summaryrefslogtreecommitdiffstats
path: root/Source/JavaScriptCore/runtime/JSArray.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'Source/JavaScriptCore/runtime/JSArray.cpp')
-rw-r--r--Source/JavaScriptCore/runtime/JSArray.cpp1322
1 files changed, 1322 insertions, 0 deletions
diff --git a/Source/JavaScriptCore/runtime/JSArray.cpp b/Source/JavaScriptCore/runtime/JSArray.cpp
new file mode 100644
index 0000000..556a16e
--- /dev/null
+++ b/Source/JavaScriptCore/runtime/JSArray.cpp
@@ -0,0 +1,1322 @@
+/*
+ * Copyright (C) 1999-2000 Harri Porten (porten@kde.org)
+ * Copyright (C) 2003, 2007, 2008, 2009 Apple Inc. All rights reserved.
+ * Copyright (C) 2003 Peter Kelly (pmk@post.com)
+ * Copyright (C) 2006 Alexey Proskuryakov (ap@nypop.com)
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+ *
+ */
+
+#include "config.h"
+#include "JSArray.h"
+
+#include "ArrayPrototype.h"
+#include "CachedCall.h"
+#include "Error.h"
+#include "Executable.h"
+#include "PropertyNameArray.h"
+#include <wtf/AVLTree.h>
+#include <wtf/Assertions.h>
+#include <wtf/OwnPtr.h>
+#include <Operations.h>
+
+using namespace std;
+using namespace WTF;
+
+namespace JSC {
+
+ASSERT_CLASS_FITS_IN_CELL(JSArray);
+
+// Overview of JSArray
+//
+// Properties of JSArray objects may be stored in one of three locations:
+// * The regular JSObject property map.
+// * A storage vector.
+// * A sparse map of array entries.
+//
+// Properties with non-numeric identifiers, with identifiers that are not representable
+// as an unsigned integer, or where the value is greater than MAX_ARRAY_INDEX
+// (specifically, this is only one property - the value 0xFFFFFFFFU as an unsigned 32-bit
+// integer) are not considered array indices and will be stored in the JSObject property map.
+//
+// All properties with a numeric identifer, representable as an unsigned integer i,
+// where (i <= MAX_ARRAY_INDEX), are an array index and will be stored in either the
+// storage vector or the sparse map. An array index i will be handled in the following
+// fashion:
+//
+// * Where (i < MIN_SPARSE_ARRAY_INDEX) the value will be stored in the storage vector.
+// * Where (MIN_SPARSE_ARRAY_INDEX <= i <= MAX_STORAGE_VECTOR_INDEX) the value will either
+// be stored in the storage vector or in the sparse array, depending on the density of
+// data that would be stored in the vector (a vector being used where at least
+// (1 / minDensityMultiplier) of the entries would be populated).
+// * Where (MAX_STORAGE_VECTOR_INDEX < i <= MAX_ARRAY_INDEX) the value will always be stored
+// in the sparse array.
+
+// The definition of MAX_STORAGE_VECTOR_LENGTH is dependant on the definition storageSize
+// function below - the MAX_STORAGE_VECTOR_LENGTH limit is defined such that the storage
+// size calculation cannot overflow. (sizeof(ArrayStorage) - sizeof(JSValue)) +
+// (vectorLength * sizeof(JSValue)) must be <= 0xFFFFFFFFU (which is maximum value of size_t).
+#define MAX_STORAGE_VECTOR_LENGTH static_cast<unsigned>((0xFFFFFFFFU - (sizeof(ArrayStorage) - sizeof(JSValue))) / sizeof(JSValue))
+
+// These values have to be macros to be used in max() and min() without introducing
+// a PIC branch in Mach-O binaries, see <rdar://problem/5971391>.
+#define MIN_SPARSE_ARRAY_INDEX 10000U
+#define MAX_STORAGE_VECTOR_INDEX (MAX_STORAGE_VECTOR_LENGTH - 1)
+// 0xFFFFFFFF is a bit weird -- is not an array index even though it's an integer.
+#define MAX_ARRAY_INDEX 0xFFFFFFFEU
+
+// The value BASE_VECTOR_LEN is the maximum number of vector elements we'll allocate
+// for an array that was created with a sepcified length (e.g. a = new Array(123))
+#define BASE_VECTOR_LEN 4U
+
+// The upper bound to the size we'll grow a zero length array when the first element
+// is added.
+#define FIRST_VECTOR_GROW 4U
+
+// Our policy for when to use a vector and when to use a sparse map.
+// For all array indices under MIN_SPARSE_ARRAY_INDEX, we always use a vector.
+// When indices greater than MIN_SPARSE_ARRAY_INDEX are involved, we use a vector
+// as long as it is 1/8 full. If more sparse than that, we use a map.
+static const unsigned minDensityMultiplier = 8;
+
+const ClassInfo JSArray::info = {"Array", 0, 0, 0};
+
+// We keep track of the size of the last array after it was grown. We use this
+// as a simple heuristic for as the value to grow the next array from size 0.
+// This value is capped by the constant FIRST_VECTOR_GROW defined above.
+static unsigned lastArraySize = 0;
+
+static inline size_t storageSize(unsigned vectorLength)
+{
+ ASSERT(vectorLength <= MAX_STORAGE_VECTOR_LENGTH);
+
+ // MAX_STORAGE_VECTOR_LENGTH is defined such that provided (vectorLength <= MAX_STORAGE_VECTOR_LENGTH)
+ // - as asserted above - the following calculation cannot overflow.
+ size_t size = (sizeof(ArrayStorage) - sizeof(JSValue)) + (vectorLength * sizeof(JSValue));
+ // Assertion to detect integer overflow in previous calculation (should not be possible, provided that
+ // MAX_STORAGE_VECTOR_LENGTH is correctly defined).
