/* * Copyright (C) 2008 Apple Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "config.h" #include "JIT.h" #if ENABLE(JIT) #include "CodeBlock.h" #include "JITInlineMethods.h" #include "JITStubCall.h" #include "JSArray.h" #include "JSFunction.h" #include "Interpreter.h" #include "ResultType.h" #include "SamplingTool.h" #ifndef NDEBUG #include #endif using namespace std; namespace JSC { #if USE(JSVALUE32_64) void JIT::emit_op_negate(Instruction* currentInstruction) { unsigned dst = currentInstruction[1].u.operand; unsigned src = currentInstruction[2].u.operand; emitLoad(src, regT1, regT0); Jump srcNotInt = branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)); addSlowCase(branch32(Equal, regT0, Imm32(0))); neg32(regT0); emitStoreInt32(dst, regT0, (dst == src)); Jump end = jump(); srcNotInt.link(this); addSlowCase(branch32(Above, regT1, Imm32(JSValue::LowestTag))); xor32(Imm32(1 << 31), regT1); store32(regT1, tagFor(dst)); if (dst != src) store32(regT0, payloadFor(dst)); end.link(this); } void JIT::emitSlow_op_negate(Instruction* currentInstruction, Vector::iterator& iter) { unsigned dst = currentInstruction[1].u.operand; linkSlowCase(iter); // 0 check linkSlowCase(iter); // double check JITStubCall stubCall(this, cti_op_negate); stubCall.addArgument(regT1, regT0); stubCall.call(dst); } void JIT::emit_op_jnless(Instruction* currentInstruction) { unsigned op1 = currentInstruction[1].u.operand; unsigned op2 = currentInstruction[2].u.operand; unsigned target = currentInstruction[3].u.operand; JumpList notInt32Op1; JumpList notInt32Op2; // Int32 less. if (isOperandConstantImmediateInt(op1)) { emitLoad(op2, regT3, regT2); notInt32Op2.append(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag))); addJump(branch32(LessThanOrEqual, regT2, Imm32(getConstantOperand(op1).asInt32())), target + 3); } else if (isOperandConstantImmediateInt(op2)) { emitLoad(op1, regT1, regT0); notInt32Op1.append(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag))); addJump(branch32(GreaterThanOrEqual, regT0, Imm32(getConstantOperand(op2).asInt32())), target + 3); } else { emitLoad2(op1, regT1, regT0, op2, regT3, regT2); notInt32Op1.append(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag))); notInt32Op2.append(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag))); addJump(branch32(GreaterThanOrEqual, regT0, regT2), target + 3); } if (!supportsFloatingPoint()) { addSlowCase(notInt32Op1); addSlowCase(notInt32Op2); return; } Jump end = jump(); // Double less. emitBinaryDoubleOp(op_jnless, target, op1, op2, OperandTypes(), notInt32Op1, notInt32Op2, !isOperandConstantImmediateInt(op1), isOperandConstantImmediateInt(op1) || !isOperandConstantImmediateInt(op2)); end.link(this); } void JIT::emitSlow_op_jnless(Instruction* currentInstruction, Vector::iterator& iter) { unsigned op1 = currentInstruction[1].u.operand; unsigned op2 = currentInstruction[2].u.operand; unsigned target = currentInstruction[3].u.operand; if (!supportsFloatingPoint()) { if (!isOperandConstantImmediateInt(op1) && !isOperandConstantImmediateInt(op2)) linkSlowCase(iter); // int32 check linkSlowCase(iter); // int32 check } else { if (!isOperandConstantImmediateInt(op1)) { linkSlowCase(iter); // double check linkSlowCase(iter); // int32 check } if (isOperandConstantImmediateInt(op1) || !isOperandConstantImmediateInt(op2)) linkSlowCase(iter); // double check } JITStubCall stubCall(this, cti_op_jless); stubCall.addArgument(op1); stubCall.addArgument(op2); stubCall.call(); emitJumpSlowToHot(branchTest32(Zero, regT0), target + 3); } void JIT::emit_op_jnlesseq(Instruction* currentInstruction) { unsigned op1 = currentInstruction[1].u.operand; unsigned op2 = currentInstruction[2].u.operand; unsigned target = currentInstruction[3].u.operand; JumpList notInt32Op1; JumpList notInt32Op2; // Int32 less. if (isOperandConstantImmediateInt(op1)) { emitLoad(op2, regT3, regT2); notInt32Op2.append(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag))); addJump(branch32(LessThan, regT2, Imm32(getConstantOperand(op1).asInt32())), target + 3); } else if (isOperandConstantImmediateInt(op2)) { emitLoad(op1, regT1, regT0); notInt32Op1.append(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag))); addJump(branch32(GreaterThan, regT0, Imm32(getConstantOperand(op2).asInt32())), target + 3); } else { emitLoad2(op1, regT1, regT0, op2, regT3, regT2); notInt32Op1.append(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag))); notInt32Op2.append(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag))); addJump(branch32(GreaterThan, regT0, regT2), target + 3); } if (!supportsFloatingPoint()) { addSlowCase(notInt32Op1); addSlowCase(notInt32Op2); return; } Jump end = jump(); // Double less. emitBinaryDoubleOp(op_jnlesseq, target, op1, op2, OperandTypes(), notInt32Op1, notInt32Op2, !isOperandConstantImmediateInt(op1), isOperandConstantImmediateInt(op1) || !isOperandConstantImmediateInt(op2)); end.link(this); } void JIT::emitSlow_op_jnlesseq(Instruction* currentInstruction, Vector::iterator& iter) { unsigned op1 = currentInstruction[1].u.operand; unsigned op2 = currentInstruction[2].u.operand; unsigned target = currentInstruction[3].u.operand; if (!supportsFloatingPoint()) { if (!isOperandConstantImmediateInt(op1) && !isOperandConstantImmediateInt(op2)) linkSlowCase(iter); // int32 check linkSlowCase(iter); // int32 check } else { if (!isOperandConstantImmediateInt(op1)) { linkSlowCase(iter); // double check linkSlowCase(iter); // int32 check } if (isOperandConstantImmediateInt(op1) || !isOperandConstantImmediateInt(op2)) linkSlowCase(iter); // double check } JITStubCall stubCall(this, cti_op_jlesseq); stubCall.addArgument(op1); stubCall.addArgument(op2); stubCall.call(); emitJumpSlowToHot(branchTest32(Zero, regT0), target + 3); } // LeftShift (<<) void JIT::emit_op_lshift(Instruction* currentInstruction) { unsigned dst = currentInstruction[1].u.operand; unsigned op1 = currentInstruction[2].u.operand; unsigned op2 = currentInstruction[3].u.operand; if (isOperandConstantImmediateInt(op2)) { emitLoad(op1, regT1, regT0); addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag))); lshift32(Imm32(getConstantOperand(op2).asInt32()), regT0); emitStoreInt32(dst, regT0, dst == op1); return; } emitLoad2(op1, regT1, regT0, op2, regT3, regT2); if (!isOperandConstantImmediateInt(op1)) addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag))); addSlowCase(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag))); lshift32(regT2, regT0); emitStoreInt32(dst, regT0, dst == op1 || dst == op2); } void JIT::emitSlow_op_lshift(Instruction* currentInstruction, Vector::iterator& iter) { unsigned dst = currentInstruction[1].u.operand; unsigned op1 = currentInstruction[2].u.operand; unsigned op2 = currentInstruction[3].u.operand; if (!isOperandConstantImmediateInt(op1) && !isOperandConstantImmediateInt(op2)) linkSlowCase(iter); // int32 check linkSlowCase(iter); // int32 check JITStubCall stubCall(this, cti_op_lshift); stubCall.addArgument(op1); stubCall.addArgument(op2); stubCall.call(dst); } // RightShift (>>) void JIT::emit_op_rshift(Instruction* currentInstruction) { unsigned dst = currentInstruction[1].u.operand; unsigned op1 = currentInstruction[2].u.operand; unsigned op2 = currentInstruction[3].u.operand; if (isOperandConstantImmediateInt(op2)) { emitLoad(op1, regT1, regT0); addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag))); rshift32(Imm32(getConstantOperand(op2).asInt32()), regT0); emitStoreInt32(dst, regT0, dst == op1); return; } emitLoad2(op1, regT1, regT0, op2, regT3, regT2); if (!isOperandConstantImmediateInt(op1)) addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag))); addSlowCase(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag))); rshift32(regT2, regT0); emitStoreInt32(dst, regT0, dst == op1 || dst == op2); } void JIT::emitSlow_op_rshift(Instruction* currentInstruction, Vector::iterator& iter) { unsigned dst = currentInstruction[1].u.operand; unsigned op1 = currentInstruction[2].u.operand; unsigned op2 = currentInstruction[3].u.operand; if (!isOperandConstantImmediateInt(op1) && !isOperandConstantImmediateInt(op2)) linkSlowCase(iter); // int32 check linkSlowCase(iter); // int32 check JITStubCall stubCall(this, cti_op_rshift); stubCall.addArgument(op1); stubCall.addArgument(op2); stubCall.call(dst); } // BitAnd (&) void JIT::emit_op_bitand(Instruction* currentInstruction) { unsigned dst = currentInstruction[1].u.operand; unsigned op1 = currentInstruction[2].u.operand; unsigned op2 = currentInstruction[3].u.operand; unsigned op; int32_t constant; if (getOperandConstantImmediateInt(op1, op2, op, constant)) { emitLoad(op, regT1, regT0); addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag))); and32(Imm32(constant), regT0); emitStoreInt32(dst, regT0, (op == dst)); return; } emitLoad2(op1, regT1, regT0, op2, regT3, regT2); addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag))); addSlowCase(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag))); and32(regT2, regT0); emitStoreInt32(dst, regT0, (op1 == dst || op2 == dst)); } void JIT::emitSlow_op_bitand(Instruction* currentInstruction, Vector::iterator& iter) { unsigned dst = currentInstruction[1].u.operand; unsigned op1 = currentInstruction[2].u.operand; unsigned op2 = currentInstruction[3].u.operand; if (!isOperandConstantImmediateInt(op1) && !isOperandConstantImmediateInt(op2)) linkSlowCase(iter); // int32 check linkSlowCase(iter); // int32 check JITStubCall stubCall(this, cti_op_bitand); stubCall.addArgument(op1); stubCall.addArgument(op2); stubCall.call(dst); } // BitOr (|) void JIT::emit_op_bitor(Instruction* currentInstruction) { unsigned dst = currentInstruction[1].u.operand; unsigned op1 = currentInstruction[2].u.operand; unsigned op2 = currentInstruction[3].u.operand; unsigned op; int32_t constant; if (getOperandConstantImmediateInt(op1, op2, op, constant)) { emitLoad(op, regT1, regT0); addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag))); or32(Imm32(constant), regT0); emitStoreInt32(dst, regT0, (op == dst)); return; } emitLoad2(op1, regT1, regT0, op2, regT3, regT2); addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag))); addSlowCase(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag))); or32(regT2, regT0); emitStoreInt32(dst, regT0, (op1 == dst || op2 == dst)); } void JIT::emitSlow_op_bitor(Instruction* currentInstruction, Vector::iterator& iter) { unsigned dst = currentInstruction[1].u.operand; unsigned op1 = currentInstruction[2].u.operand; unsigned op2 = currentInstruction[3].u.operand; if (!isOperandConstantImmediateInt(op1) && !isOperandConstantImmediateInt(op2)) linkSlowCase(iter); // int32 check linkSlowCase(iter); // int32 check JITStubCall stubCall(this, cti_op_bitor); stubCall.addArgument(op1); stubCall.addArgument(op2); stubCall.call(dst); } // BitXor (^) void JIT::emit_op_bitxor(Instruction* currentInstruction) { unsigned dst = currentInstruction[1].u.operand; unsigned op1 = currentInstruction[2].u.operand; unsigned op2 = currentInstruction[3].u.operand; unsigned op; int32_t constant; if (getOperandConstantImmediateInt(op1, op2, op, constant)) { emitLoad(op, regT1, regT0); addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag))); xor32(Imm32(constant), regT0); emitStoreInt32(dst, regT0, (op == dst)); return; } emitLoad2(op1, regT1, regT0, op2, regT3, regT2); addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag))); addSlowCase(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag))); xor32(regT2, regT0); emitStoreInt32(dst, regT0, (op1 == dst || op2 == dst)); } void JIT::emitSlow_op_bitxor(Instruction* currentInstruction, Vector::iterator& iter) { unsigned dst = currentInstruction[1].u.operand; unsigned op1 = currentInstruction[2].u.operand; unsigned op2 = currentInstruction[3].u.operand; if (!isOperandConstantImmediateInt(op1) && !isOperandConstantImmediateInt(op2)) linkSlowCase(iter); // int32 check linkSlowCase(iter); // int32 check JITStubCall stubCall(this, cti_op_bitxor); stubCall.addArgument(op1); stubCall.addArgument(op2); stubCall.call(dst); } // BitNot (~) void JIT::emit_op_bitnot(Instruction* currentInstruction) { unsigned dst = currentInstruction[1].u.operand; unsigned src = currentInstruction[2].u.operand; emitLoad(src, regT1, regT0); addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag))); not32(regT0); emitStoreInt32(dst, regT0, (dst == src)); } void JIT::emitSlow_op_bitnot(Instruction* currentInstruction, Vector::iterator& iter) { unsigned dst = currentInstruction[1].u.operand; linkSlowCase(iter); // int32 check JITStubCall stubCall(this, cti_op_bitnot); stubCall.addArgument(regT1, regT0); stubCall.call(dst); } // PostInc (i++) void JIT::emit_op_post_inc(Instruction* currentInstruction) { unsigned dst = currentInstruction[1].u.operand; unsigned srcDst = currentInstruction[2].u.operand; emitLoad(srcDst, regT1, regT0); addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag))); if (dst == srcDst) // x = x++ is a noop for ints. return; emitStoreInt32(dst, regT0); addSlowCase(branchAdd32(Overflow, Imm32(1), regT0)); emitStoreInt32(srcDst, regT0, true); } void