summaryrefslogtreecommitdiffstats
path: root/WebKitTools/android/flex-2.5.4a/nfa.c
diff options
context:
space:
mode:
Diffstat (limited to 'WebKitTools/android/flex-2.5.4a/nfa.c')
-rw-r--r--WebKitTools/android/flex-2.5.4a/nfa.c709
1 files changed, 0 insertions, 709 deletions
diff --git a/WebKitTools/android/flex-2.5.4a/nfa.c b/WebKitTools/android/flex-2.5.4a/nfa.c
deleted file mode 100644
index bfa2c29..0000000
--- a/WebKitTools/android/flex-2.5.4a/nfa.c
+++ /dev/null
@@ -1,709 +0,0 @@
-/* nfa - NFA construction routines */
-
-/*-
- * Copyright (c) 1990 The Regents of the University of California.
- * All rights reserved.
- *
- * This code is derived from software contributed to Berkeley by
- * Vern Paxson.
- *
- * The United States Government has rights in this work pursuant
- * to contract no. DE-AC03-76SF00098 between the United States
- * Department of Energy and the University of California.
- *
- * Redistribution and use in source and binary forms with or without
- * modification are permitted provided that: (1) source distributions retain
- * this entire copyright notice and comment, and (2) distributions including
- * binaries display the following acknowledgement: ``This product includes
- * software developed by the University of California, Berkeley and its
- * contributors'' in the documentation or other materials provided with the
- * distribution and in all advertising materials mentioning features or use
- * of this software. Neither the name of the University nor the names of
- * its contributors may be used to endorse or promote products derived from
- * this software without specific prior written permission.
- * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
- * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
- * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
- */
-
-/* $Header: /home/daffy/u0/vern/flex/RCS/nfa.c,v 2.17 95/03/04 16:11:42 vern Exp $ */
-
-#include "flexdef.h"
-
-
-/* declare functions that have forward references */
-
-int dupmachine PROTO((int));
-void mkxtion PROTO((int, int));
-
-
-/* add_accept - add an accepting state to a machine
- *
- * accepting_number becomes mach's accepting number.
- */
-
-void add_accept( mach, accepting_number )
-int mach, accepting_number;
- {
- /* Hang the accepting number off an epsilon state. if it is associated
- * with a state that has a non-epsilon out-transition, then the state
- * will accept BEFORE it makes that transition, i.e., one character
- * too soon.
- */
-
- if ( transchar[finalst[mach]] == SYM_EPSILON )
- accptnum[finalst[mach]] = accepting_number;
-
- else
- {
- int astate = mkstate( SYM_EPSILON );
- accptnum[astate] = accepting_number;
- (void) link_machines( mach, astate );
- }
- }
-
-
-/* copysingl - make a given number of copies of a singleton machine
- *
- * synopsis
- *
- * newsng = copysingl( singl, num );
- *
- * newsng - a new singleton composed of num copies of singl
- * singl - a singleton machine
- * num - the number of copies of singl to be present in newsng
- */
-
-int copysingl( singl, num )
-int singl, num;
- {
- int copy, i;
-
- copy = mkstate( SYM_EPSILON );
-
- for ( i = 1; i <= num; ++i )
- copy = link_machines( copy, dupmachine( singl ) );
-
- return copy;
- }
-
-
-/* dumpnfa - debugging routine to write out an nfa */
-
-void dumpnfa( state1 )
-int state1;
-
- {
- int sym, tsp1, tsp2, anum, ns;
-
- fprintf( stderr,
- _( "\n\n********** beginning dump of nfa with start state %d\n" ),
- state1 );
-
- /* We probably should loop starting at firstst[state1] and going to
- * lastst[state1], but they're not maintained properly when we "or"
- * all of the rules together. So we use our knowledge that the machine
- * starts at state 1 and ends at lastnfa.