+ ASSERT(((size - (sizeof(ArrayStorage) - sizeof(JSValue))) / sizeof(JSValue) == vectorLength) && (size >= (sizeof(ArrayStorage) - sizeof(JSValue))));
+
+ return size;
+}
+
+static inline bool isDenseEnoughForVector(unsigned length, unsigned numValues)
+{
+ return length / minDensityMultiplier <= numValues;
+}
+
+#if !CHECK_ARRAY_CONSISTENCY
+
+inline void JSArray::checkConsistency(ConsistencyCheckType)
+{
+}
+
+#endif
+
+JSArray::JSArray(VPtrStealingHackType)
+ : JSObject(createStructure(jsNull()))
+{
+ unsigned initialCapacity = 0;
+
+ m_storage = static_cast<ArrayStorage*>(fastZeroedMalloc(storageSize(initialCapacity)));
+ m_storage->m_allocBase = m_storage;
+ m_indexBias = 0;
+ m_vectorLength = initialCapacity;
+
+ checkConsistency();
+
+ // It's not safe to call Heap::heap(this) in order to report extra memory
+ // cost here, because the VPtrStealingHackType JSArray is not allocated on
+ // the heap. For the same reason, it's OK not to report extra cost.
+}
+
+JSArray::JSArray(NonNullPassRefPtr<Structure> structure)
+ : JSObject(structure)
+{
+ unsigned initialCapacity = 0;
+
+ m_storage = static_cast<ArrayStorage*>(fastZeroedMalloc(storageSize(initialCapacity)));
+ m_storage->m_allocBase = m_storage;
+ m_indexBias = 0;
+ m_vectorLength = initialCapacity;
+
+ checkConsistency();
+
+ Heap::heap(this)->reportExtraMemoryCost(storageSize(0));
+}
+
+JSArray::JSArray(NonNullPassRefPtr<Structure> structure, unsigned initialLength, ArrayCreationMode creationMode)
+ : JSObject(structure)
+{
+ unsigned initialCapacity;
+ if (creationMode == CreateCompact)
+ initialCapacity = initialLength;
+ else
+ initialCapacity = min(BASE_VECTOR_LEN, MIN_SPARSE_ARRAY_INDEX);
+
+ m_storage = static_cast<ArrayStorage*>(fastMalloc(storageSize(initialCapacity)));
+ m_storage->m_allocBase = m_storage;
+ m_storage->m_length = initialLength;
+ m_indexBias = 0;
+ m_vectorLength = initialCapacity;
+ m_storage->m_sparseValueMap = 0;
+ m_storage->subclassData = 0;
+ m_storage->reportedMapCapacity = 0;
+
+ if (creationMode == CreateCompact) {
+#if CHECK_ARRAY_CONSISTENCY
+ m_storage->m_inCompactInitialization = !!initialCapacity;
+#endif
+ m_storage->m_length = 0;
+ m_storage->m_numValuesInVector = initialCapacity;
+ } else {
+#if CHECK_ARRAY_CONSISTENCY
+ storage->m_inCompactInitialization = false;
+#endif
+ m_storage->m_length = initialLength;
+ m_storage->m_numValuesInVector = 0;
+ JSValue* vector = m_storage->m_vector;
+ for (size_t i = 0; i < initialCapacity; ++i)
+ vector[i] = JSValue();
+ }
+
+ checkConsistency();
+
+ Heap::heap(this)->reportExtraMemoryCost(storageSize(initialCapacity));
+}
+
+JSArray::JSArray(NonNullPassRefPtr<Structure> structure, const ArgList& list)
+ : JSObject(structure)
+{
+ unsigned initialCapacity = list.size();
+ unsigned initialStorage;
+
+ // If the ArgList is empty, allocate space for 3 entries. This value empirically
+ // works well for benchmarks.
+ if (!initialCapacity)
+ initialStorage = 3;
+ else
+ initialStorage = initialCapacity;
+
+ m_storage = static_cast<ArrayStorage*>(fastMalloc(storageSize(initialStorage)));
+ m_storage->m_allocBase = m_storage;
+ m_indexBias = 0;
+ m_storage->m_length = initialCapacity;
+ m_vectorLength = initialStorage;
+ m_storage->m_numValuesInVector = initialCapacity;
+ m_storage->m_sparseValueMap = 0;
+ m_storage->subclassData = 0;
+ m_storage->reportedMapCapacity = 0;
+#if CHECK_ARRAY_CONSISTENCY
+ m_storage->m_inCompactInitialization = false;
+#endif
+
+ size_t i = 0;
+ JSValue* vector = m_storage->m_vector;
+ ArgList::const_iterator end = list.end();
+ for (ArgList::const_iterator it = list.begin(); it != end; ++it, ++i)
+ vector[i] = *it;
+ for (; i < initialStorage; i++)
+ vector[i] = JSValue();
+
+ checkConsistency();
+
+ Heap::heap(this)->reportExtraMemoryCost(storageSize(initialStorage));
+}
+
+JSArray::~JSArray()
+{
+ ASSERT(vptr() == JSGlobalData::jsArrayVPtr);
+ checkConsistency(DestructorConsistencyCheck);
+
+ delete m_storage->m_sparseValueMap;
+ fastFree(m_storage->m_allocBase);
+}
+
+bool JSArray::getOwnPropertySlot(ExecState* exec, unsigned i, PropertySlot& slot)
+{
+ ArrayStorage* storage = m_storage;
+
+ if (i >= storage->m_length) {
+ if (i > MAX_ARRAY_INDEX)
+ return getOwnPropertySlot(exec, Identifier::from(exec, i), slot);
+ return false;
+ }
+
+ if (i < m_vectorLength) {
+ JSValue& valueSlot = storage->m_vector[i];
+ if (valueSlot) {
+ slot.setValueSlot(&valueSlot);
+ return true;
+ }
+ } else if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
+ if (i >= MIN_SPARSE_ARRAY_INDEX) {
+ SparseArrayValueMap::iterator it = map->find(i);
+ if (it != map->end()) {
+ slot.setValueSlot(&it->second);
+ return true;
+ }
+ }
+ }
+
+ return JSObject::getOwnPropertySlot(exec, Identifier::from(exec, i), slot);
+}
+
+bool JSArray::getOwnPropertySlot(ExecState* exec, const Identifier& propertyName, PropertySlot& slot)
