summaryrefslogtreecommitdiffstats
path: root/Tools/android/flex-2.5.4a/dfa.c
diff options
context:
space:
mode:
Diffstat (limited to 'Tools/android/flex-2.5.4a/dfa.c')
-rw-r--r--Tools/android/flex-2.5.4a/dfa.c1095
1 files changed, 1095 insertions, 0 deletions
diff --git a/Tools/android/flex-2.5.4a/dfa.c b/Tools/android/flex-2.5.4a/dfa.c
new file mode 100644
index 0000000..446114f
--- /dev/null
+++ b/Tools/android/flex-2.5.4a/dfa.c
@@ -0,0 +1,1095 @@
+/* dfa - DFA construction routines */
+
+/*-
+ * Copyright (c) 1990 The Regents of the University of California.
+ * All rights reserved.
+ *
+ * This code is derived from software contributed to Berkeley by
+ * Vern Paxson.
+ *
+ * The United States Government has rights in this work pursuant
+ * to contract no. DE-AC03-76SF00098 between the United States
+ * Department of Energy and the University of California.
+ *
+ * Redistribution and use in source and binary forms with or without
+ * modification are permitted provided that: (1) source distributions retain
+ * this entire copyright notice and comment, and (2) distributions including
+ * binaries display the following acknowledgement: ``This product includes
+ * software developed by the University of California, Berkeley and its
+ * contributors'' in the documentation or other materials provided with the
+ * distribution and in all advertising materials mentioning features or use
+ * of this software. Neither the name of the University nor the names of
+ * its contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+ * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
+ * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
+ */
+
+/* $Header: /home/daffy/u0/vern/flex/RCS/dfa.c,v 2.26 95/04/20 13:53:14 vern Exp $ */
+
+#include "flexdef.h"
+
+
+/* declare functions that have forward references */
+
+void dump_associated_rules PROTO((FILE*, int));
+void dump_transitions PROTO((FILE*, int[]));
+void sympartition PROTO((int[], int, int[], int[]));
+int symfollowset PROTO((int[], int, int, int[]));
+
+
+/* check_for_backing_up - check a DFA state for backing up
+ *
+ * synopsis
+ * void check_for_backing_up( int ds, int state[numecs] );
+ *
+ * ds is the number of the state to check and state[] is its out-transitions,
+ * indexed by equivalence class.
+ */
+
+void check_for_backing_up( ds, state )
+int ds;
+int state[];
+ {
+ if ( (reject && ! dfaacc[ds].dfaacc_set) ||
+ (! reject && ! dfaacc[ds].dfaacc_state) )
+ { /* state is non-accepting */
+ ++num_backing_up;
+
+ if ( backing_up_report )
+ {
+ fprintf( backing_up_file,
+ _( "State #%d is non-accepting -\n" ), ds );
+
+ /* identify the state */
+ dump_associated_rules( backing_up_file, ds );
+
+ /* Now identify it further using the out- and
+ * jam-transitions.
+ */
+ dump_transitions( backing_up_file, state );
+
+ putc( '\n', backing_up_file );
+ }
+ }
+ }
+
+
+/* check_trailing_context - check to see if NFA state set constitutes
+ * "dangerous" trailing context
+ *
+ * synopsis
+ * void check_trailing_context( int nfa_states[num_states+1], int num_states,
+ * int accset[nacc+1], int nacc );
+ *
+ * NOTES
+ * Trailing context is "dangerous" if both the head and the trailing
+ * part are of variable size \and/ there's a DFA state which contains
+ * both an accepting state for the head part of the rule and NFA states
+ * which occur after the beginning of the trailing context.
+ *
+ * When such a rule is matched, it's impossible to tell if having been
+ * in the DFA state indicates the beginning of the trailing context or
+ * further-along scanning of the pattern. In these cases, a warning
+ * message is issued.
+ *
+ * nfa_states[1 .. num_states] is the list of NFA states in the DFA.
+ * accset[1 .. nacc] is the list of accepting numbers for the DFA state.
