/* * Copyright (C) 2008, 2009 Apple Inc. All rights reserved. * Copyright (C) 2008 Cameron Zwarich * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of Apple Computer, Inc. ("Apple") nor the names of * its contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef CodeBlock_h #define CodeBlock_h #include "EvalCodeCache.h" #include "Instruction.h" #include "JITCode.h" #include "JSGlobalObject.h" #include "JumpTable.h" #include "Nodes.h" #include "PtrAndFlags.h" #include "RegExp.h" #include "UString.h" #include #include #include #if ENABLE(JIT) #include "StructureStubInfo.h" #endif // Register numbers used in bytecode operations have different meaning accoring to their ranges: // 0x80000000-0xFFFFFFFF Negative indicies from the CallFrame pointer are entries in the call frame, see RegisterFile.h. // 0x00000000-0x3FFFFFFF Forwards indices from the CallFrame pointer are local vars and temporaries with the function's callframe. // 0x40000000-0x7FFFFFFF Positive indices from 0x40000000 specify entries in the constant pool on the CodeBlock. static const int FirstConstantRegisterIndex = 0x40000000; namespace JSC { enum HasSeenShouldRepatch { hasSeenShouldRepatch }; class ExecState; enum CodeType { GlobalCode, EvalCode, FunctionCode, NativeCode }; static ALWAYS_INLINE int missingThisObjectMarker() { return std::numeric_limits::max(); } struct HandlerInfo { uint32_t start; uint32_t end; uint32_t target; uint32_t scopeDepth; #if ENABLE(JIT) CodeLocationLabel nativeCode; #endif }; struct ExpressionRangeInfo { enum { MaxOffset = (1 << 7) - 1, MaxDivot = (1 << 25) - 1 }; uint32_t instructionOffset : 25; uint32_t divotPoint : 25; uint32_t startOffset : 7; uint32_t endOffset : 7; }; struct LineInfo { uint32_t instructionOffset; int32_t lineNumber; }; // Both op_construct and op_instanceof require a use of op_get_by_id to get // the prototype property from an object. The exception messages for exceptions // thrown by these instances op_get_by_id need to reflect this. struct GetByIdExceptionInfo { unsigned bytecodeOffset : 31; bool isOpConstruct : 1; }; #if ENABLE(JIT) struct CallLinkInfo { CallLinkInfo() : callee(0) { } unsigned bytecodeIndex; CodeLocationNearCall callReturnLocation; CodeLocationDataLabelPtr hotPathBegin; CodeLocationNearCall hotPathOther; PtrAndFlags ownerCodeBlock; CodeBlock* callee; unsigned position; void setUnlinked() { callee = 0; } bool isLinked() { return callee; } bool seenOnce() { return ownerCodeBlock.isFlagSet(hasSeenShouldRepatch); } void setSeen() { ownerCodeBlock.setFlag(hasSeenShouldRepatch); } }; struct MethodCallLinkInfo { MethodCallLinkInfo() : cachedStructure(0) { } bool seenOnce() { return cachedPrototypeStructure.isFlagSet(hasSeenShouldRepatch); } void setSeen() { cachedPrototypeStructure.setFlag(hasSeenShouldRepatch); } CodeLocationCall callReturnLocation; CodeLocationDataLabelPtr structureLabel; Structure* cachedStructure; PtrAndFlags cachedPrototypeStructure; }; struct FunctionRegisterInfo { FunctionRegisterInfo(unsigned bytecodeOffset, int functionRegisterIndex) : bytecodeOffset(bytecodeOffset) , functionRegisterIndex(functionRegisterIndex) { } unsigned bytecodeOffset; int functionRegisterIndex; }; struct GlobalResolveInfo { GlobalResolveInfo(unsigned bytecodeOffset) : structure(0) , offset(0) , bytecodeOffset(bytecodeOffset) { } Structure* structure; unsigned offset; unsigned bytecodeOffset; }; // This structure is used to map from a call return location // (given as an offset in bytes into the JIT code) back to // the bytecode index of the corresponding bytecode operation. // This is then used to look up the corresponding handler. struct CallReturnOffsetToBytecodeIndex { CallReturnOffsetToBytecodeIndex(unsigned callReturnOffset, unsigned bytecodeIndex) : callReturnOffset(callReturnOffset) , bytecodeIndex(bytecodeIndex) { } unsigned