+{
+ if (propertyName == exec->propertyNames().length) {
+ slot.setValue(jsNumber(length()));
+ return true;
+ }
+
+ bool isArrayIndex;
+ unsigned i = propertyName.toArrayIndex(isArrayIndex);
+ if (isArrayIndex)
+ return JSArray::getOwnPropertySlot(exec, i, slot);
+
+ return JSObject::getOwnPropertySlot(exec, propertyName, slot);
+}
+
+bool JSArray::getOwnPropertyDescriptor(ExecState* exec, const Identifier& propertyName, PropertyDescriptor& descriptor)
+{
+ if (propertyName == exec->propertyNames().length) {
+ descriptor.setDescriptor(jsNumber(length()), DontDelete | DontEnum);
+ return true;
+ }
+
+ ArrayStorage* storage = m_storage;
+
+ bool isArrayIndex;
+ unsigned i = propertyName.toArrayIndex(isArrayIndex);
+ if (isArrayIndex) {
+ if (i >= storage->m_length)
+ return false;
+ if (i < m_vectorLength) {
+ JSValue& value = storage->m_vector[i];
+ if (value) {
+ descriptor.setDescriptor(value, 0);
+ return true;
+ }
+ } else if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
+ if (i >= MIN_SPARSE_ARRAY_INDEX) {
+ SparseArrayValueMap::iterator it = map->find(i);
+ if (it != map->end()) {
+ descriptor.setDescriptor(it->second, 0);
+ return true;
+ }
+ }
+ }
+ }
+ return JSObject::getOwnPropertyDescriptor(exec, propertyName, descriptor);
+}
+
+// ECMA 15.4.5.1
+void JSArray::put(ExecState* exec, const Identifier& propertyName, JSValue value, PutPropertySlot& slot)
+{
+ bool isArrayIndex;
+ unsigned i = propertyName.toArrayIndex(isArrayIndex);
+ if (isArrayIndex) {
+ put(exec, i, value);
+ return;
+ }
+
+ if (propertyName == exec->propertyNames().length) {
+ unsigned newLength = value.toUInt32(exec);
+ if (value.toNumber(exec) != static_cast<double>(newLength)) {
+ throwError(exec, createRangeError(exec, "Invalid array length."));
+ return;
+ }
+ setLength(newLength);
+ return;
+ }
+
+ JSObject::put(exec, propertyName, value, slot);
+}
+
+void JSArray::put(ExecState* exec, unsigned i, JSValue value)
+{
+ checkConsistency();
+
+ ArrayStorage* storage = m_storage;
+
+ unsigned length = storage->m_length;
+ if (i >= length && i <= MAX_ARRAY_INDEX) {
+ length = i + 1;
+ storage->m_length = length;
+ }
+
+ if (i < m_vectorLength) {
+ JSValue& valueSlot = storage->m_vector[i];
+ if (valueSlot) {
+ valueSlot = value;
+ checkConsistency();
+ return;
+ }
+ valueSlot = value;
+ ++storage->m_numValuesInVector;
+ checkConsistency();
+ return;
+ }
+
+ putSlowCase(exec, i, value);
+}
+
+NEVER_INLINE void JSArray::putSlowCase(ExecState* exec, unsigned i, JSValue value)
+{
+ ArrayStorage* storage = m_storage;
+
+ SparseArrayValueMap* map = storage->m_sparseValueMap;
+
+ if (i >= MIN_SPARSE_ARRAY_INDEX) {
+ if (i > MAX_ARRAY_INDEX) {
+ PutPropertySlot slot;
+ put(exec, Identifier::from(exec, i), value, slot);
+ return;
+ }
+
+ // We miss some cases where we could compact the storage, such as a large array that is being filled from the end
+ // (which will only be compacted as we reach indices that are less than MIN_SPARSE_ARRAY_INDEX) - but this makes the check much faster.
+ if ((i > MAX_STORAGE_VECTOR_INDEX) || !isDenseEnoughForVector(i + 1, storage->m_numValuesInVector + 1)) {
+ if (!map) {
+ map = new SparseArrayValueMap;
+ storage->m_sparseValueMap = map;
+ }
+
+ pair<SparseArrayValueMap::iterator, bool> result = map->add(i, value);
+ if (!result.second) { // pre-existing entry
+ result.first->second = value;
+ return;
+ }
+
+ size_t capacity = map->capacity();
+ if (capacity != storage->reportedMapCapacity) {
+ Heap::heap(this)->reportExtraMemoryCost((capacity - storage->reportedMapCapacity) * (sizeof(unsigned) + sizeof(JSValue)));
+ storage->reportedMapCapacity = capacity;
+ }
+ return;
+ }
+ }
+
+ // We have decided that we'll put the new item into the vector.
+ // Fast case is when there is no sparse map, so we can increase the vector size without moving values from it.
+ if (!map || map->isEmpty()) {
+ if (increaseVectorLength(i + 1)) {
+ storage = m_storage;
+ storage->m_vector[i] = value;
+ ++storage->m_numValuesInVector;
+ checkConsistency();
+ } else
+ throwOutOfMemoryError(exec);
+ return;
+ }
+
+ // Decide how many values it would be best to move from the map.
+ unsigned newNumValuesInVector = storage->m_numValuesInVector + 1;
+ unsigned newVectorLength = getNewVectorLength(i + 1);
+ for (unsigned j = max(m_vectorLength, MIN_SPARSE_ARRAY_INDEX); j < newVectorLength; ++j)
+ newNumValuesInVector += map->contains(j);
+ if (i >= MIN_SPARSE_ARRAY_INDEX)
+ newNumValuesInVector -= map->contains(i);
+ if (isDenseEnoughForVector(newVectorLength, newNumValuesInVector)) {
+ unsigned needLength = max(i + 1, storage->m_length);
+ unsigned proposedNewNumValuesInVector = newNumValuesInVector;
+ // If newVectorLength is already the maximum - MAX_STORAGE_VECTOR_LENGTH - then do not attempt to grow any further.