+ */
+
+void check_trailing_context( nfa_states, num_states, accset, nacc )
+int *nfa_states, num_states;
+int *accset;
+int nacc;
+ {
+ register int i, j;
+
+ for ( i = 1; i <= num_states; ++i )
+ {
+ int ns = nfa_states[i];
+ register int type = state_type[ns];
+ register int ar = assoc_rule[ns];
+
+ if ( type == STATE_NORMAL || rule_type[ar] != RULE_VARIABLE )
+ { /* do nothing */
+ }
+
+ else if ( type == STATE_TRAILING_CONTEXT )
+ {
+ /* Potential trouble. Scan set of accepting numbers
+ * for the one marking the end of the "head". We
+ * assume that this looping will be fairly cheap
+ * since it's rare that an accepting number set
+ * is large.
+ */
+ for ( j = 1; j <= nacc; ++j )
+ if ( accset[j] & YY_TRAILING_HEAD_MASK )
+ {
+ line_warning(
+ _( "dangerous trailing context" ),
+ rule_linenum[ar] );
+ return;
+ }
+ }
+ }
+ }
+
+
+/* dump_associated_rules - list the rules associated with a DFA state
+ *
+ * Goes through the set of NFA states associated with the DFA and
+ * extracts the first MAX_ASSOC_RULES unique rules, sorts them,
+ * and writes a report to the given file.
+ */
+
+void dump_associated_rules( file, ds )
+FILE *file;
+int ds;
+ {
+ register int i, j;
+ register int num_associated_rules = 0;
+ int rule_set[MAX_ASSOC_RULES + 1];
+ int *dset = dss[ds];
+ int size = dfasiz[ds];
+
+ for ( i = 1; i <= size; ++i )
+ {
+ register int rule_num = rule_linenum[assoc_rule[dset[i]]];
+
+ for ( j = 1; j <= num_associated_rules; ++j )
+ if ( rule_num == rule_set[j] )
+ break;
+
+ if ( j > num_associated_rules )
+ { /* new rule */
+ if ( num_associated_rules < MAX_ASSOC_RULES )
+ rule_set[++num_associated_rules] = rule_num;
+ }
+ }
+
+ bubble( rule_set, num_associated_rules );
+
+ fprintf( file, _( " associated rule line numbers:" ) );
+
+ for ( i = 1; i <= num_associated_rules; ++i )
+ {
+ if ( i % 8 == 1 )
+ putc( '\n', file );
+
+ fprintf( file, "\t%d", rule_set[i] );
+ }
+
+ putc( '\n', file );
+ }
+
+
+/* dump_transitions - list the transitions associated with a DFA state
+ *
+ * synopsis
+ * dump_transitions( FILE *file, int state[numecs] );
+ *
+ * Goes through the set of out-transitions and lists them in human-readable
+ * form (i.e., not as equivalence classes); also lists jam transitions
+ * (i.e., all those which are not out-transitions, plus EOF). The dump
+ * is done to the given file.
+ */
+
+void dump_transitions( file, state )
+FILE *file;
+int state[];
+ {
+ register int i, ec;
+ int out_char_set[CSIZE];
+
+ for ( i = 0; i < csize; ++i )
+ {
+ ec = ABS( ecgroup[i] );
+ out_char_set[i] = state[ec];
+ }
+
+ fprintf( file, _( " out-transitions: " ) );
+
+ list_character_set( file, out_char_set );
+
+ /* now invert the members of the set to get the jam transitions */
+ for ( i = 0; i < csize; ++i )
+ out_char_set[i] = ! out_char_set[i];
+
+ fprintf( file, _( "\n jam-transitions: EOF " ) );
+
+ list_character_set( file, out_char_set );
+
+ putc( '\n', file );
+ }
+
+
+/* epsclosure - construct the epsilon closure of a set of ndfa states
+ *
+ * synopsis
+ * int *epsclosure( int t[num_states], int *numstates_addr,
+ * int accset[num_rules+1], int *nacc_addr,
+ * int *hashval_addr );
+ *
+ * NOTES
+ * The epsilon closure is the set of all states reachable by an arbitrary
+ * number of epsilon transitions, which themselves do not have epsilon
+ * transitions going out, unioned with the set of states which have non-null
+ * accepting numbers. t is an array of size numstates of nfa state numbers.
