/* * Copyright (C) 2008 Apple Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef AbstractMacroAssembler_h #define AbstractMacroAssembler_h #include #include #include #include #if ENABLE(ASSEMBLER) // FIXME: keep transitioning this out into MacroAssemblerX86_64. #if PLATFORM(X86_64) #define REPTACH_OFFSET_CALL_R11 3 #endif namespace JSC { template class AbstractMacroAssembler { public: typedef MacroAssemblerCodePtr CodePtr; typedef MacroAssemblerCodeRef CodeRef; class Jump; class PatchBuffer; class CodeLocationInstruction; class CodeLocationLabel; class CodeLocationJump; class CodeLocationCall; class CodeLocationNearCall; class CodeLocationDataLabel32; class CodeLocationDataLabelPtr; class ProcessorReturnAddress; typedef typename AssemblerType::RegisterID RegisterID; typedef typename AssemblerType::FPRegisterID FPRegisterID; typedef typename AssemblerType::JmpSrc JmpSrc; typedef typename AssemblerType::JmpDst JmpDst; // Section 1: MacroAssembler operand types // // The following types are used as operands to MacroAssembler operations, // describing immediate and memory operands to the instructions to be planted. enum Scale { TimesOne, TimesTwo, TimesFour, TimesEight, }; // Address: // // Describes a simple base-offset address. struct Address { explicit Address(RegisterID base, int32_t offset = 0) : base(base) , offset(offset) { } RegisterID base; int32_t offset; }; // ImplicitAddress: // // This class is used for explicit 'load' and 'store' operations // (as opposed to situations in which a memory operand is provided // to a generic operation, such as an integer arithmetic instruction). // // In the case of a load (or store) operation we want to permit // addresses to be implicitly constructed, e.g. the two calls: // // load32(Address(addrReg), destReg); // load32(addrReg, destReg); // // Are equivalent, and the explicit wrapping of the Address in the former // is unnecessary. struct ImplicitAddress { ImplicitAddress(RegisterID base) : base(base) , offset(0) { } ImplicitAddress(Address address) : base(address.base) , offset(address.offset) { } RegisterID base; int32_t offset; }; // BaseIndex: // // Describes a complex addressing mode. struct BaseIndex { BaseIndex(RegisterID base, RegisterID index, Scale scale, int32_t offset = 0) : base(base) , index(index) , scale(scale) , offset(offset) { } RegisterID base; RegisterID index; Scale scale; int32_t offset; }; // AbsoluteAddress: // // Describes an memory operand given by a pointer. For regular load & store // operations an unwrapped void* will be used, rather than using this. struct AbsoluteAddress { explicit AbsoluteAddress(void* ptr) : m_ptr(ptr) { } void* m_ptr; }; // ImmPtr: // // A pointer sized immediate operand to an instruction - this is wrapped // in a class requiring explicit construction in order to differentiate // from pointers used as absolute addresses to memory operations struct ImmPtr { explicit ImmPtr(void* value) : m_value(value) { } intptr_t asIntptr() { return reinterpret_cast(m_value); } void* m_value; }; // Imm32: // // A 32bit immediate operand to an instruction - this is wrapped in a // class requiring explicit construction in order to prevent RegisterIDs // (which are implemented as an enum) from accidentally being passed as // immediate values. struct Imm32 { explicit Imm32(int32_t value) : m_value(value) #if PLATFORM(ARM_V7) , m_isPointer(false) #endif { } #if !PLATFORM(X86_64) explicit Imm32(ImmPtr ptr) : m_value(ptr.asIntptr()) #if PLATFORM(ARM_V7) , m_isPointer(true) #endif { } #endif int32_t m_value; #if PLATFORM(ARM_V7) // We rely on being able to regenerate code to recover exception handling // information. Since ARMv7 supports 16-bit immediates there is a danger // that if pointer values change the layout of the generated code will change. // To avoid this problem, always generate pointers (and thus Imm32s