+ while ((newVectorLength < needLength) && (newVectorLength < MAX_STORAGE_VECTOR_LENGTH)) {
+ unsigned proposedNewVectorLength = getNewVectorLength(newVectorLength + 1);
+ for (unsigned j = max(newVectorLength, MIN_SPARSE_ARRAY_INDEX); j < proposedNewVectorLength; ++j)
+ proposedNewNumValuesInVector += map->contains(j);
+ if (!isDenseEnoughForVector(proposedNewVectorLength, proposedNewNumValuesInVector))
+ break;
+ newVectorLength = proposedNewVectorLength;
+ newNumValuesInVector = proposedNewNumValuesInVector;
+ }
+ }
+
+ void* baseStorage = storage->m_allocBase;
+
+ if (!tryFastRealloc(baseStorage, storageSize(newVectorLength + m_indexBias)).getValue(baseStorage)) {
+ throwOutOfMemoryError(exec);
+ return;
+ }
+
+ m_storage = reinterpret_cast_ptr<ArrayStorage*>(static_cast<char*>(baseStorage) + m_indexBias * sizeof(JSValue));
+ m_storage->m_allocBase = baseStorage;
+ storage = m_storage;
+
+ unsigned vectorLength = m_vectorLength;
+ JSValue* vector = storage->m_vector;
+
+ if (newNumValuesInVector == storage->m_numValuesInVector + 1) {
+ for (unsigned j = vectorLength; j < newVectorLength; ++j)
+ vector[j] = JSValue();
+ if (i > MIN_SPARSE_ARRAY_INDEX)
+ map->remove(i);
+ } else {
+ for (unsigned j = vectorLength; j < max(vectorLength, MIN_SPARSE_ARRAY_INDEX); ++j)
+ vector[j] = JSValue();
+ for (unsigned j = max(vectorLength, MIN_SPARSE_ARRAY_INDEX); j < newVectorLength; ++j)
+ vector[j] = map->take(j);
+ }
+
+ ASSERT(i < newVectorLength);
+
+ m_vectorLength = newVectorLength;
+ storage->m_numValuesInVector = newNumValuesInVector;
+
+ storage->m_vector[i] = value;
+
+ checkConsistency();
+
+ Heap::heap(this)->reportExtraMemoryCost(storageSize(newVectorLength) - storageSize(vectorLength));
+}
+
+bool JSArray::deleteProperty(ExecState* exec, const Identifier& propertyName)
+{
+ bool isArrayIndex;
+ unsigned i = propertyName.toArrayIndex(isArrayIndex);
+ if (isArrayIndex)
+ return deleteProperty(exec, i);
+
+ if (propertyName == exec->propertyNames().length)
+ return false;
+
+ return JSObject::deleteProperty(exec, propertyName);
+}
+
+bool JSArray::deleteProperty(ExecState* exec, unsigned i)
+{
+ checkConsistency();
+
+ ArrayStorage* storage = m_storage;
+
+ if (i < m_vectorLength) {
+ JSValue& valueSlot = storage->m_vector[i];
+ if (!valueSlot) {
+ checkConsistency();
+ return false;
+ }
+ valueSlot = JSValue();
+ --storage->m_numValuesInVector;
+ checkConsistency();
+ return true;
+ }
+
+ if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
+ if (i >= MIN_SPARSE_ARRAY_INDEX) {
+ SparseArrayValueMap::iterator it = map->find(i);
+ if (it != map->end()) {
+ map->remove(it);
+ checkConsistency();
+ return true;
+ }
+ }
+ }
+
+ checkConsistency();
+
+ if (i > MAX_ARRAY_INDEX)
+ return deleteProperty(exec, Identifier::from(exec, i));
+
+ return false;
+}
+
+void JSArray::getOwnPropertyNames(ExecState* exec, PropertyNameArray& propertyNames, EnumerationMode mode)
+{
+ // FIXME: Filling PropertyNameArray with an identifier for every integer
+ // is incredibly inefficient for large arrays. We need a different approach,
+ // which almost certainly means a different structure for PropertyNameArray.
+
+ ArrayStorage* storage = m_storage;
+
+ unsigned usedVectorLength = min(storage->m_length, m_vectorLength);
+ for (unsigned i = 0; i < usedVectorLength; ++i) {
+ if (storage->m_vector[i])
+ propertyNames.add(Identifier::from(exec, i));
+ }
+
+ if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
+ SparseArrayValueMap::iterator end = map->end();
+ for (SparseArrayValueMap::iterator it = map->begin(); it != end; ++it)
+ propertyNames.add(Identifier::from(exec, it->first));
+ }
+
+ if (mode == IncludeDontEnumProperties)
+ propertyNames.add(exec->propertyNames().length);
+
+ JSObject::getOwnPropertyNames(exec, propertyNames, mode);
+}
+
+ALWAYS_INLINE unsigned JSArray::getNewVectorLength(unsigned desiredLength)
+{
+ ASSERT(desiredLength <= MAX_STORAGE_VECTOR_LENGTH);
+
+ unsigned increasedLength;
+ unsigned maxInitLength = min(m_storage->m_length, 100000U);
+
+ if (desiredLength < maxInitLength)
+ increasedLength = maxInitLength;
+ else if (!m_vectorLength)
+ increasedLength = max(desiredLength, lastArraySize);
+ else {
+ // Mathematically equivalent to:
+ // increasedLength = (newLength * 3 + 1) / 2;
+ // or:
+ // increasedLength = (unsigned)ceil(newLength * 1.5));
+ // This form is not prone to internal overflow.
+ increasedLength = desiredLength + (desiredLength >> 1) + (desiredLength & 1);
+ }
+
+ ASSERT(increasedLength >= desiredLength);
+
+ lastArraySize = min(increasedLength, FIRST_VECTOR_GROW);
+
+ return min(increasedLength, MAX_STORAGE_VECTOR_LENGTH);
+}
+
+bool JSArray::increaseVectorLength(unsigned newLength)
+{
+ // This function leaves the array in an internally inconsistent state, because it does not move any values from sparse value map
+ // to the vector. Callers have to account for that, because they can do it more efficiently.
+
+ ArrayStorage* storage = m_storage;
+
+ unsigned vectorLength = m_vectorLength;
+ ASSERT(newLength > vectorLength);
+ ASSERT(newLength <= MAX_STORAGE_VECTOR_INDEX);
+ unsigned newVectorLength = getNewVectorLength(newLength);
+ void* baseStorage = storage->m_allocBase;
+
+ if (!tryFastRealloc(baseStorage, storageSize(newVectorLength + m_indexBias)).getValue(baseStorage))
+ return false;
+
+ storage = m_storage = reinterpret_cast_ptr<ArrayStorage*>(static_cast<char*>(baseStorage) + m_indexBias * sizeof(JSValue));
+ m_storage->m_allocBase = baseStorage;
+
+ JSValue* vector = storage->m_vector;
+ for (unsigned i = vectorLength; i < newVectorLength; ++i)
+ vector[i] = JSValue();
+
+ m_vectorLength = newVectorLength;
+
+ Heap::heap(this)->reportExtraMemoryCost(storageSize(newVectorLength) - storageSize(vectorLength));
+
+ return true;
+}
+
+bool JSArray::increaseVectorPrefixLength(unsigned newLength)
+{
+ // This function leaves the array in an internally inconsistent state, because it does not move any values from sparse value map
+ // to the vector. Callers have to account for that, because they can do it more efficiently.