callReturnOffset; unsigned bytecodeIndex; }; // valueAtPosition helpers for the binaryChop algorithm below. inline void* getStructureStubInfoReturnLocation(StructureStubInfo* structureStubInfo) { return structureStubInfo->callReturnLocation.executableAddress(); } inline void* getCallLinkInfoReturnLocation(CallLinkInfo* callLinkInfo) { return callLinkInfo->callReturnLocation.executableAddress(); } inline void* getMethodCallLinkInfoReturnLocation(MethodCallLinkInfo* methodCallLinkInfo) { return methodCallLinkInfo->callReturnLocation.executableAddress(); } inline unsigned getCallReturnOffset(CallReturnOffsetToBytecodeIndex* pc) { return pc->callReturnOffset; } // Binary chop algorithm, calls valueAtPosition on pre-sorted elements in array, // compares result with key (KeyTypes should be comparable with '--', '<', '>'). // Optimized for cases where the array contains the key, checked by assertions. template inline ArrayType* binaryChop(ArrayType* array, size_t size, KeyType key) { // The array must contain at least one element (pre-condition, array does conatin key). // If the array only contains one element, no need to do the comparison. while (size > 1) { // Pick an element to check, half way through the array, and read the value. int pos = (size - 1) >> 1; KeyType val = valueAtPosition(&array[pos]); // If the key matches, success! if (val == key) return &array[pos]; // The item we are looking for is smaller than the item being check; reduce the value of 'size', // chopping off the right hand half of the array. else if (key < val) size = pos; // Discard all values in the left hand half of the array, up to and including the item at pos. else { size -= (pos + 1); array += (pos + 1); } // 'size' should never reach zero. ASSERT(size); } // If we reach this point we've chopped down to one element, no need to check it matches ASSERT(size == 1); ASSERT(key == valueAtPosition(&array[0])); return &array[0]; } #endif class CodeBlock : public FastAllocBase { friend class JIT; public: CodeBlock(ScopeNode* ownerNode); CodeBlock(ScopeNode* ownerNode, CodeType, PassRefPtr, unsigned sourceOffset); ~CodeBlock(); void markAggregate(MarkStack&); void refStructures(Instruction* vPC) const; void derefStructures(Instruction* vPC) const; #if ENABLE(JIT_OPTIMIZE_CALL) void unlinkCallers(); #endif static void dumpStatistics(); #if !defined(NDEBUG) || ENABLE_OPCODE_SAMPLING void dump(ExecState*) const; void printStructures(const Instruction*) const; void printStructure(const char* name, const Instruction*, int operand) const; #endif inline bool isKnownNotImmediate(int index) { if (index == m_thisRegister) return true; if (isConstantRegisterIndex(index)) return getConstant(index).isCell(); return false; } ALWAYS_INLINE bool isTemporaryRegisterIndex(int index) { return index >= m_numVars; } HandlerInfo* handlerForBytecodeOffset(unsigned bytecodeOffset); int lineNumberForBytecodeOffset(CallFrame*, unsigned bytecodeOffset); int expressionRangeForBytecodeOffset(CallFrame*, unsigned bytecodeOffset, int& divot, int& startOffset, int& endOffset); bool getByIdExceptionInfoForBytecodeOffset(CallFrame*, unsigned bytecodeOffset, OpcodeID&); #if ENABLE(JIT) void addCaller(CallLinkInfo* caller) { caller->callee = this; caller->position = m_linkedCallerList.size(); m_linkedCallerList.append(caller); } void removeCaller(CallLinkInfo* caller) { unsigned pos = caller->position; unsigned lastPos = m_linkedCallerList.size() - 1; if (pos != lastPos) { m_linkedCallerList[pos] = m_linkedCallerList[lastPos]; m_linkedCallerList[pos]->position = pos; } m_linkedCallerList.shrink(lastPos); } StructureStubInfo& getStubInfo(ReturnAddressPtr returnAddress) { return *(binaryChop(m_structureStubInfos.begin(), m_structureStubInfos.size(), returnAddress.value())); } CallLinkInfo& getCallLinkInfo(ReturnAddressPtr