JIT::emitSlow_op_post_inc(Instruction* currentInstruction, Vector::iterator& iter) { unsigned dst = currentInstruction[1].u.operand; unsigned srcDst = currentInstruction[2].u.operand; linkSlowCase(iter); // int32 check if (dst != srcDst) linkSlowCase(iter); // overflow check JITStubCall stubCall(this, cti_op_post_inc); stubCall.addArgument(srcDst); stubCall.addArgument(Imm32(srcDst)); stubCall.call(dst); } // PostDec (i--) void JIT::emit_op_post_dec(Instruction* currentInstruction) { unsigned dst = currentInstruction[1].u.operand; unsigned srcDst = currentInstruction[2].u.operand; emitLoad(srcDst, regT1, regT0); addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag))); if (dst == srcDst) // x = x-- is a noop for ints. return; emitStoreInt32(dst, regT0); addSlowCase(branchSub32(Overflow, Imm32(1), regT0)); emitStoreInt32(srcDst, regT0, true); } void JIT::emitSlow_op_post_dec(Instruction* currentInstruction, Vector::iterator& iter) { unsigned dst = currentInstruction[1].u.operand; unsigned srcDst = currentInstruction[2].u.operand; linkSlowCase(iter); // int32 check if (dst != srcDst) linkSlowCase(iter); // overflow check JITStubCall stubCall(this, cti_op_post_dec); stubCall.addArgument(srcDst); stubCall.addArgument(Imm32(srcDst)); stubCall.call(dst); } // PreInc (++i) void JIT::emit_op_pre_inc(Instruction* currentInstruction) { unsigned srcDst = currentInstruction[1].u.operand; emitLoad(srcDst, regT1, regT0); addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag))); addSlowCase(branchAdd32(Overflow, Imm32(1), regT0)); emitStoreInt32(srcDst, regT0, true); } void JIT::emitSlow_op_pre_inc(Instruction* currentInstruction, Vector::iterator& iter) { unsigned srcDst = currentInstruction[1].u.operand; linkSlowCase(iter); // int32 check linkSlowCase(iter); // overflow check JITStubCall stubCall(this, cti_op_pre_inc); stubCall.addArgument(srcDst); stubCall.call(srcDst); } // PreDec (--i) void JIT::emit_op_pre_dec(Instruction* currentInstruction) { unsigned srcDst = currentInstruction[1].u.operand; emitLoad(srcDst, regT1, regT0); addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag))); addSlowCase(branchSub32(Overflow, Imm32(1), regT0)); emitStoreInt32(srcDst, regT0, true); } void JIT::emitSlow_op_pre_dec(Instruction* currentInstruction, Vector::iterator& iter) { unsigned srcDst = currentInstruction[1].u.operand; linkSlowCase(iter); // int32 check linkSlowCase(iter); // overflow check JITStubCall stubCall(this, cti_op_pre_dec); stubCall.addArgument(srcDst); stubCall.call(srcDst); } // Addition (+) void JIT::emit_op_add(Instruction* currentInstruction) { unsigned dst = currentInstruction[1].u.operand; unsigned op1 = currentInstruction[2].u.operand; unsigned op2 = currentInstruction[3].u.operand; OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); JumpList notInt32Op1; JumpList notInt32Op2; unsigned op; int32_t constant; if (getOperandConstantImmediateInt(op1, op2, op, constant)) { emitAdd32Constant(dst, op, constant, op == op1 ? types.first() : types.second()); return; } emitLoad2(op1, regT1, regT0, op2, regT3, regT2); notInt32Op1.append(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag))); notInt32Op2.append(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag))); // Int32 case. addSlowCase(branchAdd32(Overflow, regT2, regT0)); emitStoreInt32(dst, regT0, (op1 == dst || op2 == dst)); if (!supportsFloatingPoint()) { addSlowCase(notInt32Op1); addSlowCase(notInt32Op2); return; } Jump end = jump(); // Double case. emitBinaryDoubleOp(op_add, dst, op1, op2, types, notInt32Op1, notInt32Op2); end.link(this); } void JIT::emitAdd32Constant(unsigned dst, unsigned op, int32_t constant, ResultType opType) { // Int32 case. emitLoad(op, regT1, regT0); Jump notInt32 = branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)); addSlowCase(branchAdd32(Overflow, Imm32(constant), regT0)); emitStoreInt32(dst, regT0, (op == dst)); // Double case. if (!supportsFloatingPoint()) { addSlowCase(notInt32); return; } Jump end = jump(); notInt32.link(this); if (!opType.definitelyIsNumber()) addSlowCase(branch32(Above, regT1, Imm32(JSValue::LowestTag))); move(Imm32(constant), regT2); convertInt32ToDouble(regT2, fpRegT0); emitLoadDouble(op, fpRegT1); addDouble(fpRegT1, fpRegT0); emitStoreDouble(dst, fpRegT0); end.link(this); } void JIT::emitSlow_op_add(Instruction* currentInstruction, Vector::iterator& iter) { unsigned