+
+ ArrayStorage* storage = m_storage;
+
+ unsigned vectorLength = m_vectorLength;
+ ASSERT(newLength > vectorLength);
+ ASSERT(newLength <= MAX_STORAGE_VECTOR_INDEX);
+ unsigned newVectorLength = getNewVectorLength(newLength);
+
+ void* newBaseStorage = fastMalloc(storageSize(newVectorLength + m_indexBias));
+ if (!newBaseStorage)
+ return false;
+
+ m_indexBias += newVectorLength - newLength;
+
+ m_storage = reinterpret_cast_ptr<ArrayStorage*>(static_cast<char*>(newBaseStorage) + m_indexBias * sizeof(JSValue));
+
+ memcpy(m_storage, storage, storageSize(0));
+ memcpy(&m_storage->m_vector[newLength - m_vectorLength], &storage->m_vector[0], vectorLength * sizeof(JSValue));
+
+ m_storage->m_allocBase = newBaseStorage;
+ m_vectorLength = newLength;
+
+ fastFree(storage->m_allocBase);
+
+ Heap::heap(this)->reportExtraMemoryCost(storageSize(newVectorLength) - storageSize(vectorLength));
+
+ return true;
+}
+
+
+void JSArray::setLength(unsigned newLength)
+{
+ ArrayStorage* storage = m_storage;
+
+#if CHECK_ARRAY_CONSISTENCY
+ if (!storage->m_inCompactInitialization)
+ checkConsistency();
+ else
+ storage->m_inCompactInitialization = false;
+#endif
+
+ unsigned length = storage->m_length;
+
+ if (newLength < length) {
+ unsigned usedVectorLength = min(length, m_vectorLength);
+ for (unsigned i = newLength; i < usedVectorLength; ++i) {
+ JSValue& valueSlot = storage->m_vector[i];
+ bool hadValue = valueSlot;
+ valueSlot = JSValue();
+ storage->m_numValuesInVector -= hadValue;
+ }
+
+ if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
+ SparseArrayValueMap copy = *map;
+ SparseArrayValueMap::iterator end = copy.end();
+ for (SparseArrayValueMap::iterator it = copy.begin(); it != end; ++it) {
+ if (it->first >= newLength)
+ map->remove(it->first);
+ }
+ if (map->isEmpty()) {
+ delete map;
+ storage->m_sparseValueMap = 0;
+ }
+ }
+ }
+
+ storage->m_length = newLength;
+
+ checkConsistency();
+}
+
+JSValue JSArray::pop()
+{
+ checkConsistency();
+
+ ArrayStorage* storage = m_storage;
+
+ unsigned length = storage->m_length;
+ if (!length)
+ return jsUndefined();
+
+ --length;
+
+ JSValue result;
+
+ if (length < m_vectorLength) {
+ JSValue& valueSlot = storage->m_vector[length];
+ if (valueSlot) {
+ --storage->m_numValuesInVector;
+ result = valueSlot;
+ valueSlot = JSValue();
+ } else
+ result = jsUndefined();
+ } else {
+ result = jsUndefined();
+ if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
+ SparseArrayValueMap::iterator it = map->find(length);
+ if (it != map->end()) {
+ result = it->second;
+ map->remove(it);
+ if (map->isEmpty()) {
+ delete map;
+ storage->m_sparseValueMap = 0;
+ }
+ }
+ }
+ }
+
+ storage->m_length = length;
+
+ checkConsistency();
+
+ return result;
+}
+
+void JSArray::push(ExecState* exec, JSValue value)
+{
+ checkConsistency();
+
+ ArrayStorage* storage = m_storage;
+
+ if (storage->m_length < m_vectorLength) {
+ storage->m_vector[storage->m_length] = value;
+ ++storage->m_numValuesInVector;
+ ++storage->m_length;
+ checkConsistency();
+ return;
+ }
+
+ if (storage->m_length < MIN_SPARSE_ARRAY_INDEX) {
+ SparseArrayValueMap* map = storage->m_sparseValueMap;
+ if (!map || map->isEmpty()) {
+ if (increaseVectorLength(storage->m_length + 1)) {
+ storage = m_storage;
+ storage->m_vector[storage->m_length] = value;
+ ++storage->m_numValuesInVector;
+ ++storage->m_length;
+ checkConsistency();
+ return;
+ }
+ checkConsistency();
+ throwOutOfMemoryError(exec);
+ return;
+ }
+ }
+
+ putSlowCase(exec, storage->m_length++, value);
+}
+
+void JSArray::shiftCount(ExecState* exec, int count)
+{
+ ASSERT(count > 0);
+
+ ArrayStorage* storage = m_storage;
+
+ unsigned oldLength = storage->m_length;
+
+ if (!oldLength)
+ return;
+
+ if (oldLength != storage->m_numValuesInVector) {
+ // If m_length and m_numValuesInVector aren't the same, we have a sparse vector
+ // which means we need to go through each entry looking for the the "empty"
+ // slots and then fill them with possible properties. See ECMA spec.
+ // 15.4.4.9 steps 11 through 13.
+ for (unsigned i = count; i < oldLength; ++i) {
+ if ((i >= m_vectorLength) || (!m_storage->m_vector[i])) {
+ PropertySlot slot(this);
+ JSValue p = prototype();
+ if ((!p.isNull()) && (asObject(p)->getPropertySlot(exec, i, slot)))
+ put(exec, i, slot.getValue(exec, i));
+ }
+ }
+
+ storage = m_storage; // The put() above could have grown the vector and realloc'ed storage.
+
+ // Need to decrement numValuesInvector based on number of real entries
+ for (unsigned i = 0; i < (unsigned)count; ++i)
+ if ((i < m_vectorLength) && (storage->m_vector[i]))
+ --storage->m_numValuesInVector;
+ } else
+ storage->m_numValuesInVector -= count;
+
+ storage->m_length -= count;
+
+ if (m_vectorLength) {
+ count = min(m_vectorLength, (unsigned)count);
+
+ m_vectorLength -= count;
+
+ if (m_vectorLength) {
+ char* newBaseStorage = reinterpret_cast<char*>(storage) + count * sizeof(JSValue);
+ memmove(newBaseStorage, storage, storageSize(0));
+ m_storage = reinterpret_cast_ptr<ArrayStorage*>(newBaseStorage);
+
+ m_indexBias += count;
+ }
+ }
+}
+
+void JSArray::unshiftCount(ExecState* exec, int count)
+{
+ ArrayStorage* storage = m_storage;
+
+ ASSERT(m_indexBias >= 0);
+ ASSERT(count >= 0);
+
+ unsigned length = storage->m_length;
+
+ if (length != storage->m_numValuesInVector) {
+ // If m_length and m_numValuesInVector aren't the same, we have a sparse vector
+ // which means we need to go through each entry looking for the the "empty"
+ // slots and then fill them with possible properties. See ECMA spec.