+ * Upon return, t holds the epsilon closure and *numstates_addr is updated.
+ * accset holds a list of the accepting numbers, and the size of accset is
+ * given by *nacc_addr. t may be subjected to reallocation if it is not
+ * large enough to hold the epsilon closure.
+ *
+ * hashval is the hash value for the dfa corresponding to the state set.
+ */
+
+int *epsclosure( t, ns_addr, accset, nacc_addr, hv_addr )
+int *t, *ns_addr, accset[], *nacc_addr, *hv_addr;
+ {
+ register int stkpos, ns, tsp;
+ int numstates = *ns_addr, nacc, hashval, transsym, nfaccnum;
+ int stkend, nstate;
+ static int did_stk_init = false, *stk;
+
+#define MARK_STATE(state) \
+trans1[state] = trans1[state] - MARKER_DIFFERENCE;
+
+#define IS_MARKED(state) (trans1[state] < 0)
+
+#define UNMARK_STATE(state) \
+trans1[state] = trans1[state] + MARKER_DIFFERENCE;
+
+#define CHECK_ACCEPT(state) \
+{ \
+nfaccnum = accptnum[state]; \
+if ( nfaccnum != NIL ) \
+accset[++nacc] = nfaccnum; \
+}
+
+#define DO_REALLOCATION \
+{ \
+current_max_dfa_size += MAX_DFA_SIZE_INCREMENT; \
+++num_reallocs; \
+t = reallocate_integer_array( t, current_max_dfa_size ); \
+stk = reallocate_integer_array( stk, current_max_dfa_size ); \
+} \
+
+#define PUT_ON_STACK(state) \
+{ \
+if ( ++stkend >= current_max_dfa_size ) \
+DO_REALLOCATION \
+stk[stkend] = state; \
+MARK_STATE(state) \
+}
+
+#define ADD_STATE(state) \
+{ \
+if ( ++numstates >= current_max_dfa_size ) \
+DO_REALLOCATION \
+t[numstates] = state; \
+hashval += state; \
+}
+
+#define STACK_STATE(state) \
+{ \
+PUT_ON_STACK(state) \
+CHECK_ACCEPT(state) \
+if ( nfaccnum != NIL || transchar[state] != SYM_EPSILON ) \
+ADD_STATE(state) \
+}
+
+
+ if ( ! did_stk_init )
+ {
+ stk = allocate_integer_array( current_max_dfa_size );
+ did_stk_init = true;
+ }
+
+ nacc = stkend = hashval = 0;
+
+ for ( nstate = 1; nstate <= numstates; ++nstate )
+ {
+ ns = t[nstate];
+
+ /* The state could be marked if we've already pushed it onto
+ * the stack.
+ */
+ if ( ! IS_MARKED(ns) )
+ {
+ PUT_ON_STACK(ns)
+ CHECK_ACCEPT(ns)
+ hashval += ns;
+ }
+ }
+
+ for ( stkpos = 1; stkpos <= stkend; ++stkpos )
+ {
+ ns = stk[stkpos];
+ transsym = transchar[ns];
+
+ if ( transsym == SYM_EPSILON )
+ {
+ tsp = trans1[ns] + MARKER_DIFFERENCE;
+
+ if ( tsp != NO_TRANSITION )
+ {
+ if ( ! IS_MARKED(tsp) )
+ STACK_STATE(tsp)
+
+ tsp = trans2[ns];
+
+ if ( tsp != NO_TRANSITION && ! IS_MARKED(tsp) )
+ STACK_STATE(tsp)
+ }
+ }
+ }
+
+ /* Clear out "visit" markers. */
+
+ for ( stkpos = 1; stkpos <= stkend; ++stkpos )
+ {
+ if ( IS_MARKED(stk[stkpos]) )
+ UNMARK_STATE(stk[stkpos])
+ else
+ flexfatal(
+ _( "consistency check failed in epsclosure()" ) );
+ }
+
+ *ns_addr = numstates;
+ *hv_addr = hashval;
+ *nacc_addr = nacc;
+
+ return t;
+ }
+
+
+/* increase_max_dfas - increase the maximum number of DFAs */
+
+void increase_max_dfas()
+ {
+ current_max_dfas += MAX_DFAS_INCREMENT;
+
+ ++num_reallocs;
+
+ base = reallocate_integer_array( base, current_max_dfas );
+ def = reallocate_integer_array( def, current_max_dfas );
+ dfasiz = reallocate_integer_array( dfasiz, current_max_dfas );
+ accsiz = reallocate_integer_array( accsiz, current_max_dfas );
+ dhash = reallocate_integer_array( dhash, current_max_dfas );
+ dss = reallocate_int_ptr_array( dss, current_max_dfas );
+ dfaacc = reallocate_dfaacc_union( dfaacc, current_max_dfas );
+
+ if ( nultrans )
+ nultrans =
+ reallocate_integer_array( nultrans, current_max_dfas );
+ }
+
+
+/* ntod - convert an ndfa to a dfa
+ *
+ * Creates the dfa corresponding to the ndfa we've constructed. The
+ * dfa starts out in state #1.
