_ROUND_BIASED. I think the interesting corner - // case to understand is probably "Math.pow(0.5, 24).toString()". - // I believe this value is interesting because I think it is precisely - // representable in binary floating point, and its decimal representation - // has a single digit that Steele & White reduction can remove, with the - // value 5 (thus equidistant from the next numbers above and below). - // We produce the correct answer using either codepath, and I don't as - // yet understand why. :-) - if (!j1 && !(word1(&u) & 1)) { - if (dig == '9') - goto round9up; - if (j > 0) - dig++; - *s++ = dig; - goto ret; - } - if (j < 0 || (!j && !(word1(&u) & 1))) { -#endif - if ((b.words()[0] || b.size() > 1) && (j1 > 0)) { - lshift(b, 1); - j1 = cmp(b, S); - // For IEEE-754 round-to-even, this check should be (j1 > 0 || (!j1 && (dig & 1))), - // but ECMA-262 specifies that equidistant values (e.g. (.5).toFixed()) should - // be rounded away from zero. - if (j1 >= 0) { - if (dig == '9') - goto round9up; - dig++; - } - } - *s++ = dig; - goto ret; - } - if (j1 > 0) { - if (dig == '9') { /* possible if i == 1 */ -round9up: - *s++ = '9'; - goto roundoff; - } - *s++ = dig + 1; - goto ret; - } - *s++ = dig; - if (i == ilim) - break; - multadd(b, 10, 0); - multadd(mlo, 10, 0); - multadd(mhi, 10, 0); - } - } else { - for (i = 1;; i++) { - *s++ = dig = quorem(b, S) + '0'; - if (!b.words()[0] && b.size() <= 1) - goto ret; - if (i >= ilim) - break; - multadd(b, 10, 0); - } - } - - /* Round off last digit */ - - lshift(b, 1); - j = cmp(b, S); - // For IEEE-754 round-to-even, this check should be (j > 0 || (!j && (dig & 1))), - // but ECMA-262 specifies that equidistant values (e.g. (.5).toFixed()) should - // be rounded away from zero. - if (j >= 0) { -roundoff: - while (*--s == '9') - if (s == s0) { - k++; - *s++ = '1'; - goto ret; - } - ++*s++; - } else { - while (*--s == '0') { } - s++; - } - goto ret; -noDigits: - exponentOut = 0; - precisionOut = 1; - result[0] = '0'; - result[1] = '\0'; - return; -oneDigit: - *s++ = '1'; - k++; - goto ret; -ret: - ASSERT(s > result); - *s = 0; - exponentOut = k; - precisionOut = s - result; -} - -void dtoa(DtoaBuffer result, double dd, bool& sign, int& exponent, unsigned& precision) -{ - // flags are roundingNone, leftright. - dtoa<true, false, false, true>(result, dd, 0, sign, exponent, precision); -} - -void dtoaRoundSF(DtoaBuffer result, double dd, int ndigits, bool& sign, int& exponent, unsigned& precision) -{ - // flag is roundingSignificantFigures. - dtoa<false, true, false, false>(result, dd, ndigits, sign, exponent, precision); -} - -void dtoaRoundDP(DtoaBuffer result, double dd, int ndigits, bool& sign, int& exponent, unsigned& precision) -{ - // flag is roundingDecimalPlaces. - dtoa<false, false, true, false>(result, dd, ndigits, sign, exponent, precision); -} - -static ALWAYS_INLINE void copyAsciiToUTF16(UChar* next, const char* src, unsigned size) -{ - for (unsigned i = 0; i < size; ++i) - *next++ = *src++; -} - -unsigned numberToString(double d, NumberToStringBuffer buffer) -{ - // Handle NaN and Infinity. - if (isnan(d) || isinf(d)) { - if (isnan(d)) { - copyAsciiToUTF16(buffer, "NaN", 3); - return 3; - } - if (d > 0) { - copyAsciiToUTF16(buffer, "Infinity", 8); - return 8; - } - copyAsciiToUTF16(buffer, "-Infinity", 9); - return 9; - } - - // Convert to decimal with rounding. - DecimalNumber number(d); - return number.exponent() >= -6 && number.exponent() < 21 - ? number.toStringDecimal(buffer, NumberToStringBufferLength) - : number.toStringExponential(buffer, NumberToStringBufferLength); -} - -} // namespace WTF |