+ // 15.4.4.13 steps 8 through 10.
+ for (unsigned i = 0; i < length; ++i) {
+ if ((i >= m_vectorLength) || (!m_storage->m_vector[i])) {
+ PropertySlot slot(this);
+ JSValue p = prototype();
+ if ((!p.isNull()) && (asObject(p)->getPropertySlot(exec, i, slot)))
+ put(exec, i, slot.getValue(exec, i));
+ }
+ }
+ }
+
+ storage = m_storage; // The put() above could have grown the vector and realloc'ed storage.
+
+ if (m_indexBias >= count) {
+ m_indexBias -= count;
+ char* newBaseStorage = reinterpret_cast<char*>(storage) - count * sizeof(JSValue);
+ memmove(newBaseStorage, storage, storageSize(0));
+ m_storage = reinterpret_cast_ptr<ArrayStorage*>(newBaseStorage);
+ m_vectorLength += count;
+ } else if (!increaseVectorPrefixLength(m_vectorLength + count)) {
+ throwOutOfMemoryError(exec);
+ return;
+ }
+
+ JSValue* vector = m_storage->m_vector;
+ for (int i = 0; i < count; i++)
+ vector[i] = JSValue();
+}
+
+void JSArray::markChildren(MarkStack& markStack)
+{
+ markChildrenDirect(markStack);
+}
+
+static int compareNumbersForQSort(const void* a, const void* b)
+{
+ double da = static_cast<const JSValue*>(a)->uncheckedGetNumber();
+ double db = static_cast<const JSValue*>(b)->uncheckedGetNumber();
+ return (da > db) - (da < db);
+}
+
+static int compareByStringPairForQSort(const void* a, const void* b)
+{
+ const ValueStringPair* va = static_cast<const ValueStringPair*>(a);
+ const ValueStringPair* vb = static_cast<const ValueStringPair*>(b);
+ return codePointCompare(va->second, vb->second);
+}
+
+void JSArray::sortNumeric(ExecState* exec, JSValue compareFunction, CallType callType, const CallData& callData)
+{
+ ArrayStorage* storage = m_storage;
+
+ unsigned lengthNotIncludingUndefined = compactForSorting();
+ if (storage->m_sparseValueMap) {
+ throwOutOfMemoryError(exec);
+ return;
+ }
+
+ if (!lengthNotIncludingUndefined)
+ return;
+
+ bool allValuesAreNumbers = true;
+ size_t size = storage->m_numValuesInVector;
+ for (size_t i = 0; i < size; ++i) {
+ if (!storage->m_vector[i].isNumber()) {
+ allValuesAreNumbers = false;
+ break;
+ }
+ }
+
+ if (!allValuesAreNumbers)
+ return sort(exec, compareFunction, callType, callData);
+
+ // For numeric comparison, which is fast, qsort is faster than mergesort. We
+ // also don't require mergesort's stability, since there's no user visible
+ // side-effect from swapping the order of equal primitive values.
+ qsort(storage->m_vector, size, sizeof(JSValue), compareNumbersForQSort);
+
+ checkConsistency(SortConsistencyCheck);
+}
+
+void JSArray::sort(ExecState* exec)
+{
+ ArrayStorage* storage = m_storage;
+
+ unsigned lengthNotIncludingUndefined = compactForSorting();
+ if (storage->m_sparseValueMap) {
+ throwOutOfMemoryError(exec);
+ return;
+ }
+
+ if (!lengthNotIncludingUndefined)
+ return;
+
+ // Converting JavaScript values to strings can be expensive, so we do it once up front and sort based on that.
+ // This is a considerable improvement over doing it twice per comparison, though it requires a large temporary
+ // buffer. Besides, this protects us from crashing if some objects have custom toString methods that return
+ // random or otherwise changing results, effectively making compare function inconsistent.
+
+ Vector<ValueStringPair> values(lengthNotIncludingUndefined);
+ if (!values.begin()) {
+ throwOutOfMemoryError(exec);
+ return;
+ }
+
+ Heap::heap(this)->pushTempSortVector(&values);
+
+ for (size_t i = 0; i < lengthNotIncludingUndefined; i++) {
+ JSValue value = storage->m_vector[i];
+ ASSERT(!value.isUndefined());
+ values[i].first = value;
+ }
+
+ // FIXME: The following loop continues to call toString on subsequent values even after
+ // a toString call raises an exception.
+
+ for (size_t i = 0; i < lengthNotIncludingUndefined; i++)
+ values[i].second = values[i].first.toString(exec);
+
+ if (exec->hadException())
+ return;
+
+ // FIXME: Since we sort by string value, a fast algorithm might be to use a radix sort. That would be O(N) rather
+ // than O(N log N).
+
+#if HAVE(MERGESORT)
+ mergesort(values.begin(), values.size(), sizeof(ValueStringPair), compareByStringPairForQSort);
+#else
+ // FIXME: The qsort library function is likely to not be a stable sort.
+ // ECMAScript-262 does not specify a stable sort, but in practice, browsers perform a stable sort.
+ qsort(values.begin(), values.size(), sizeof(ValueStringPair), compareByStringPairForQSort);
+#endif
+
+ // If the toString function changed the length of the array or vector storage,
+ // increase the length to handle the orignal number of actual values.
+ if (m_vectorLength < lengthNotIncludingUndefined)
+ increaseVectorLength(lengthNotIncludingUndefined);
+ if (storage->m_length < lengthNotIncludingUndefined)
+ storage->m_length = lengthNotIncludingUndefined;
+
+ for (size_t i = 0; i < lengthNotIncludingUndefined; i++)
+ storage->m_vector[i] = values[i].first;
+
+ Heap::heap(this)->popTempSortVector(&values);
+
+ checkConsistency(SortConsistencyCheck);
+}
+
+struct AVLTreeNodeForArrayCompare {
+ JSValue value;
+
+ // Child pointers. The high bit of gt is robbed and used as the
+ // balance factor sign. The high bit of lt is robbed and used as
+ // the magnitude of the balance factor.