dst = currentInstruction[1].u.operand; unsigned op1 = currentInstruction[2].u.operand; unsigned op2 = currentInstruction[3].u.operand; OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); unsigned op; int32_t constant; if (getOperandConstantImmediateInt(op1, op2, op, constant)) { linkSlowCase(iter); // overflow check if (!supportsFloatingPoint()) { linkSlowCase(iter); // non-sse case return; } ResultType opType = op == op1 ? types.first() : types.second(); if (!opType.definitelyIsNumber()) linkSlowCase(iter); // double check } else { linkSlowCase(iter); // overflow check if (!supportsFloatingPoint()) { linkSlowCase(iter); // int32 check linkSlowCase(iter); // int32 check } else { if (!types.first().definitelyIsNumber()) linkSlowCase(iter); // double check if (!types.second().definitelyIsNumber()) { linkSlowCase(iter); // int32 check linkSlowCase(iter); // double check } } } JITStubCall stubCall(this, cti_op_add); stubCall.addArgument(op1); stubCall.addArgument(op2); stubCall.call(dst); } // Subtraction (-) void JIT::emit_op_sub(Instruction* currentInstruction) { unsigned dst = currentInstruction[1].u.operand; unsigned op1 = currentInstruction[2].u.operand; unsigned op2 = currentInstruction[3].u.operand; OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); JumpList notInt32Op1; JumpList notInt32Op2; if (isOperandConstantImmediateInt(op2)) { emitSub32Constant(dst, op1, getConstantOperand(op2).asInt32(), types.first()); return; } emitLoad2(op1, regT1, regT0, op2, regT3, regT2); notInt32Op1.append(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag))); notInt32Op2.append(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag))); // Int32 case. addSlowCase(branchSub32(Overflow, regT2, regT0)); emitStoreInt32(dst, regT0, (op1 == dst || op2 == dst)); if (!supportsFloatingPoint()) { addSlowCase(notInt32Op1); addSlowCase(notInt32Op2); return; } Jump end = jump(); // Double case. emitBinaryDoubleOp(op_sub, dst, op1, op2, types, notInt32Op1, notInt32Op2); end.link(this); } void JIT::emitSub32Constant(unsigned dst, unsigned op, int32_t constant, ResultType opType) { // Int32 case. emitLoad(op, regT1, regT0); Jump notInt32 = branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)); addSlowCase(branchSub32(Overflow, Imm32(constant), regT0)); emitStoreInt32(dst, regT0, (op == dst)); // Double case. if (!supportsFloatingPoint()) { addSlowCase(notInt32); return; } Jump end = jump(); notInt32.link(this); if (!opType.definitelyIsNumber()) addSlowCase(branch32(Above, regT1, Imm32(JSValue::LowestTag))); move(Imm32(constant), regT2); convertInt32ToDouble(regT2, fpRegT0); emitLoadDouble(op, fpRegT1); subDouble(fpRegT0, fpRegT1); emitStoreDouble(dst, fpRegT1); end.link(this); } void JIT::emitSlow_op_sub(Instruction* currentInstruction, Vector::iterator& iter) { unsigned dst = currentInstruction[1].u.operand; unsigned op1 = currentInstruction[2].u.operand; unsigned op2 = currentInstruction[3].u.operand; OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); if (isOperandConstantImmediateInt(op2)) { linkSlowCase(iter); // overflow check if (!supportsFloatingPoint() || !types.first().definitelyIsNumber()) linkSlowCase(iter); // int32 or double check } else { linkSlowCase(iter); // overflow check if (!supportsFloatingPoint()) { linkSlowCase(iter); // int32 check linkSlowCase(iter); // int32 check } else { if (!types.first().definitelyIsNumber()) linkSlowCase(iter); // double check if (!types.second().definitelyIsNumber()) { linkSlowCase(iter); // int32 check linkSlowCase(iter); // double check } } } JITStubCall stubCall(this, cti_op_sub); stubCall.addArgument(op1); stubCall.addArgument(op2); stubCall.call(dst); } void JIT::emitBinaryDoubleOp(OpcodeID opcodeID, unsigned dst, unsigned op1, unsigned op2, OperandTypes types, JumpList& notInt32Op1, JumpList& notInt32Op2, bool op1IsInRegisters, bool op2IsInRegisters) { JumpList end; if (!notInt32Op1.empty()) { // Double case 1: Op1 is not int32; Op2 is unknown. notInt32Op1.link(this); ASSERT(op1IsInRegisters); // Verify Op1 is double. if (!types.first().definitelyIsNumber()) addSlowCase(branch32(Above, regT1, Imm32(JSValue::LowestTag))); if (!op2IsInRegisters) emitLoad(op2, regT3, regT2); Jump doubleOp2 = branch32(Below, regT3, Imm32(JSValue::LowestTag)); if (!types.second().definitelyIsNumber()) addSlowCase(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag))); convertInt32ToDouble(regT2, fpRegT0); Jump doTheMath = jump(); // Load Op2 as double into double register. doubleOp2.link(this); emitLoadDouble(op2, fpRegT0); // Do the math. doTheMath.link(this); switch (opcodeID) { case op_mul: emitLoadDouble(op1, fpRegT2); mulDouble(fpRegT2, fpRegT0); emitStoreDouble(dst, fpRegT0); break; case op_add: emitLoadDouble(op1, fpRegT2); addDouble(fpRegT2, fpRegT0); emitStoreDouble(dst, fpRegT0); break; case op_sub: emitLoadDouble(op1, fpRegT1); subDouble(fpRegT0, fpRegT1); emitStoreDouble(dst, fpRegT1); break; case op_div: emitLoadDouble(op1, fpRegT1); divDouble(fpRegT0, fpRegT1); emitStoreDouble(dst, fpRegT1); break; case op_jnless: emitLoadDouble(op1, fpRegT2); addJump(branchDouble(DoubleLessThanOrEqual, fpRegT0, fpRegT2), dst + 3); break; case op_jnlesseq: emitLoadDouble(op1, fpRegT2); addJump(branchDouble(DoubleLessThan, fpRegT0, fpRegT2), dst + 3); break; default: ASSERT_NOT_REACHED(); } if (!notInt32Op2.empty()) end.append(jump()); } if (!notInt32Op2.empty()) { // Double case 2: Op1 is int32; Op2 is not int32. notInt32Op2.link(this); ASSERT(op2IsInRegisters); if (!op1IsInRegisters) emitLoadPayload(op1, regT0); convertInt32ToDouble(regT0, fpRegT0); // Verify op2 is double. if (!types.second().definitelyIsNumber()) addSlowCase(branch32(Above, regT3, Imm32(JSValue::LowestTag))); // Do the math. switch (opcodeID) { case op_mul: emitLoadDouble(op2, fpRegT2); mulDouble(fpRegT2, fpRegT0); emitStoreDouble(dst, fpRegT0); break; case op_add: emitLoadDouble(op2, fpRegT2); addDouble(fpRegT2, fpRegT0); emitStoreDouble(dst, fpRegT0); break; case op_sub: emitLoadDouble(op2, fpRegT2); subDouble(fpRegT2, fpRegT0); emitStoreDouble(dst, fpRegT0); break; case op_div: emitLoadDouble(op2, fpRegT2); divDouble(fpRegT2, fpRegT0); emitStoreDouble(dst, fpRegT0); break; case op_jnless: emitLoadDouble(op2, fpRegT1); addJump(branchDouble(DoubleLessThanOrEqual, fpRegT1, fpRegT0), dst + 3); break; case op_jnlesseq: emitLoadDouble(op2, fpRegT1); addJump(branchDouble(DoubleLessThan, fpRegT1, fpRegT0), dst + 3); break; default: ASSERT_NOT_REACHED(); } } end.link(this); } // Multiplication (*) void JIT::emit_op_mul(Instruction* currentInstruction) { unsigned dst = currentInstruction[1].u.operand; unsigned op1 = currentInstruction[2].u.operand; unsigned op2 = currentInstruction[3].u.operand; OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); JumpList notInt32Op1; JumpList notInt32Op2; emitLoad2(op1, regT1, regT0, op2, regT3, regT2); notInt32Op1.append(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag))); notInt32Op2.append(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag))); // Int32 case. move(regT0, regT3); addSlowCase(branchMul32(Overflow, regT2, regT0)); addSlowCase(branchTest32(Zero, regT0)); emitStoreInt32(dst, regT0, (op1 == dst || op2 == dst)); if (!supportsFloatingPoint()) { addSlowCase(notInt32Op1); addSlowCase(notInt32Op2); return; } Jump end = jump(); // Double case. emitBinaryDoubleOp(op_mul, dst, op1, op2, types, notInt32Op1, notInt32Op2); end.link(this); } void JIT::emitSlow_op_mul(Instruction* currentInstruction, Vector::iterator& iter) { unsigned dst = currentInstruction[1].u.operand; unsigned op1 = currentInstruction[2].u.operand; unsigned op2 = currentInstruction[3].u.operand; OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); Jump overflow = getSlowCase(iter); // overflow check linkSlowCase(iter); // zero result check Jump negZero = branchOr32(Signed, regT2, regT3); emitStoreInt32(dst, Imm32(0), (op1 == dst || op2 == dst)); emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_mul)); negZero.link(this); overflow.link(this); if (!supportsFloatingPoint()) { linkSlowCase(iter); // int32 check linkSlowCase(iter); // int32 check } if (supportsFloatingPoint()) { if (!types.first().definitelyIsNumber()) linkSlowCase(iter); // double check if (!types.second().definitelyIsNumber()) { linkSlowCase(iter); // int32 check linkSlowCase(iter); // double check } } Label jitStubCall(this); JITStubCall stubCall(this, cti_op_mul); stubCall.addArgument(op1); stubCall.addArgument(op2); stubCall.call(dst); } // Division (/) void JIT::emit_op_div(Instruction* currentInstruction) { unsigned dst = currentInstruction[1].u.operand; unsigned op1 = currentInstruction[2].u.operand; unsigned op2 = currentInstruction[3].u.operand; OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); if (!supportsFloatingPoint()) { addSlowCase(jump()); return; } // Int32 divide. JumpList notInt32Op1; JumpList notInt32Op2; JumpList end; emitLoad2(op1, regT1, regT0, op2, regT3, regT2); notInt32Op1.append(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag))); notInt32Op2.append(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag))); convertInt32ToDouble(regT0, fpRegT0); convertInt32ToDouble(regT2, fpRegT1); divDouble(fpRegT1, fpRegT0); JumpList doubleResult; if (!isOperandConstantImmediateInt(op1) || getConstantOperand(op1).asInt32() > 1) { m_assembler.cvttsd2si_rr(fpRegT0, regT0); convertInt32ToDouble(regT0, fpRegT1); m_assembler.ucomisd_rr(fpRegT1, fpRegT0); doubleResult.append(m_assembler.jne()); doubleResult.append(m_assembler.jp()); doubleResult.append(branchTest32(Zero, regT0)); // Int32 result. emitStoreInt32(dst, regT0, (op1 == dst || op2 == dst)); end.append(jump()); } // Double result. doubleResult.link(this); emitStoreDouble(dst, fpRegT0); end.append(jump()); // Double divide. emitBinaryDoubleOp(op_div, dst, op1, op2, types, notInt32Op1, notInt32Op2); end.link(this); } void JIT::emitSlow_op_div(Instruction* currentInstruction, Vector::iterator& iter) { unsigned dst = currentInstruction[1].u.operand; unsigned op1 = currentInstruction[2].u.operand; unsigned op2 = currentInstruction[3].u.operand; OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); if (!supportsFloatingPoint()) linkSlowCase(iter); else { if (!types.first().definitelyIsNumber()) linkSlowCase(iter); // double check if (!types.second().definitelyIsNumber()) { linkSlowCase(iter); // int32 check linkSlowCase(iter); // double check } } JITStubCall stubCall(this, cti_op_div); stubCall.addArgument(op1); stubCall.addArgument(op2); stubCall.call(dst); } // Mod (%) /* ------------------------------ BEGIN: OP_MOD ------------------------------ */ #if PLATFORM(X86) || PLATFORM(X86_64) void JIT::emit_op_mod(Instruction* currentInstruction) { unsigned dst = currentInstruction[1].u.operand; unsigned op1 = currentInstruction[2].u.operand; unsigned op2 = currentInstruction[3].u.operand; if (isOperandConstantImmediateInt(op2) && getConstantOperand(op2).asInt32() != 0) { emitLoad(op1, X86::edx, X86::eax); move(Imm32(getConstantOperand(op2).asInt32()), X86::ecx); addSlowCase(branch32(NotEqual, X86::edx, Imm32(JSValue::Int32Tag))); if (getConstantOperand(op2).asInt32() == -1) addSlowCase(branch32(Equal, X86::eax, Imm32(0x80000000))); // -2147483648 / -1 => EXC_ARITHMETIC } else { emitLoad2(op1, X86::edx, X86::eax, op2, X86::ebx, X86::ecx); addSlowCase(branch32(NotEqual, X86::edx, Imm32(JSValue::Int32Tag))); addSlowCase(branch32(NotEqual, X86::ebx, Imm32(JSValue::Int32Tag))); addSlowCase(branch32(Equal, X86::eax, Imm32(0x80000000))); // -2147483648 / -1 => EXC_ARITHMETIC addSlowCase(branch32(Equal, X86::ecx, Imm32(0))); // divide by 0 } move(X86::eax, X86::ebx); // Save dividend payload, in case of 0. m_assembler.cdq(); m_assembler.idivl_r(X86::ecx); // If the remainder is zero and the dividend is negative, the result is -0. Jump storeResult1 = branchTest32(NonZero, X86::edx); Jump storeResult2 = branchTest32(Zero, X86::ebx, Imm32(0x80000000)); // not negative emitStore(dst, jsNumber(m_globalData, -0.0)); Jump end = jump(); storeResult1.link(this); storeResult2.link(this); emitStoreInt32(dst, X86::edx, (op1 == dst || op2 == dst)); end.link(this); } void JIT::emitSlow_op_mod(Instruction* currentInstruction, Vector::iterator& iter) { unsigned dst = currentInstruction[1].u.operand; unsigned op1 = currentInstruction[2].u.operand; unsigned op2 = currentInstruction[3].u.operand; if (isOperandConstantImmediateInt(op2) && getConstantOperand(op2).asInt32() != 0) { linkSlowCase(iter); // int32 check if (getConstantOperand(op2).asInt32() == -1) linkSlowCase(iter); // 0x80000000 check } else { linkSlowCase(iter); // int32 check linkSlowCase(iter); // int32 check linkSlowCase(iter); // 0 check linkSlowCase(iter); // 0x80000000 check } JITStubCall stubCall(this, cti_op_mod); stubCall.addArgument(op1); stubCall.addArgument(op2); stubCall.call(dst); } #else // PLATFORM(X86) || PLATFORM(X86_64) void JIT::emit_op_mod(Instruction* currentInstruction) { unsigned dst = currentInstruction[1].u.operand; unsigned op1 = currentInstruction[2].u.operand; unsigned op2 = currentInstruction[3].u.operand; JITStubCall