+ */
+
+void ntod()
+ {
+ int *accset, ds, nacc, newds;
+ int sym, hashval, numstates, dsize;
+ int num_full_table_rows; /* used only for -f */
+ int *nset, *dset;
+ int targptr, totaltrans, i, comstate, comfreq, targ;
+ int symlist[CSIZE + 1];
+ int num_start_states;
+ int todo_head, todo_next;
+
+ /* Note that the following are indexed by *equivalence classes*
+ * and not by characters. Since equivalence classes are indexed
+ * beginning with 1, even if the scanner accepts NUL's, this
+ * means that (since every character is potentially in its own
+ * equivalence class) these arrays must have room for indices
+ * from 1 to CSIZE, so their size must be CSIZE + 1.
+ */
+ int duplist[CSIZE + 1], state[CSIZE + 1];
+ int targfreq[CSIZE + 1], targstate[CSIZE + 1];
+
+ accset = allocate_integer_array( num_rules + 1 );
+ nset = allocate_integer_array( current_max_dfa_size );
+
+ /* The "todo" queue is represented by the head, which is the DFA
+ * state currently being processed, and the "next", which is the
+ * next DFA state number available (not in use). We depend on the
+ * fact that snstods() returns DFA's \in increasing order/, and thus
+ * need only know the bounds of the dfas to be processed.
+ */
+ todo_head = todo_next = 0;
+
+ for ( i = 0; i <= csize; ++i )
+ {
+ duplist[i] = NIL;
+ symlist[i] = false;
+ }
+
+ for ( i = 0; i <= num_rules; ++i )
+ accset[i] = NIL;
+
+ if ( trace )
+ {
+ dumpnfa( scset[1] );
+ fputs( _( "\n\nDFA Dump:\n\n" ), stderr );
+ }
+
+ inittbl();
+
+ /* Check to see whether we should build a separate table for
+ * transitions on NUL characters. We don't do this for full-speed
+ * (-F) scanners, since for them we don't have a simple state
+ * number lying around with which to index the table. We also
+ * don't bother doing it for scanners unless (1) NUL is in its own
+ * equivalence class (indicated by a positive value of
+ * ecgroup[NUL]), (2) NUL's equivalence class is the last
+ * equivalence class, and (3) the number of equivalence classes is
+ * the same as the number of characters. This latter case comes
+ * about when useecs is false or when it's true but every character
+ * still manages to land in its own class (unlikely, but it's
+ * cheap to check for). If all these things are true then the
+ * character code needed to represent NUL's equivalence class for
+ * indexing the tables is going to take one more bit than the
+ * number of characters, and therefore we won't be assured of
+ * being able to fit it into a YY_CHAR variable. This rules out
+ * storing the transitions in a compressed table, since the code
+ * for interpreting them uses a YY_CHAR variable (perhaps it
+ * should just use an integer, though; this is worth pondering ...
+ * ###).
+ *
+ * Finally, for full tables, we want the number of entries in the
+ * table to be a power of two so the array references go fast (it
+ * will just take a shift to compute the major index). If
+ * encoding NUL's transitions in the table will spoil this, we
+ * give it its own table (note that this will be the case if we're
+ * not using equivalence classes).