+ int32_t gt;
+ int32_t lt;
+};
+
+struct AVLTreeAbstractorForArrayCompare {
+ typedef int32_t handle; // Handle is an index into m_nodes vector.
+ typedef JSValue key;
+ typedef int32_t size;
+
+ Vector<AVLTreeNodeForArrayCompare> m_nodes;
+ ExecState* m_exec;
+ JSValue m_compareFunction;
+ CallType m_compareCallType;
+ const CallData* m_compareCallData;
+ JSValue m_globalThisValue;
+ OwnPtr<CachedCall> m_cachedCall;
+
+ handle get_less(handle h) { return m_nodes[h].lt & 0x7FFFFFFF; }
+ void set_less(handle h, handle lh) { m_nodes[h].lt &= 0x80000000; m_nodes[h].lt |= lh; }
+ handle get_greater(handle h) { return m_nodes[h].gt & 0x7FFFFFFF; }
+ void set_greater(handle h, handle gh) { m_nodes[h].gt &= 0x80000000; m_nodes[h].gt |= gh; }
+
+ int get_balance_factor(handle h)
+ {
+ if (m_nodes[h].gt & 0x80000000)
+ return -1;
+ return static_cast<unsigned>(m_nodes[h].lt) >> 31;
+ }
+
+ void set_balance_factor(handle h, int bf)
+ {
+ if (bf == 0) {
+ m_nodes[h].lt &= 0x7FFFFFFF;
+ m_nodes[h].gt &= 0x7FFFFFFF;
+ } else {
+ m_nodes[h].lt |= 0x80000000;
+ if (bf < 0)
+ m_nodes[h].gt |= 0x80000000;
+ else
+ m_nodes[h].gt &= 0x7FFFFFFF;
+ }
+ }
+
+ int compare_key_key(key va, key vb)
+ {
+ ASSERT(!va.isUndefined());
+ ASSERT(!vb.isUndefined());
+
+ if (m_exec->hadException())
+ return 1;
+
+ double compareResult;
+ if (m_cachedCall) {
+ m_cachedCall->setThis(m_globalThisValue);
+ m_cachedCall->setArgument(0, va);
+ m_cachedCall->setArgument(1, vb);
+ compareResult = m_cachedCall->call().toNumber(m_cachedCall->newCallFrame(m_exec));
+ } else {
+ MarkedArgumentBuffer arguments;
+ arguments.append(va);
+ arguments.append(vb);
+ compareResult = call(m_exec, m_compareFunction, m_compareCallType, *m_compareCallData, m_globalThisValue, arguments).toNumber(m_exec);
+ }
+ return (compareResult < 0) ? -1 : 1; // Not passing equality through, because we need to store all values, even if equivalent.
+ }
+
+ int compare_key_node(key k, handle h) { return compare_key_key(k, m_nodes[h].value); }
+ int compare_node_node(handle h1, handle h2) { return compare_key_key(m_nodes[h1].value, m_nodes[h2].value); }
+
+ static handle null() { return 0x7FFFFFFF; }
+};
+
+void JSArray::sort(ExecState* exec, JSValue compareFunction, CallType callType, const CallData& callData)
+{
+ checkConsistency();
+
+ ArrayStorage* storage = m_storage;
+
+ // FIXME: This ignores exceptions raised in the compare function or in toNumber.
+
+ // The maximum tree depth is compiled in - but the caller is clearly up to no good
+ // if a larger array is passed.
+ ASSERT(storage->m_length <= static_cast<unsigned>(std::numeric_limits<int>::max()));
+ if (storage->m_length > static_cast<unsigned>(std::numeric_limits<int>::max()))
+ return;
+
+ unsigned usedVectorLength = min(storage->m_length, m_vectorLength);
+ unsigned nodeCount = usedVectorLength + (storage->m_sparseValueMap ? storage->m_sparseValueMap->size() : 0);
+
+ if (!nodeCount)
+ return;
+
+ AVLTree<AVLTreeAbstractorForArrayCompare, 44> tree; // Depth 44 is enough for 2^31 items
+ tree.abstractor().m_exec = exec;
+ tree.abstractor().m_compareFunction = compareFunction;
+ tree.abstractor().m_compareCallType = callType;
+ tree.abstractor().m_compareCallData = &callData;
+ tree.abstractor().m_globalThisValue = exec->globalThisValue();
+ tree.abstractor().m_nodes.grow(nodeCount);
+
+ if (callType == CallTypeJS)
+ tree.abstractor().m_cachedCall = adoptPtr(new CachedCall(exec, asFunction(compareFunction), 2));
+
+ if (!tree.abstractor().m_nodes.begin()) {
+ throwOutOfMemoryError(exec);
+ return;
+ }
+
+ // FIXME: If the compare function modifies the array, the vector, map, etc. could be modified
+ // right out from under us while we're building the tree here.
+
+ unsigned numDefined = 0;
+ unsigned numUndefined = 0;
+
+ // Iterate over the array, ignoring missing values, counting undefined ones, and inserting all other ones into the tree.
+ for (; numDefined < usedVectorLength; ++numDefined) {
+ JSValue v = storage->m_vector[numDefined];
+ if (!v || v.isUndefined())
+ break;
+ tree.abstractor().m_nodes[numDefined].value = v;
+ tree.insert(numDefined);
+ }
+ for (unsigned i = numDefined; i < usedVectorLength; ++i) {
+ JSValue v = storage->m_vector[i];
+ if (v) {
+ if (v.isUndefined())
+ ++numUndefined;
+ else {
+ tree.abstractor().m_nodes[numDefined].value = v;
+ tree.insert(numDefined);
+ ++numDefined;
+ }
+ }
+ }
+
+ unsigned newUsedVectorLength = numDefined + numUndefined;
+
+ if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
+ newUsedVectorLength += map->size();
+ if (newUsedVectorLength > m_vectorLength) {
+ // Check that it is possible to allocate an array large enough to hold all the entries.