- */
-
- /* for ( ns = firstst[state1]; ns <= lastst[state1]; ++ns ) */
- for ( ns = 1; ns <= lastnfa; ++ns )
- {
- fprintf( stderr, _( "state # %4d\t" ), ns );
-
- sym = transchar[ns];
- tsp1 = trans1[ns];
- tsp2 = trans2[ns];
- anum = accptnum[ns];
-
- fprintf( stderr, "%3d: %4d, %4d", sym, tsp1, tsp2 );
-
- if ( anum != NIL )
- fprintf( stderr, " [%d]", anum );
-
- fprintf( stderr, "\n" );
- }
-
- fprintf( stderr, _( "********** end of dump\n" ) );
- }
-
-
-/* dupmachine - make a duplicate of a given machine
- *
- * synopsis
- *
- * copy = dupmachine( mach );
- *
- * copy - holds duplicate of mach
- * mach - machine to be duplicated
- *
- * note that the copy of mach is NOT an exact duplicate; rather, all the
- * transition states values are adjusted so that the copy is self-contained,
- * as the original should have been.
- *
- * also note that the original MUST be contiguous, with its low and high
- * states accessible by the arrays firstst and lastst
- */
-
-int dupmachine( mach )
-int mach;
- {
- int i, init, state_offset;
- int state = 0;
- int last = lastst[mach];
-
- for ( i = firstst[mach]; i <= last; ++i )
- {
- state = mkstate( transchar[i] );
-
- if ( trans1[i] != NO_TRANSITION )
- {
- mkxtion( finalst[state], trans1[i] + state - i );
-
- if ( transchar[i] == SYM_EPSILON &&
- trans2[i] != NO_TRANSITION )
- mkxtion( finalst[state],
- trans2[i] + state - i );
- }
-
- accptnum[state] = accptnum[i];
- }
-
- if ( state == 0 )
- flexfatal( _( "empty machine in dupmachine()" ) );
-
- state_offset = state - i + 1;
-
- init = mach + state_offset;
- firstst[init] = firstst[mach] + state_offset;
- finalst[init] = finalst[mach] + state_offset;
- lastst[init] = lastst[mach] + state_offset;
-
- return init;
- }
-
-
-/* finish_rule - finish up the processing for a rule
- *
- * An accepting number is added to the given machine. If variable_trail_rule
- * is true then the rule has trailing context and both the head and trail
- * are variable size. Otherwise if headcnt or trailcnt is non-zero then
- * the machine recognizes a pattern with trailing context and headcnt is
- * the number of characters in the matched part of the pattern, or zero
- * if the matched part has variable length. trailcnt is the number of
- * trailing context characters in the pattern, or zero if the trailing
- * context has variable length.
- */
-
-void finish_rule( mach, variable_trail_rule, headcnt, trailcnt )
-int mach, variable_trail_rule, headcnt, trailcnt;
- {
- char action_text[MAXLINE];
-
- add_accept( mach, num_rules );
-
- /* We did this in new_rule(), but it often gets the wrong
- * number because we do it before we start parsing the current rule.
- */
- rule_linenum[num_rules] = linenum;
-
- /* If this is a continued action, then the line-number has already
- * been updated, giving us the wrong number.
- */
- if ( continued_action )
- --rule_linenum[num_rules];
-
- sprintf( action_text, "case %d:\n", num_rules );
- add_action( action_text );
-
- if ( variable_trail_rule )
- {
- rule_type[num_rules] = RULE_VARIABLE;
-
- if ( performance_report > 0 )
- fprintf( stderr,
- _( "Variable trailing context rule at line %d\n" ),
- rule_linenum[num_rules] );
-
- variable_trailing_context_rules = true;
- }
-
- else
- {
- rule_type[num_rules] = RULE_NORMAL;
-
- if ( headcnt > 0 || trailcnt > 0 )
- {
- /* Do trailing context magic to not match the trailing
- * characters.