+ */
+
+ /* Note that the test for ecgroup[0] == numecs below accomplishes
+ * both (1) and (2) above
+ */
+ if ( ! fullspd && ecgroup[0] == numecs )
+ {
+ /* NUL is alone in its equivalence class, which is the
+ * last one.
+ */
+ int use_NUL_table = (numecs == csize);
+
+ if ( fulltbl && ! use_NUL_table )
+ {
+ /* We still may want to use the table if numecs
+ * is a power of 2.
+ */
+ int power_of_two;
+
+ for ( power_of_two = 1; power_of_two <= csize;
+ power_of_two *= 2 )
+ if ( numecs == power_of_two )
+ {
+ use_NUL_table = true;
+ break;
+ }
+ }
+
+ if ( use_NUL_table )
+ nultrans = allocate_integer_array( current_max_dfas );
+
+ /* From now on, nultrans != nil indicates that we're
+ * saving null transitions for later, separate encoding.
+ */
+ }
+
+
+ if ( fullspd )
+ {
+ for ( i = 0; i <= numecs; ++i )
+ state[i] = 0;
+
+ place_state( state, 0, 0 );
+ dfaacc[0].dfaacc_state = 0;
+ }
+
+ else if ( fulltbl )
+ {
+ if ( nultrans )
+ /* We won't be including NUL's transitions in the
+ * table, so build it for entries from 0 .. numecs - 1.
+ */
+ num_full_table_rows = numecs;
+
+ else
+ /* Take into account the fact that we'll be including
+ * the NUL entries in the transition table. Build it
+ * from 0 .. numecs.
+ */
+ num_full_table_rows = numecs + 1;
+
+ /* Unless -Ca, declare it "short" because it's a real
+ * long-shot that that won't be large enough.
+ */
+ out_str_dec( "static yyconst %s yy_nxt[][%d] =\n {\n",
+ /* '}' so vi doesn't get too confused */
+ long_align ? "long" : "short", num_full_table_rows );
+
+ outn( " {" );
+
+ /* Generate 0 entries for state #0. */
+ for ( i = 0; i < num_full_table_rows; ++i )
+ mk2data( 0 );
+
+ dataflush();
+ outn( " },\n" );
+ }
+
+ /* Create the first states. */
+
+ num_start_states = lastsc * 2;
+
+ for ( i = 1; i <= num_start_states; ++i )
+ {
+ numstates = 1;
+
+ /* For each start condition, make one state for the case when
+ * we're at the beginning of the line (the '^' operator) and
+ * one for the case when we're not.
+ */
+ if ( i % 2 == 1 )
+ nset[numstates] = scset[(i / 2) + 1];
+ else
+ nset[numstates] =
+ mkbranch( scbol[i / 2], scset[i / 2] );
+
+ nset = epsclosure( nset, &numstates, accset, &nacc, &hashval );
+
+ if ( snstods( nset, numstates, accset, nacc, hashval, &ds ) )
+ {
+ numas += nacc;
+ totnst += numstates;
+ ++todo_next;
+
+ if ( variable_trailing_context_rules && nacc > 0 )
+ check_trailing_context( nset, numstates,
+ accset, nacc );
+ }
+ }
+
+ if ( ! fullspd )
+ {
+ if ( ! snstods( nset, 0, accset, 0, 0, &end_of_buffer_state ) )
+ flexfatal(
+ _( "could not create unique end-of-buffer state" ) );
+
+ ++numas;
+ ++num_start_states;
+ ++todo_next;
+ }
+
+ while ( todo_head < todo_next )
+ {
+ targptr = 0;
+ totaltrans = 0;
+
+ for ( i = 1; i <= numecs; ++i )
+ state[i] = 0;
+
+ ds = ++todo_head;
+
+ dset = dss[ds];
+ dsize = dfasiz[ds];
+
+ if ( trace )
+ fprintf( stderr, _( "state # %d:\n" ), ds );
+
+ sympartition( dset, dsize, symlist, duplist );
+
+ for ( sym = 1; sym <= numecs; ++sym )
+ {
+ if ( symlist[sym] )
+ {
+ symlist[sym] = 0;
+
+ if ( duplist[sym] == NIL )
+ {
+ /* Symbol has unique out-transitions. */
+ numstates = symfollowset( dset, dsize,
+ sym, nset );
+ nset = epsclosure( nset, &numstates,
+ accset, &nacc, &hashval );
+
+ if ( snstods( nset, numstates, accset,
+ nacc, hashval, &newds ) )
+ {
+ totnst = totnst + numstates;
+ ++todo_next;
+ numas += nacc;
+
+ if (
+ variable_trailing_context_rules &&
+ nacc > 0 )
+ check_trailing_context(
+ nset, numstates,
+ accset, nacc );
+ }
+
+ state[sym] = newds;
+
+ if ( trace )
+ fprintf( stderr, "\t%d\t%d\n",
+ sym, newds );
+
+ targfreq[++targptr] = 1;
+ targstate[targptr] = newds;
+ ++numuniq;
+ }
+
+ else
+ {
+ /* sym's equivalence class has the same
+ * transitions as duplist(sym)'s
+ * equivalence class.