constructed // from ImmPtrs) with a code sequence that is able to represent any pointer // value - don't use a more compact form in these cases. bool m_isPointer; #endif }; // Section 2: MacroAssembler code buffer handles // // The following types are used to reference items in the code buffer // during JIT code generation. For example, the type Jump is used to // track the location of a jump instruction so that it may later be // linked to a label marking its destination. // Label: // // A Label records a point in the generated instruction stream, typically such that // it may be used as a destination for a jump. class Label { template friend class AbstractMacroAssembler; friend class Jump; friend class MacroAssemblerCodeRef; friend class PatchBuffer; public: Label() { } Label(AbstractMacroAssembler* masm) : m_label(masm->m_assembler.label()) { } bool isUsed() const { return m_label.isUsed(); } void used() { m_label.used(); } private: JmpDst m_label; }; // DataLabelPtr: // // A DataLabelPtr is used to refer to a location in the code containing a pointer to be // patched after the code has been generated. class DataLabelPtr { template friend class AbstractMacroAssembler; friend class PatchBuffer; public: DataLabelPtr() { } DataLabelPtr(AbstractMacroAssembler* masm) : m_label(masm->m_assembler.label()) { } private: JmpDst m_label; }; // DataLabel32: // // A DataLabelPtr is used to refer to a location in the code containing a pointer to be // patched after the code has been generated. class DataLabel32 { template friend class AbstractMacroAssembler; friend class PatchBuffer; public: DataLabel32() { } DataLabel32(AbstractMacroAssembler* masm) : m_label(masm->m_assembler.label()) { } private: JmpDst m_label; }; // Call: // // A Call object is a reference to a call instruction that has been planted // into the code buffer - it is typically used to link the call, setting the // relative offset such that when executed it will call to the desired // destination. class Call { template friend class AbstractMacroAssembler; friend class PatchBuffer; public: enum Flags { None = 0x0, Linkable = 0x1, Near = 0x2, LinkableNear = 0x3, }; Call() : m_flags(None) { } Call(JmpSrc jmp, Flags flags) : m_jmp(jmp) , m_flags(flags) { } bool isFlagSet(Flags flag) { return m_flags & flag; } static Call fromTailJump(Jump jump) { return Call(jump.m_jmp, Linkable); } private: JmpSrc m_jmp; Flags m_flags; }; // Jump: // // A jump object is a reference to a jump instruction that has been planted // into the code buffer - it is typically used to link the jump, setting the // relative offset such that when executed it will jump to the desired // destination. class Jump { template friend class AbstractMacroAssembler; friend class Call; friend class PatchBuffer; public: Jump() { } Jump(JmpSrc jmp) : m_jmp(jmp) { } void link(AbstractMacroAssembler* masm) { masm->m_assembler.linkJump(m_jmp, masm->m_assembler.label()); } void linkTo(Label label, AbstractMacroAssembler* masm) { masm->m_assembler.linkJump(m_jmp, label.m_label); } private: JmpSrc m_jmp; }; // JumpList: // // A JumpList is a set of Jump objects. // All jumps in the set will be linked to the same destination. class JumpList { friend class PatchBuffer; public: void link(AbstractMacroAssembler* masm) { size_t size = m_jumps.size(); for (size_t i = 0; i < size; ++i) m_jumps[i].link(masm); m_jumps.clear(); } void linkTo(Label label, AbstractMacroAssembler* masm) { size_t size = m_jumps.size(); for (size_t i = 0; i < size; ++i) m_jumps[i].linkTo(label, masm); m_jumps.clear(); } void append(Jump jump) { m_jumps.append(jump); } void append(JumpList& other) { m_jumps.append(other.m_jumps.begin(), other.m_jumps.size()); } bool empty() { return !m_jumps.size(); } private: Vector m_jumps; }; // Section 3: MacroAssembler JIT instruction stream handles. // // The MacroAssembler supported