returnAddress) { return *(binaryChop(m_callLinkInfos.begin(), m_callLinkInfos.size(), returnAddress.value())); } MethodCallLinkInfo& getMethodCallLinkInfo(ReturnAddressPtr returnAddress) { return *(binaryChop(m_methodCallLinkInfos.begin(), m_methodCallLinkInfos.size(), returnAddress.value())); } unsigned getBytecodeIndex(CallFrame* callFrame, ReturnAddressPtr returnAddress) { reparseForExceptionInfoIfNecessary(callFrame); return binaryChop(callReturnIndexVector().begin(), callReturnIndexVector().size(), ownerNode()->generatedJITCode().offsetOf(returnAddress.value()))->bytecodeIndex; } bool functionRegisterForBytecodeOffset(unsigned bytecodeOffset, int& functionRegisterIndex); #endif void setIsNumericCompareFunction(bool isNumericCompareFunction) { m_isNumericCompareFunction = isNumericCompareFunction; } bool isNumericCompareFunction() { return m_isNumericCompareFunction; } Vector& instructions() { return m_instructions; } #ifndef NDEBUG void setInstructionCount(unsigned instructionCount) { m_instructionCount = instructionCount; } #endif #if ENABLE(JIT) JITCode& getJITCode() { return ownerNode()->generatedJITCode(); } void setJITCode(JITCode); ExecutablePool* executablePool() { return ownerNode()->getExecutablePool(); } #endif ScopeNode* ownerNode() const { return m_ownerNode; } void setGlobalData(JSGlobalData* globalData) { m_globalData = globalData; } void setThisRegister(int thisRegister) { m_thisRegister = thisRegister; } int thisRegister() const { return m_thisRegister; } void setNeedsFullScopeChain(bool needsFullScopeChain) { m_needsFullScopeChain = needsFullScopeChain; } bool needsFullScopeChain() const { return m_needsFullScopeChain; } void setUsesEval(bool usesEval) { m_usesEval = usesEval; } bool usesEval() const { return m_usesEval; } void setUsesArguments(bool usesArguments) { m_usesArguments = usesArguments; } bool usesArguments() const { return m_usesArguments; } CodeType codeType() const { return m_codeType; } SourceProvider* source() const { ASSERT(m_codeType != NativeCode); return m_source.get(); } unsigned sourceOffset() const { ASSERT(m_codeType != NativeCode); return m_sourceOffset; } size_t numberOfJumpTargets() const { return m_jumpTargets.size(); } void addJumpTarget(unsigned jumpTarget) { m_jumpTargets.append(jumpTarget); } unsigned jumpTarget(int index) const { return m_jumpTargets[index]; } unsigned lastJumpTarget() const { return m_jumpTargets.last(); } #if !ENABLE(JIT) void addPropertyAccessInstruction(unsigned propertyAccessInstruction) { m_propertyAccessInstructions.append(propertyAccessInstruction); } void addGlobalResolveInstruction(unsigned globalResolveInstruction) { m_globalResolveInstructions.append(globalResolveInstruction); } bool hasGlobalResolveInstructionAtBytecodeOffset(unsigned bytecodeOffset); #else size_t numberOfStructureStubInfos() const { return m_structureStubInfos.size(); } void addStructureStubInfo(const StructureStubInfo& stubInfo) { m_structureStubInfos.append(stubInfo); } StructureStubInfo& structureStubInfo(int index) { return m_structureStubInfos[index]; } void addGlobalResolveInfo(unsigned globalResolveInstruction) { m_globalResolveInfos.append(GlobalResolveInfo(globalResolveInstruction)); } GlobalResolveInfo& globalResolveInfo(int index) { return m_globalResolveInfos[index]; } bool hasGlobalResolveInfoAtBytecodeOffset(unsigned bytecodeOffset); size_t numberOfCallLinkInfos() const { return m_callLinkInfos.size(); } void addCallLinkInfo() { m_callLinkInfos.append(CallLinkInfo()); } CallLinkInfo& callLinkInfo(int index) { return m_callLinkInfos[index]; } void addMethodCallLinkInfos(unsigned n) { m_methodCallLinkInfos.grow(n); } MethodCallLinkInfo& methodCallLinkInfo(int index) { return m_methodCallLinkInfos[index]; } void addFunctionRegisterInfo(unsigned