- */
- char *scanner_cp = "yy_c_buf_p = yy_cp";
- char *scanner_bp = "yy_bp";
-
- add_action(
- "*yy_cp = yy_hold_char; /* undo effects of setting up yytext */\n" );
-
- if ( headcnt > 0 )
- {
- sprintf( action_text, "%s = %s + %d;\n",
- scanner_cp, scanner_bp, headcnt );
- add_action( action_text );
- }
-
- else
- {
- sprintf( action_text, "%s -= %d;\n",
- scanner_cp, trailcnt );
- add_action( action_text );
- }
-
- add_action(
- "YY_DO_BEFORE_ACTION; /* set up yytext again */\n" );
- }
- }
-
- /* Okay, in the action code at this point yytext and yyleng have
- * their proper final values for this rule, so here's the point
- * to do any user action. But don't do it for continued actions,
- * as that'll result in multiple YY_RULE_SETUP's.
- */
- if ( ! continued_action )
- add_action( "YY_RULE_SETUP\n" );
-
- line_directive_out( (FILE *) 0, 1 );
- }
-
-
-/* link_machines - connect two machines together
- *
- * synopsis
- *
- * new = link_machines( first, last );
- *
- * new - a machine constructed by connecting first to last
- * first - the machine whose successor is to be last
- * last - the machine whose predecessor is to be first
- *
- * note: this routine concatenates the machine first with the machine
- * last to produce a machine new which will pattern-match first first
- * and then last, and will fail if either of the sub-patterns fails.
- * FIRST is set to new by the operation. last is unmolested.
- */
-
-int link_machines( first, last )
-int first, last;
- {
- if ( first == NIL )
- return last;
-
- else if ( last == NIL )
- return first;
-
- else
- {
- mkxtion( finalst[first], last );
- finalst[first] = finalst[last];
- lastst[first] = MAX( lastst[first], lastst[last] );
- firstst[first] = MIN( firstst[first], firstst[last] );
-
- return first;
- }
- }
-
-
-/* mark_beginning_as_normal - mark each "beginning" state in a machine
- * as being a "normal" (i.e., not trailing context-
- * associated) states
- *
- * The "beginning" states are the epsilon closure of the first state
- */
-
-void mark_beginning_as_normal( mach )
-register int mach;
- {
- switch ( state_type[mach] )
- {
- case STATE_NORMAL:
- /* Oh, we've already visited here. */
- return;
-
- case STATE_TRAILING_CONTEXT:
- state_type[mach] = STATE_NORMAL;
-
- if ( transchar[mach] == SYM_EPSILON )
- {
- if ( trans1[mach] != NO_TRANSITION )
- mark_beginning_as_normal(
- trans1[mach] );
-
- if ( trans2[mach] != NO_TRANSITION )
- mark_beginning_as_normal(
- trans2[mach] );
- }
- break;
-
- default:
- flexerror(
- _( "bad state type in mark_beginning_as_normal()" ) );
- break;
- }
- }
-
-
-/* mkbranch - make a machine that branches to two machines
- *
- * synopsis
- *
- * branch = mkbranch( first, second );
- *
- * branch - a machine which matches either first's pattern or second's
- * first, second - machines whose patterns are to be or'ed (the | operator)
- *
- * Note that first and second are NEITHER destroyed by the operation. Also,
- * the resulting machine CANNOT be used with any other "mk" operation except
- * more mkbranch's. Compare with mkor()
- */
-
-int mkbranch( first, second )
-int first, second;
- {
- int eps;
-
- if ( first == NO_TRANSITION )
- return second;
-
- else if ( second == NO_TRANSITION )
- return first;
-
- eps = mkstate( SYM_EPSILON );
-
- mkxtion( eps, first );
- mkxtion( eps, second );
-
- return eps;
- }
-
-
-/* mkclos - convert a machine into a closure
- *
- * synopsis
- * new = mkclos( state );
- *
- * new - a new state which matches the closure of "state"
- */
-
-int mkclos( state )
-int state;
- {
- return mkopt( mkposcl( state ) );
- }
-
-
-/* mkopt - make a machine optional
- *
- * synopsis
- *
- * new = mkopt( mach );
- *
- * new - a machine which optionally matches whatever mach matched
- * mach - the machine to make optional
- *
- * notes:
- * 1. mach must be the last machine created
- * 2. mach is destroyed by the call
- */
-
-int mkopt( mach )
-int mach;
- {
- int eps;
-
- if ( ! SUPER_FREE_EPSILON(finalst[mach]) )
- {
- eps = mkstate( SYM_EPSILON );
- mach = link_machines( mach, eps );
- }
-
- /* Can't skimp on the following if FREE_EPSILON(mach) is true because
- * some state interior to "mach" might point back to the beginning
- * for a closure.