facilities to modify a JIT generated // instruction stream after it has been generated (relinking calls and // jumps, and repatching data values). The following types are used // to store handles into the underlying instruction stream, the type // providing semantic information as to what it is that is in the // instruction stream at this point, and thus what operations may be // performed on it. // CodeLocationCommon: // // Base type for other CodeLocation* types. A postion in the JIT genertaed // instruction stream, without any semantic information. class CodeLocationCommon { public: CodeLocationCommon() { } // In order to avoid the need to store multiple handles into the // instructions stream, where the code generation is deterministic // and the labels will always be a fixed distance apart, these // methods may be used to recover a handle that has nopw been // retained, based on a known fixed relative offset from one that has. CodeLocationInstruction instructionAtOffset(int offset); CodeLocationLabel labelAtOffset(int offset); CodeLocationJump jumpAtOffset(int offset); CodeLocationCall callAtOffset(int offset); CodeLocationNearCall nearCallAtOffset(int offset); CodeLocationDataLabelPtr dataLabelPtrAtOffset(int offset); CodeLocationDataLabel32 dataLabel32AtOffset(int offset); protected: explicit CodeLocationCommon(CodePtr location) : m_location(location) { } void* dataLocation() { return m_location.dataLocation(); } void* executableAddress() { return m_location.executableAddress(); } void reset() { m_location = CodePtr(); } private: CodePtr m_location; }; // CodeLocationInstruction: // // An arbitrary instruction in the JIT code. class CodeLocationInstruction : public CodeLocationCommon { friend class CodeLocationCommon; public: CodeLocationInstruction() { } void repatchLoadPtrToLEA() { AssemblerType::repatchLoadPtrToLEA(this->dataLocation()); } private: explicit CodeLocationInstruction(void* location) : CodeLocationCommon(CodePtr(location)) { } }; // CodeLocationLabel: // // A point in the JIT code maked with a label. class CodeLocationLabel : public CodeLocationCommon { friend class CodeLocationCommon; friend class CodeLocationJump; friend class CodeLocationCall; friend class CodeLocationNearCall; friend class PatchBuffer; friend class ProcessorReturnAddress; public: CodeLocationLabel() { } void* addressForSwitch() { return this->executableAddress(); } void* addressForExceptionHandler() { return this->executableAddress(); } void* addressForJSR() { return this->executableAddress(); } bool operator!() { return !this->executableAddress(); } void reset() { CodeLocationCommon::reset(); } private: explicit CodeLocationLabel(CodePtr location) : CodeLocationCommon(location) { } explicit CodeLocationLabel(void* location) : CodeLocationCommon(CodePtr(location)) { } void* getJumpDestination() { return this->executableAddress(); } }; // CodeLocationJump: // // A point in the JIT code at which there is a jump instruction. class CodeLocationJump : public CodeLocationCommon { friend class CodeLocationCommon; friend class PatchBuffer; public: CodeLocationJump() { } void relink(CodeLocationLabel destination) { AssemblerType::relinkJump(this->dataLocation(), destination.dataLocation()); } private: explicit CodeLocationJump(void* location) : CodeLocationCommon(CodePtr(location)) { } }; // CodeLocationCall: // // A point in the JIT code at which there is a call instruction. class CodeLocationCall : public CodeLocationCommon { friend class CodeLocationCommon; friend class PatchBuffer; friend class ProcessorReturnAddress; public: CodeLocationCall() { } void relink(CodeLocationLabel destination) { #if PLATFORM(X86_64) CodeLocationCommon::dataLabelPtrAtOffset(-REPTACH_OFFSET_CALL_R11).repatch(destination.executableAddress()); #else AssemblerType::relinkCall(this->dataLocation(), destination.executableAddress()); #endif } void relink(FunctionPtr destination) { #if PLATFORM(X86_64) CodeLocationCommon::dataLabelPtrAtOffset(-REPTACH_OFFSET_CALL_R11).repatch(destination.executableAddress()); #else AssemblerType::relinkCall(this->dataLocation(), destination.executableAddress()); #endif } // This methods returns the value that will be set as the return address // within a function that has been called from this call instruction. void* calleeReturnAddressValue() { return this->executableAddress(); } private: explicit CodeLocationCall(CodePtr location) : CodeLocationCommon(location) { } explicit CodeLocationCall(void* location) : CodeLocationCommon(CodePtr(location)) { } }; // CodeLocationNearCall: // // A point in the JIT code at which there is a call instruction with near linkage. class CodeLocationNearCall : public CodeLocationCommon { friend class CodeLocationCommon; friend class PatchBuffer; friend class ProcessorReturnAddress; public: CodeLocationNearCall() { } void relink(CodePtr destination) { AssemblerType::relinkCall(this->dataLocation(), destination.executableAddress()); } void relink(CodeLocationLabel destination) { AssemblerType::relinkCall(this->dataLocation(), destination.executableAddress()); } void relink(FunctionPtr destination) { AssemblerType::relinkCall(this->dataLocation(), destination.executableAddress()); } // This methods returns the value that will be set as the return address // within a function that has been called from this call instruction. void* calleeReturnAddressValue() { return this->executableAddress(); } private: explicit CodeLocationNearCall(CodePtr location) : CodeLocationCommon(location) { } explicit CodeLocationNearCall(void* location) : CodeLocationCommon(CodePtr(location)) { } }; // CodeLocationDataLabel32: // // A point in the JIT code at which there is an int32_t immediate that may be repatched. class CodeLocationDataLabel32 : public CodeLocationCommon { friend class CodeLocationCommon; friend class PatchBuffer; public: CodeLocationDataLabel32() { } void repatch(int32_t value) { AssemblerType::repatchInt32(this->dataLocation(), value); } private: explicit CodeLocationDataLabel32(void* location) : CodeLocationCommon(CodePtr(location)) { } }; // CodeLocationDataLabelPtr: // // A point in the JIT code at which there is a void* immediate that may be repatched. class CodeLocationDataLabelPtr : public CodeLocationCommon { friend class CodeLocationCommon; friend class PatchBuffer; public: CodeLocationDataLabelPtr() { } void repatch(void* value) { AssemblerType::repatchPointer(this->dataLocation(), value); } private: explicit CodeLocationDataLabelPtr(void* location) : CodeLocationCommon(CodePtr(location)) { } }; // ProcessorReturnAddress: // // This class can be used to relink a call identified by its return address. class ProcessorReturnAddress { friend class CodeLocationCall; friend class CodeLocationNearCall; public: ProcessorReturnAddress(void* location) : m_location(location) { } void relinkCallerToTrampoline(CodeLocationLabel label) { CodeLocationCall(CodePtr(m_location)).relink(label); } void relinkCallerToTrampoline(CodePtr newCalleeFunction) { relinkCallerToTrampoline(CodeLocationLabel(newCalleeFunction)); } void relinkCallerToFunction(FunctionPtr function) { CodeLocationCall(CodePtr(m_location)).relink(function); } void relinkNearCallerToTrampoline(CodeLocationLabel label) { CodeLocationNearCall(CodePtr(m_location)).relink(label); } void relinkNearCallerToTrampoline(CodePtr newCalleeFunction) { relinkNearCallerToTrampoline(CodeLocationLabel(newCalleeFunction)); } void* addressForLookup() { return m_location.value(); } private: ReturnAddressPtr m_location; }; // Section 4: PatchBuffer - utility to finalize code generation. static CodePtr trampolineAt(CodeRef ref, Label label) { return CodePtr(AssemblerType::getRelocatedAddress(ref.m_code.dataLocation(), label.m_label)); } // PatchBuffer: // // This class assists in linking code generated by the macro assembler, once code generation // has been completed, and the code has been copied to is final location in memory. At this // time pointers to labels within the code may be resolved, and relative offsets to external // addresses may be fixed. // // Specifically: // * Jump objects may be linked to external targets, // * The address of Jump objects may taken, such that it can later be relinked. // * The return address of a Jump object representing a call may be acquired. // * The address of a Label pointing into the code may be resolved. // * The value referenced by a DataLabel may be fixed. // // FIXME: distinguish between Calls & Jumps (make a specific call to obtain the return // address of calls, as opposed to a point that can be used to later relink a Jump - // possibly wrap the later up in an object that can do just that). class PatchBuffer : public Noncopyable { public: // Note: Initialization sequence is significant, since executablePool is a PassRefPtr. // First, executablePool is copied into m_executablePool, then the initialization of // m_code uses m_executablePool, *not* executablePool, since this is no longer valid. PatchBuffer(AbstractMacroAssembler* masm, PassRefPtr executablePool) : m_executablePool(executablePool) , m_code(masm->m_assembler.executableCopy(m_executablePool.get())) , m_size(masm->m_assembler.size()) #ifndef NDEBUG , m_completed(false) #endif { } ~PatchBuffer() { ASSERT(m_completed); } // These methods are used to link or set values at code generation time. void link(Call call, FunctionPtr function) { ASSERT(call.isFlagSet(Call::Linkable)); #if PLATFORM(X86_64) if (!call.isFlagSet(Call::Near)) { char* callLocation = reinterpret_cast(AssemblerType::getRelocatedAddress(code(), call.m_jmp)) - REPTACH_OFFSET_CALL_R11; AssemblerType::patchPointerForCall(callLocation, function.value()); } else #endif AssemblerType::linkCall(code(), call.m_jmp, function.value()); } void link(Jump jump, CodeLocationLabel label) { AssemblerType::linkJump(code(), jump.m_jmp, label.dataLocation()); } void link(JumpList list, CodeLocationLabel label) { for (unsigned i = 0; i < list.m_jumps.size(); ++i) AssemblerType::linkJump(code(), list.m_jumps[i].m_jmp, label.dataLocation()); } void patch(DataLabelPtr label, void* value) { AssemblerType::patchPointer(code(), label.m_label, value); } void patch(DataLabelPtr label, CodeLocationLabel value) { AssemblerType::patchPointer(code(), label.m_label, value.getJumpDestination()); } // These methods are used to obtain handles to allow the code to be relinked / repatched later. CodeLocationCall locationOf(Call call) { ASSERT(call.isFlagSet(Call::Linkable)); ASSERT(!call.isFlagSet(Call::Near)); return CodeLocationCall(AssemblerType::getRelocatedAddress(code(), call.m_jmp)); } CodeLocationNearCall locationOfNearCall(Call call) { ASSERT(call.isFlagSet(Call::Linkable)); ASSERT(call.isFlagSet(Call::Near)); return CodeLocationNearCall(AssemblerType::getRelocatedAddress(code(), call.m_jmp)); } CodeLocationLabel locationOf(Label label) { return CodeLocationLabel(AssemblerType::getRelocatedAddress(code(), label.m_label)); } CodeLocationDataLabelPtr locationOf(DataLabelPtr label) { return CodeLocationDataLabelPtr(AssemblerType::getRelocatedAddress(code(), label.m_label)); } CodeLocationDataLabel32 locationOf(DataLabel32 label) { return CodeLocationDataLabel32(AssemblerType::getRelocatedAddress(code(), label.m_label)); } // This method obtains the return address of the call, given as an offset from // the start of the code. unsigned returnAddressOffset(Call call) { return AssemblerType::getCallReturnOffset(call.m_jmp); } // Upon completion of all patching either 'finalizeCode()' or 'finalizeCodeAddendum()' should be called // once to complete generation of the code. 