bytecodeOffset, int functionIndex) { createRareDataIfNecessary(); m_rareData->m_functionRegisterInfos.append(FunctionRegisterInfo(bytecodeOffset, functionIndex)); } #endif // Exception handling support size_t numberOfExceptionHandlers() const { return m_rareData ? m_rareData->m_exceptionHandlers.size() : 0; } void addExceptionHandler(const HandlerInfo& hanler) { createRareDataIfNecessary(); return m_rareData->m_exceptionHandlers.append(hanler); } HandlerInfo& exceptionHandler(int index) { ASSERT(m_rareData); return m_rareData->m_exceptionHandlers[index]; } bool hasExceptionInfo() const { return m_exceptionInfo; } void clearExceptionInfo() { m_exceptionInfo.clear(); } void addExpressionInfo(const ExpressionRangeInfo& expressionInfo) { ASSERT(m_exceptionInfo); m_exceptionInfo->m_expressionInfo.append(expressionInfo); } void addGetByIdExceptionInfo(const GetByIdExceptionInfo& info) { ASSERT(m_exceptionInfo); m_exceptionInfo->m_getByIdExceptionInfo.append(info); } size_t numberOfLineInfos() const { ASSERT(m_exceptionInfo); return m_exceptionInfo->m_lineInfo.size(); } void addLineInfo(const LineInfo& lineInfo) { ASSERT(m_exceptionInfo); m_exceptionInfo->m_lineInfo.append(lineInfo); } LineInfo& lastLineInfo() { ASSERT(m_exceptionInfo); return m_exceptionInfo->m_lineInfo.last(); } #if ENABLE(JIT) Vector& callReturnIndexVector() { ASSERT(m_exceptionInfo); return m_exceptionInfo->m_callReturnIndexVector; } #endif // Constant Pool size_t numberOfIdentifiers() const { return m_identifiers.size(); } void addIdentifier(const Identifier& i) { return m_identifiers.append(i); } Identifier& identifier(int index) { return m_identifiers[index]; } size_t numberOfConstantRegisters() const { return m_constantRegisters.size(); } void addConstantRegister(const Register& r) { return m_constantRegisters.append(r); } Register& constantRegister(int index) { return m_constantRegisters[index - FirstConstantRegisterIndex]; } ALWAYS_INLINE bool isConstantRegisterIndex(int index) { return index >= FirstConstantRegisterIndex; } ALWAYS_INLINE JSValue getConstant(int index) const { return m_constantRegisters[index - FirstConstantRegisterIndex].jsValue(); } unsigned addFunctionExpression(FuncExprNode* n) { unsigned size = m_functionExpressions.size(); m_functionExpressions.append(n); return size; } FuncExprNode* functionExpression(int index) const { return m_functionExpressions[index].get(); } unsigned addFunction(FuncDeclNode* n) { createRareDataIfNecessary(); unsigned size = m_rareData->m_functions.size(); m_rareData->m_functions.append(n); return size; } FuncDeclNode* function(int index) const { ASSERT(m_rareData); return m_rareData->m_functions[index].get(); } bool hasFunctions() const { return m_functionExpressions.size() || (m_rareData && m_rareData->m_functions.size()); } unsigned addRegExp(RegExp* r) { createRareDataIfNecessary(); unsigned size = m_rareData->m_regexps.size(); m_rareData->m_regexps.append(r); return size; } RegExp* regexp(int index) const { ASSERT(m_rareData); return m_rareData->m_regexps[index].get(); } // Jump Tables size_t numberOfImmediateSwitchJumpTables() const { return m_rareData ? m_rareData->m_immediateSwitchJumpTables.size() : 0; } SimpleJumpTable& addImmediateSwitchJumpTable() { createRareDataIfNecessary(); m_rareData->m_immediateSwitchJumpTables.append(SimpleJumpTable()); return m_rareData->m_immediateSwitchJumpTables.last(); } SimpleJumpTable& immediateSwitchJumpTable(int tableIndex) { ASSERT(m_rareData); return m_rareData->m_immediateSwitchJumpTables[tableIndex]; } size_t numberOfCharacterSwitchJumpTables() const { return m_rareData ? m_rareData->m_characterSwitchJumpTables.size() : 0; } SimpleJumpTable& addCharacterSwitchJumpTable() { createRareDataIfNecessary(); m_rareData->m_characterSwitchJumpTables.append(SimpleJumpTable()); return