- */
- eps = mkstate( SYM_EPSILON );
- mach = link_machines( eps, mach );
-
- mkxtion( mach, finalst[mach] );
-
- return mach;
- }
-
-
-/* mkor - make a machine that matches either one of two machines
- *
- * synopsis
- *
- * new = mkor( first, second );
- *
- * new - a machine which matches either first's pattern or second's
- * first, second - machines whose patterns are to be or'ed (the | operator)
- *
- * note that first and second are both destroyed by the operation
- * the code is rather convoluted because an attempt is made to minimize
- * the number of epsilon states needed
- */
-
-int mkor( first, second )
-int first, second;
- {
- int eps, orend;
-
- if ( first == NIL )
- return second;
-
- else if ( second == NIL )
- return first;
-
- else
- {
- /* See comment in mkopt() about why we can't use the first
- * state of "first" or "second" if they satisfy "FREE_EPSILON".
- */
- eps = mkstate( SYM_EPSILON );
-
- first = link_machines( eps, first );
-
- mkxtion( first, second );
-
- if ( SUPER_FREE_EPSILON(finalst[first]) &&
- accptnum[finalst[first]] == NIL )
- {
- orend = finalst[first];
- mkxtion( finalst[second], orend );
- }
-
- else if ( SUPER_FREE_EPSILON(finalst[second]) &&
- accptnum[finalst[second]] == NIL )
- {
- orend = finalst[second];
- mkxtion( finalst[first], orend );
- }
-
- else
- {
- eps = mkstate( SYM_EPSILON );
-
- first = link_machines( first, eps );
- orend = finalst[first];
-
- mkxtion( finalst[second], orend );
- }
- }
-
- finalst[first] = orend;
- return first;
- }
-
-
-/* mkposcl - convert a machine into a positive closure
- *
- * synopsis
- * new = mkposcl( state );
- *
- * new - a machine matching the positive closure of "state"
- */
-
-int mkposcl( state )
-int state;
- {
- int eps;
-
- if ( SUPER_FREE_EPSILON(finalst[state]) )
- {
- mkxtion( finalst[state], state );
- return state;
- }
-
- else
- {
- eps = mkstate( SYM_EPSILON );
- mkxtion( eps, state );
- return link_machines( state, eps );
- }
- }
-
-
-/* mkrep - make a replicated machine
- *
- * synopsis
- * new = mkrep( mach, lb, ub );
- *
- * new - a machine that matches whatever "mach" matched from "lb"
- * number of times to "ub" number of times
- *
- * note
- * if "ub" is INFINITY then "new" matches "lb" or more occurrences of "mach"
- */
-
-int mkrep( mach, lb, ub )
-int mach, lb, ub;
- {
- int base_mach, tail, copy, i;
-
- base_mach = copysingl( mach, lb - 1 );
-
- if ( ub == INFINITY )
- {
- copy = dupmachine( mach );
- mach = link_machines( mach,
- link_machines( base_mach, mkclos( copy ) ) );
- }
-
- else
- {
- tail = mkstate( SYM_EPSILON );
-
- for ( i = lb; i < ub; ++i )
- {
- copy = dupmachine( mach );
- tail = mkopt( link_machines( copy, tail ) );
- }
-
- mach = link_machines( mach, link_machines( base_mach, tail ) );
- }
-
- return mach;
- }
-
-
-/* mkstate - create a state with a transition on a given symbol
- *
- * synopsis
- *
- * state = mkstate( sym );
- *
- * state - a new state matching sym
- * sym - the symbol the new state is to have an out-transition on
- *
- * note that this routine makes new states in ascending order through the
- * state array (and increments LASTNFA accordingly). The routine DUPMACHINE
- * relies on machines being made in ascending order and that they are