+ if ((newUsedVectorLength > MAX_STORAGE_VECTOR_LENGTH) || !increaseVectorLength(newUsedVectorLength)) {
+ throwOutOfMemoryError(exec);
+ return;
+ }
+ }
+
+ storage = m_storage;
+
+ SparseArrayValueMap::iterator end = map->end();
+ for (SparseArrayValueMap::iterator it = map->begin(); it != end; ++it) {
+ tree.abstractor().m_nodes[numDefined].value = it->second;
+ tree.insert(numDefined);
+ ++numDefined;
+ }
+
+ delete map;
+ storage->m_sparseValueMap = 0;
+ }
+
+ ASSERT(tree.abstractor().m_nodes.size() >= numDefined);
+
+ // FIXME: If the compare function changed the length of the array, the following might be
+ // modifying the vector incorrectly.
+
+ // Copy the values back into m_storage.
+ AVLTree<AVLTreeAbstractorForArrayCompare, 44>::Iterator iter;
+ iter.start_iter_least(tree);
+ for (unsigned i = 0; i < numDefined; ++i) {
+ storage->m_vector[i] = tree.abstractor().m_nodes[*iter].value;
+ ++iter;
+ }
+
+ // Put undefined values back in.
+ for (unsigned i = numDefined; i < newUsedVectorLength; ++i)
+ storage->m_vector[i] = jsUndefined();
+
+ // Ensure that unused values in the vector are zeroed out.
+ for (unsigned i = newUsedVectorLength; i < usedVectorLength; ++i)
+ storage->m_vector[i] = JSValue();
+
+ storage->m_numValuesInVector = newUsedVectorLength;
+
+ checkConsistency(SortConsistencyCheck);
+}
+
+void JSArray::fillArgList(ExecState* exec, MarkedArgumentBuffer& args)
+{
+ ArrayStorage* storage = m_storage;
+
+ JSValue* vector = storage->m_vector;
+ unsigned vectorEnd = min(storage->m_length, m_vectorLength);
+ unsigned i = 0;
+ for (; i < vectorEnd; ++i) {
+ JSValue& v = vector[i];
+ if (!v)
+ break;
+ args.append(v);
+ }
+
+ for (; i < storage->m_length; ++i)
+ args.append(get(exec, i));
+}
+
+void JSArray::copyToRegisters(ExecState* exec, Register* buffer, uint32_t maxSize)
+{
+ ASSERT(m_storage->m_length >= maxSize);
+ UNUSED_PARAM(maxSize);
+ JSValue* vector = m_storage->m_vector;
+ unsigned vectorEnd = min(maxSize, m_vectorLength);
+ unsigned i = 0;
+ for (; i < vectorEnd; ++i) {
+ JSValue& v = vector[i];
+ if (!v)
+ break;
+ buffer[i] = v;
+ }
+
+ for (; i < maxSize; ++i)
+ buffer[i] = get(exec, i);
+}
+
+unsigned JSArray::compactForSorting()
+{
+ checkConsistency();
+
+ ArrayStorage* storage = m_storage;
+
+ unsigned usedVectorLength = min(storage->m_length, m_vectorLength);
+
+ unsigned numDefined = 0;
+ unsigned numUndefined = 0;
+
+ for (; numDefined < usedVectorLength; ++numDefined) {
+ JSValue v = storage->m_vector[numDefined];
+ if (!v || v.isUndefined())
+ break;
+ }
+ for (unsigned i = numDefined; i < usedVectorLength; ++i) {
+ JSValue v = storage->m_vector[i];
+ if (v) {
+ if (v.isUndefined())
+ ++numUndefined;
+ else
+ storage->m_vector[numDefined++] = v;
+ }
+ }
+
+ unsigned newUsedVectorLength = numDefined + numUndefined;
+
+ if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
+ newUsedVectorLength += map->size();
+ if (newUsedVectorLength > m_vectorLength) {
+ // Check that it is possible to allocate an array large enough to hold all the entries - if not,
+ // exception is thrown by caller.
+ if ((newUsedVectorLength > MAX_STORAGE_VECTOR_LENGTH) || !increaseVectorLength(newUsedVectorLength))
+ return 0;
+
+ storage = m_storage;
+ }
+
+ SparseArrayValueMap::iterator end = map->end();
+ for (SparseArrayValueMap::iterator it = map->begin(); it != end; ++it)
+ storage->m_vector[numDefined++] = it->second;
+
+ delete map;
+ storage->m_sparseValueMap = 0;
+ }
+
+ for (unsigned i = numDefined; i < newUsedVectorLength; ++i)
+ storage->m_vector[i] = jsUndefined();
+ for (unsigned i = newUsedVectorLength; i < usedVectorLength; ++i)
+ storage->m_vector[i] = JSValue();
+
+ storage->m_numValuesInVector = newUsedVectorLength;
+
+ checkConsistency(SortConsistencyCheck);
+
+ return numDefined;
+}
+
+void* JSArray::subclassData() const
+{
+ return m_storage->subclassData;
+}
+
+void JSArray::setSubclassData(void* d)
+{
+ m_storage->subclassData = d;
+}
+
+#if CHECK_ARRAY_CONSISTENCY
+
+void JSArray::checkConsistency(ConsistencyCheckType type)
+{
+ ArrayStorage* storage = m_storage;
+
+ ASSERT(storage);
+ if (type == SortConsistencyCheck)
+ ASSERT(!storage->m_sparseValueMap);
+
+ unsigned numValuesInVector = 0;
+ for (unsigned i = 0; i < m_vectorLength; ++i) {
+ if (JSValue value = storage->m_vector[i]) {
+ ASSERT(i < storage->m_length);
+ if (type != DestructorConsistencyCheck)
+ value.isUndefined(); // Likely to crash if the object was deallocated.
+ ++numValuesInVector;
+ } else {
+ if (type == SortConsistencyCheck)
+ ASSERT(i >= storage->m_numValuesInVector);
+ }
+ }
+ ASSERT(numValuesInVector == storage->m_numValuesInVector);
+ ASSERT(numValuesInVector <= storage->m_length);
+
+ if (storage->m_sparseValueMap) {
+ SparseArrayValueMap::iterator end = storage->m_sparseValueMap->end();
+ for (SparseArrayValueMap::iterator it = storage->m_sparseValueMap->begin(); it != end; ++it) {
+ unsigned index = it->first;
+ ASSERT(index < storage->m_length);
+ ASSERT(index >= storage->m_vectorLength);
+ ASSERT(index <= MAX_ARRAY_INDEX);
+ ASSERT(it->second);
+ if (type != DestructorConsistencyCheck)
+ it->second.isUndefined(); // Likely to crash if the object was deallocated.
+ }
+ }
+}
+
+#endif
+
+} // namespace JSC