m_rareData->m_characterSwitchJumpTables.last(); } SimpleJumpTable& characterSwitchJumpTable(int tableIndex) { ASSERT(m_rareData); return m_rareData->m_characterSwitchJumpTables[tableIndex]; } size_t numberOfStringSwitchJumpTables() const { return m_rareData ? m_rareData->m_stringSwitchJumpTables.size() : 0; } StringJumpTable& addStringSwitchJumpTable() { createRareDataIfNecessary(); m_rareData->m_stringSwitchJumpTables.append(StringJumpTable()); return m_rareData->m_stringSwitchJumpTables.last(); } StringJumpTable& stringSwitchJumpTable(int tableIndex) { ASSERT(m_rareData); return m_rareData->m_stringSwitchJumpTables[tableIndex]; } SymbolTable& symbolTable() { return m_symbolTable; } EvalCodeCache& evalCodeCache() { ASSERT(m_codeType != NativeCode); createRareDataIfNecessary(); return m_rareData->m_evalCodeCache; } void shrinkToFit(); // FIXME: Make these remaining members private. int m_numCalleeRegisters; int m_numVars; int m_numParameters; private: #if !defined(NDEBUG) || ENABLE(OPCODE_SAMPLING) void dump(ExecState*, const Vector::const_iterator& begin, Vector::const_iterator&) const; #endif void reparseForExceptionInfoIfNecessary(CallFrame*); void createRareDataIfNecessary() { ASSERT(m_codeType != NativeCode); if (!m_rareData) m_rareData.set(new RareData); } ScopeNode* m_ownerNode; JSGlobalData* m_globalData; Vector m_instructions; #ifndef NDEBUG unsigned m_instructionCount; #endif int m_thisRegister; bool m_needsFullScopeChain; bool m_usesEval; bool m_usesArguments; bool m_isNumericCompareFunction; CodeType m_codeType; RefPtr m_source; unsigned m_sourceOffset; #if !ENABLE(JIT) Vector m_propertyAccessInstructions; Vector m_globalResolveInstructions; #else Vector m_structureStubInfos; Vector m_globalResolveInfos; Vector m_callLinkInfos; Vector m_methodCallLinkInfos; Vector m_linkedCallerList; #endif Vector m_jumpTargets; // Constant Pool Vector m_identifiers; Vector m_constantRegisters; Vector > m_functionExpressions; SymbolTable m_symbolTable; struct ExceptionInfo : FastAllocBase { Vector m_expressionInfo; Vector m_lineInfo; Vector m_getByIdExceptionInfo; #if ENABLE(JIT) Vector m_callReturnIndexVector; #endif }; OwnPtr m_exceptionInfo; struct RareData : FastAllocBase { Vector m_exceptionHandlers; // Rare Constants Vector > m_functions; Vector > m_regexps; // Jump Tables Vector m_immediateSwitchJumpTables; Vector m_characterSwitchJumpTables; Vector m_stringSwitchJumpTables; EvalCodeCache m_evalCodeCache; #if ENABLE(JIT) Vector m_functionRegisterInfos; #endif }; OwnPtr m_rareData; }; // Program code is not marked by any function, so we make the global object // responsible for marking it. class ProgramCodeBlock : public CodeBlock { public: ProgramCodeBlock(ScopeNode* ownerNode, CodeType codeType, JSGlobalObject* globalObject, PassRefPtr sourceProvider) : CodeBlock(ownerNode, codeType, sourceProvider, 0) , m_globalObject(globalObject) { m_globalObject->codeBlocks().add(this); } ~ProgramCodeBlock() { if (m_globalObject) m_globalObject->codeBlocks().remove(this); } void clearGlobalObject() { m_globalObject = 0; } private: JSGlobalObject* m_globalObject; // For program and eval nodes, the global object that marks the constant pool. }; class EvalCodeBlock : public ProgramCodeBlock { public: EvalCodeBlock(ScopeNode* ownerNode, JSGlobalObject* globalObject, PassRefPtr sourceProvider, int baseScopeDepth) : ProgramCodeBlock(ownerNode, EvalCode, globalObject, sourceProvider) , m_baseScopeDepth(baseScopeDepth) { } int baseScopeDepth() const { return m_baseScopeDepth; } private: int m_baseScopeDepth; }; inline Register& ExecState::r(int index) { CodeBlock* codeBlock = this->codeBlock(); if (codeBlock->isConstantRegisterIndex(index)) return codeBlock->constantRegister(index); return this[index]; } } // namespace JSC #endif // CodeBlock_h