+ */
+ targ = state[duplist[sym]];
+ state[sym] = targ;
+
+ if ( trace )
+ fprintf( stderr, "\t%d\t%d\n",
+ sym, targ );
+
+ /* Update frequency count for
+ * destination state.
+ */
+
+ i = 0;
+ while ( targstate[++i] != targ )
+ ;
+
+ ++targfreq[i];
+ ++numdup;
+ }
+
+ ++totaltrans;
+ duplist[sym] = NIL;
+ }
+ }
+
+ if ( caseins && ! useecs )
+ {
+ register int j;
+
+ for ( i = 'A', j = 'a'; i <= 'Z'; ++i, ++j )
+ {
+ if ( state[i] == 0 && state[j] != 0 )
+ /* We're adding a transition. */
+ ++totaltrans;
+
+ else if ( state[i] != 0 && state[j] == 0 )
+ /* We're taking away a transition. */
+ --totaltrans;
+
+ state[i] = state[j];
+ }
+ }
+
+ numsnpairs += totaltrans;
+
+ if ( ds > num_start_states )
+ check_for_backing_up( ds, state );
+
+ if ( nultrans )
+ {
+ nultrans[ds] = state[NUL_ec];
+ state[NUL_ec] = 0; /* remove transition */
+ }
+
+ if ( fulltbl )
+ {
+ outn( " {" );
+
+ /* Supply array's 0-element. */
+ if ( ds == end_of_buffer_state )
+ mk2data( -end_of_buffer_state );
+ else
+ mk2data( end_of_buffer_state );
+
+ for ( i = 1; i < num_full_table_rows; ++i )
+ /* Jams are marked by negative of state
+ * number.
+ */
+ mk2data( state[i] ? state[i] : -ds );
+
+ dataflush();
+ outn( " },\n" );
+ }
+
+ else if ( fullspd )
+ place_state( state, ds, totaltrans );
+
+ else if ( ds == end_of_buffer_state )
+ /* Special case this state to make sure it does what
+ * it's supposed to, i.e., jam on end-of-buffer.
+ */
+ stack1( ds, 0, 0, JAMSTATE );
+
+ else /* normal, compressed state */
+ {
+ /* Determine which destination state is the most
+ * common, and how many transitions to it there are.
+ */
+
+ comfreq = 0;
+ comstate = 0;
+
+ for ( i = 1; i <= targptr; ++i )
+ if ( targfreq[i] > comfreq )
+ {
+ comfreq = targfreq[i];
+ comstate = targstate[i];
+ }
+
+ bldtbl( state, ds, totaltrans, comstate, comfreq );
+ }
+ }
+
+ if ( fulltbl )
+ dataend();
+
+ else if ( ! fullspd )
+ {
+ cmptmps(); /* create compressed template entries */
+
+ /* Create tables for all the states with only one
+ * out-transition.
+ */
+ while ( onesp > 0 )
+ {
+ mk1tbl( onestate[onesp], onesym[onesp], onenext[onesp],
+ onedef[onesp] );
+ --onesp;
+ }
+
+ mkdeftbl();
+ }
+
+ flex_free( (void *) accset );
+ flex_free( (void *) nset );
+ }
+
+
+/* snstods - converts a set of ndfa states into a dfa state
+ *
+ * synopsis
+ * is_new_state = snstods( int sns[numstates], int numstates,
+ * int accset[num_rules+1], int nacc,
+ * int hashval, int *newds_addr );
+ *
+ * On return, the dfa state number is in newds.