- * CONTIGUOUS. Change it and you will have to rewrite DUPMACHINE (kludge
- * that it admittedly is)
- */
-
-int mkstate( sym )
-int sym;
- {
- if ( ++lastnfa >= current_mns )
- {
- if ( (current_mns += MNS_INCREMENT) >= MAXIMUM_MNS )
- lerrif(
- _( "input rules are too complicated (>= %d NFA states)" ),
- current_mns );
-
- ++num_reallocs;
-
- firstst = reallocate_integer_array( firstst, current_mns );
- lastst = reallocate_integer_array( lastst, current_mns );
- finalst = reallocate_integer_array( finalst, current_mns );
- transchar = reallocate_integer_array( transchar, current_mns );
- trans1 = reallocate_integer_array( trans1, current_mns );
- trans2 = reallocate_integer_array( trans2, current_mns );
- accptnum = reallocate_integer_array( accptnum, current_mns );
- assoc_rule =
- reallocate_integer_array( assoc_rule, current_mns );
- state_type =
- reallocate_integer_array( state_type, current_mns );
- }
-
- firstst[lastnfa] = lastnfa;
- finalst[lastnfa] = lastnfa;
- lastst[lastnfa] = lastnfa;
- transchar[lastnfa] = sym;
- trans1[lastnfa] = NO_TRANSITION;
- trans2[lastnfa] = NO_TRANSITION;
- accptnum[lastnfa] = NIL;
- assoc_rule[lastnfa] = num_rules;
- state_type[lastnfa] = current_state_type;
-
- /* Fix up equivalence classes base on this transition. Note that any
- * character which has its own transition gets its own equivalence
- * class. Thus only characters which are only in character classes
- * have a chance at being in the same equivalence class. E.g. "a|b"
- * puts 'a' and 'b' into two different equivalence classes. "[ab]"
- * puts them in the same equivalence class (barring other differences
- * elsewhere in the input).
- */
-
- if ( sym < 0 )
- {
- /* We don't have to update the equivalence classes since
- * that was already done when the ccl was created for the
- * first time.
- */
- }
-
- else if ( sym == SYM_EPSILON )
- ++numeps;
-
- else
- {
- check_char( sym );
-
- if ( useecs )
- /* Map NUL's to csize. */
- mkechar( sym ? sym : csize, nextecm, ecgroup );
- }
-
- return lastnfa;
- }
-
-
-/* mkxtion - make a transition from one state to another
- *
- * synopsis
- *
- * mkxtion( statefrom, stateto );
- *
- * statefrom - the state from which the transition is to be made
- * stateto - the state to which the transition is to be made
- */
-
-void mkxtion( statefrom, stateto )
-int statefrom, stateto;
- {
- if ( trans1[statefrom] == NO_TRANSITION )
- trans1[statefrom] = stateto;
-
- else if ( (transchar[statefrom] != SYM_EPSILON) ||
- (trans2[statefrom] != NO_TRANSITION) )
- flexfatal( _( "found too many transitions in mkxtion()" ) );
-
- else
- { /* second out-transition for an epsilon state */
- ++eps2;
- trans2[statefrom] = stateto;
- }
- }
-
-/* new_rule - initialize for a new rule */
-
-void new_rule()
- {
- if ( ++num_rules >= current_max_rules )
- {
- ++num_reallocs;
- current_max_rules += MAX_RULES_INCREMENT;
- rule_type = reallocate_integer_array( rule_type,
- current_max_rules );
- rule_linenum = reallocate_integer_array( rule_linenum,
- current_max_rules );
- rule_useful = reallocate_integer_array( rule_useful,
- current_max_rules );
- }
-
- if ( num_rules > MAX_RULE )
- lerrif( _( "too many rules (> %d)!" ), MAX_RULE );
-
- rule_linenum[num_rules] = linenum;
- rule_useful[num_rules] = false;
- }