'finalizeCode()' is suited to situations // where the executable pool must also be retained, the lighter-weight 'finalizeCodeAddendum()' is // suited to adding to an existing allocation. CodeRef finalizeCode() { performFinalization(); return CodeRef(m_code, m_executablePool, m_size); } CodeLocationLabel finalizeCodeAddendum() { performFinalization(); return CodeLocationLabel(code()); } private: // Keep this private! - the underlying code should only be obtained externally via // finalizeCode() or finalizeCodeAddendum(). void* code() { return m_code; } void performFinalization() { #ifndef NDEBUG ASSERT(!m_completed); m_completed = true; #endif ExecutableAllocator::makeExecutable(code(), m_size); } RefPtr m_executablePool; void* m_code; size_t m_size; #ifndef NDEBUG bool m_completed; #endif }; // Section 5: Misc admin methods size_t size() { return m_assembler.size(); } Label label() { return Label(this); } Label align() { m_assembler.align(16); return Label(this); } ptrdiff_t differenceBetween(Label from, Jump to) { return AssemblerType::getDifferenceBetweenLabels(from.m_label, to.m_jmp); } ptrdiff_t differenceBetween(Label from, Call to) { return AssemblerType::getDifferenceBetweenLabels(from.m_label, to.m_jmp); } ptrdiff_t differenceBetween(Label from, Label to) { return AssemblerType::getDifferenceBetweenLabels(from.m_label, to.m_label); } ptrdiff_t differenceBetween(Label from, DataLabelPtr to) { return AssemblerType::getDifferenceBetweenLabels(from.m_label, to.m_label); } ptrdiff_t differenceBetween(Label from, DataLabel32 to) { return AssemblerType::getDifferenceBetweenLabels(from.m_label, to.m_label); } ptrdiff_t differenceBetween(DataLabelPtr from, Jump to) { return AssemblerType::getDifferenceBetweenLabels(from.m_label, to.m_jmp); } ptrdiff_t differenceBetween(DataLabelPtr from, DataLabelPtr to) { return AssemblerType::getDifferenceBetweenLabels(from.m_label, to.m_label); } ptrdiff_t differenceBetween(DataLabelPtr from, Call to) { return AssemblerType::getDifferenceBetweenLabels(from.m_label, to.m_jmp); } protected: AssemblerType m_assembler; }; template typename AbstractMacroAssembler::CodeLocationInstruction AbstractMacroAssembler::CodeLocationCommon::instructionAtOffset(int offset) { return typename AbstractMacroAssembler::CodeLocationInstruction(reinterpret_cast(dataLocation()) + offset); } template typename AbstractMacroAssembler::CodeLocationLabel AbstractMacroAssembler::CodeLocationCommon::labelAtOffset(int offset) { return typename AbstractMacroAssembler::CodeLocationLabel(reinterpret_cast(dataLocation()) + offset); } template typename AbstractMacroAssembler::CodeLocationJump AbstractMacroAssembler::CodeLocationCommon::jumpAtOffset(int offset) { return typename AbstractMacroAssembler::CodeLocationJump(reinterpret_cast(dataLocation()) + offset); } template typename AbstractMacroAssembler::CodeLocationCall AbstractMacroAssembler::CodeLocationCommon::callAtOffset(int offset) { return typename AbstractMacroAssembler::CodeLocationCall(reinterpret_cast(dataLocation()) + offset); } template typename AbstractMacroAssembler::CodeLocationNearCall AbstractMacroAssembler::CodeLocationCommon::nearCallAtOffset(int offset) { return typename AbstractMacroAssembler::CodeLocationNearCall(reinterpret_cast(dataLocation()) + offset); } template typename AbstractMacroAssembler::CodeLocationDataLabelPtr AbstractMacroAssembler::CodeLocationCommon::dataLabelPtrAtOffset(int offset) { return typename AbstractMacroAssembler::CodeLocationDataLabelPtr(reinterpret_cast(dataLocation()) + offset); } template typename AbstractMacroAssembler::CodeLocationDataLabel32 AbstractMacroAssembler::CodeLocationCommon::dataLabel32AtOffset(int offset) { return typename AbstractMacroAssembler::CodeLocationDataLabel32(reinterpret_cast(dataLocation()) + offset); } } // namespace JSC #endif // ENABLE(ASSEMBLER) #endif // AbstractMacroAssembler_h