+ */
+
+int snstods( sns, numstates, accset, nacc, hashval, newds_addr )
+int sns[], numstates, accset[], nacc, hashval, *newds_addr;
+ {
+ int didsort = 0;
+ register int i, j;
+ int newds, *oldsns;
+
+ for ( i = 1; i <= lastdfa; ++i )
+ if ( hashval == dhash[i] )
+ {
+ if ( numstates == dfasiz[i] )
+ {
+ oldsns = dss[i];
+
+ if ( ! didsort )
+ {
+ /* We sort the states in sns so we
+ * can compare it to oldsns quickly.
+ * We use bubble because there probably
+ * aren't very many states.
+ */
+ bubble( sns, numstates );
+ didsort = 1;
+ }
+
+ for ( j = 1; j <= numstates; ++j )
+ if ( sns[j] != oldsns[j] )
+ break;
+
+ if ( j > numstates )
+ {
+ ++dfaeql;
+ *newds_addr = i;
+ return 0;
+ }
+
+ ++hshcol;
+ }
+
+ else
+ ++hshsave;
+ }
+
+ /* Make a new dfa. */
+
+ if ( ++lastdfa >= current_max_dfas )
+ increase_max_dfas();
+
+ newds = lastdfa;
+
+ dss[newds] = allocate_integer_array( numstates + 1 );
+
+ /* If we haven't already sorted the states in sns, we do so now,
+ * so that future comparisons with it can be made quickly.
+ */
+
+ if ( ! didsort )
+ bubble( sns, numstates );
+
+ for ( i = 1; i <= numstates; ++i )
+ dss[newds][i] = sns[i];
+
+ dfasiz[newds] = numstates;
+ dhash[newds] = hashval;
+
+ if ( nacc == 0 )
+ {
+ if ( reject )
+ dfaacc[newds].dfaacc_set = (int *) 0;
+ else
+ dfaacc[newds].dfaacc_state = 0;
+
+ accsiz[newds] = 0;
+ }
+
+ else if ( reject )
+ {
+ /* We sort the accepting set in increasing order so the
+ * disambiguating rule that the first rule listed is considered
+ * match in the event of ties will work. We use a bubble
+ * sort since the list is probably quite small.
+ */
+
+ bubble( accset, nacc );
+
+ dfaacc[newds].dfaacc_set = allocate_integer_array( nacc + 1 );
+
+ /* Save the accepting set for later */
+ for ( i = 1; i <= nacc; ++i )
+ {
+ dfaacc[newds].dfaacc_set[i] = accset[i];
+
+ if ( accset[i] <= num_rules )
+ /* Who knows, perhaps a REJECT can yield
+ * this rule.
+ */
+ rule_useful[accset[i]] = true;
+ }
+
+ accsiz[newds] = nacc;
+ }
+
+ else
+ {
+ /* Find lowest numbered rule so the disambiguating rule
+ * will work.
+ */
+ j = num_rules + 1;
+
+ for ( i = 1; i <= nacc; ++i )
+ if ( accset[i] < j )
+ j = accset[i];
+
+ dfaacc[newds].dfaacc_state = j;
+
+ if ( j <= num_rules )
+ rule_useful[j] = true;
+ }
+
+ *newds_addr = newds;
+
+ return 1;
+ }
+
+
+/* symfollowset - follow the symbol transitions one step
+ *
+ * synopsis
+ * numstates = symfollowset( int ds[current_max_dfa_size], int dsize,
+ * int transsym, int nset[current_max_dfa_size] );
+ */
+
+int symfollowset( ds, dsize, transsym, nset )
+int ds[], dsize, transsym, nset[];
+ {
+ int ns, tsp, sym, i, j, lenccl, ch, numstates, ccllist;
+
+ numstates = 0;
+
+ for ( i = 1; i <= dsize; ++i )
+ { /* for each nfa state ns in the state set of ds */
+ ns = ds[i];
+ sym = transchar[ns];
+ tsp = trans1[ns];
+
+ if ( sym < 0 )
+ { /* it's a character class */
+ sym = -sym;
+ ccllist = cclmap[sym];
+ lenccl = ccllen[sym];
+
+ if ( cclng[sym] )
+ {
+ for ( j = 0; j < lenccl; ++j )
+ {
+ /* Loop through negated character
+ * class.
+ */
+ ch = ccltbl[ccllist + j];
+
+ if ( ch == 0 )
+ ch = NUL_ec;
+
+ if ( ch > transsym )
+ /* Transsym isn't in negated
+ * ccl.
+ */
+ break;
+
+ else if ( ch == transsym )
+ /* next 2 */ goto bottom;
+ }
+
+ /* Didn't find transsym in ccl. */
+ nset[++numstates] = tsp;
+ }
+
+ else
+ for ( j = 0; j < lenccl; ++j )
+ {
+ ch = ccltbl[ccllist + j];
+
+ if ( ch == 0 )
+ ch = NUL_ec;
+
+ if ( ch > transsym )
+ break;
+ else if ( ch == transsym )
+ {
+ nset[++numstates] = tsp;
+ break;
+ }
+ }
+ }
+
+ else if ( sym >= 'A' && sym <= 'Z' && caseins )
+ flexfatal(
+ _( "consistency check failed in symfollowset" ) );
+
+ else if ( sym == SYM_EPSILON )
+ { /* do nothing */
+ }
+
+ else if ( ABS( ecgroup[sym] ) == transsym )
+ nset[++numstates] = tsp;
+
+ bottom: ;
+ }
+
+ return numstates;
+ }
+
+
+/* sympartition - partition characters with same out-transitions
+ *
+ * synopsis
+ * sympartition( int ds[current_max_dfa_size], int numstates,
+ * int symlist[numecs], int duplist[numecs] );
+ */
+
+void sympartition( ds, numstates, symlist, duplist )
+int ds[], numstates;
+int symlist[], duplist[];
+ {
+ int tch, i, j, k, ns, dupfwd[CSIZE + 1], lenccl, cclp, ich;
+
+ /* Partitioning is done by creating equivalence classes for those
+ * characters which have out-transitions from the given state. Thus
+ * we are really creating equivalence classes of equivalence classes.
+ */
+
+ for ( i = 1; i <= numecs; ++i )
+ { /* initialize equivalence class list */
+ duplist[i] = i - 1;
+ dupfwd[i] = i + 1;
+ }
+
+ duplist[1] = NIL;
+ dupfwd[numecs] = NIL;
+
+ for ( i = 1; i <= numstates; ++i )
+ {
+ ns = ds[i];
+ tch = transchar[ns];
+
+ if ( tch != SYM_EPSILON )
+ {
+ if ( tch < -lastccl || tch >= csize )
+ {
+ flexfatal(
+ _( "bad transition character detected in sympartition()" ) );
+ }
+
+ if ( tch >= 0 )
+ { /* character transition */
+ int ec = ecgroup[tch];
+
+ mkechar( ec, dupfwd, duplist );
+ symlist[ec] = 1;
+ }
+
+ else
+ { /* character class */
+ tch = -tch;
+
+ lenccl = ccllen[tch];
+ cclp = cclmap[tch];
+ mkeccl( ccltbl + cclp, lenccl, dupfwd,
+ duplist, numecs, NUL_ec );
+
+ if ( cclng[tch] )
+ {
+ j = 0;
+
+ for ( k = 0; k < lenccl; ++k )
+ {
+ ich = ccltbl[cclp + k];
+
+ if ( ich == 0 )
+ ich = NUL_ec;
+
+ for ( ++j; j < ich; ++j )
+ symlist[j] = 1;
+ }
+
+ for ( ++j; j <= numecs; ++j )
+ symlist[j] = 1;
+ }
+
+ else
+ for ( k = 0; k < lenccl; ++k )
+ {
+ ich = ccltbl[cclp + k];
+
+ if ( ich == 0 )
+ ich = NUL_ec;
+
+ symlist[ich] = 1;
+ }
+ }
+ }
+ }
+ }