stubCall(this, cti_op_mod); stubCall.addArgument(op1); stubCall.addArgument(op2); stubCall.call(dst); } void JIT::emitSlow_op_mod(Instruction*, Vector::iterator&) { } #endif // PLATFORM(X86) || PLATFORM(X86_64) /* ------------------------------ END: OP_MOD ------------------------------ */ #else // USE(JSVALUE32_64) void JIT::emit_op_lshift(Instruction* currentInstruction) { unsigned result = currentInstruction[1].u.operand; unsigned op1 = currentInstruction[2].u.operand; unsigned op2 = currentInstruction[3].u.operand; emitGetVirtualRegisters(op1, regT0, op2, regT2); // FIXME: would we be better using 'emitJumpSlowCaseIfNotImmediateIntegers'? - we *probably* ought to be consistent. emitJumpSlowCaseIfNotImmediateInteger(regT0); emitJumpSlowCaseIfNotImmediateInteger(regT2); emitFastArithImmToInt(regT0); emitFastArithImmToInt(regT2); #if !PLATFORM(X86) // Mask with 0x1f as per ecma-262 11.7.2 step 7. // On 32-bit x86 this is not necessary, since the shift anount is implicitly masked in the instruction. and32(Imm32(0x1f), regT2); #endif lshift32(regT2, regT0); #if !USE(JSVALUE64) addSlowCase(branchAdd32(Overflow, regT0, regT0)); signExtend32ToPtr(regT0, regT0); #endif emitFastArithReTagImmediate(regT0, regT0); emitPutVirtualRegister(result); } void JIT::emitSlow_op_lshift(Instruction* currentInstruction, Vector::iterator& iter) { unsigned result = currentInstruction[1].u.operand; unsigned op1 = currentInstruction[2].u.operand; unsigned op2 = currentInstruction[3].u.operand; #if USE(JSVALUE64) UNUSED_PARAM(op1); UNUSED_PARAM(op2); linkSlowCase(iter); linkSlowCase(iter); #else // If we are limited to 32-bit immediates there is a third slow case, which required the operands to have been reloaded. Jump notImm1 = getSlowCase(iter); Jump notImm2 = getSlowCase(iter); linkSlowCase(iter); emitGetVirtualRegisters(op1, regT0, op2, regT2); notImm1.link(this); notImm2.link(this); #endif JITStubCall stubCall(this, cti_op_lshift); stubCall.addArgument(regT0); stubCall.addArgument(regT2); stubCall.call(result); } void JIT::emit_op_rshift(Instruction* currentInstruction) { unsigned result = currentInstruction[1].u.operand; unsigned op1 = currentInstruction[2].u.operand; unsigned op2 = currentInstruction[3].u.operand; if (isOperandConstantImmediateInt(op2)) { // isOperandConstantImmediateInt(op2) => 1 SlowCase emitGetVirtualRegister(op1, regT0); emitJumpSlowCaseIfNotImmediateInteger(regT0); // Mask with 0x1f as per ecma-262 11.7.2 step 7. #if USE(JSVALUE64) rshift32(Imm32(getConstantOperandImmediateInt(op2) & 0x1f), regT0); #else rshiftPtr(Imm32(getConstantOperandImmediateInt(op2) & 0x1f), regT0); #endif } else { emitGetVirtualRegisters(op1, regT0, op2, regT2); if (supportsFloatingPointTruncate()) { Jump lhsIsInt = emitJumpIfImmediateInteger(regT0); #if USE(JSVALUE64) // supportsFloatingPoint() && USE(JSVALUE64) => 3 SlowCases addSlowCase(emitJumpIfNotImmediateNumber(regT0)); addPtr(tagTypeNumberRegister, regT0); movePtrToDouble(regT0, fpRegT0); addSlowCase(branchTruncateDoubleToInt32(fpRegT0, regT0)); #else // supportsFloatingPoint() && !USE(JSVALUE64) => 5 SlowCases (of which 1 IfNotJSCell) emitJumpSlowCaseIfNotJSCell(regT0, op1); addSlowCase(checkStructure(regT0, m_globalData->numberStructure.get())); loadDouble(Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0); addSlowCase(branchTruncateDoubleToInt32(fpRegT0, regT0)); addSlowCase(branchAdd32(Overflow, regT0, regT0)); #endif lhsIsInt.link(this); emitJumpSlowCaseIfNotImmediateInteger(regT2); } else { // !supportsFloatingPoint() => 2 SlowCases emitJumpSlowCaseIfNotImmediateInteger(regT0); emitJumpSlowCaseIfNotImmediateInteger(regT2); } emitFastArithImmToInt(regT2); #if !PLATFORM(X86) // Mask with 0x1f as per ecma-262 11.7.2 step 7. // On 32-bit x86 this is not necessary, since the shift anount is implicitly masked in the instruction. and32(Imm32(0x1f), regT2); #endif #if USE(JSVALUE64) rshift32(regT2, regT0); #else rshiftPtr(regT2, regT0); #endif } #if USE(JSVALUE64) emitFastArithIntToImmNoCheck(regT0, regT0); #else orPtr(Imm32(JSImmediate::TagTypeNumber), regT0); #endif emitPutVirtualRegister(result); } void JIT::emitSlow_op_rshift(Instruction* currentInstruction, Vector::iterator& iter) { unsigned result = currentInstruction[1].u.operand; unsigned op1 = currentInstruction[2].u.operand; unsigned op2 = currentInstruction[3].u.operand; JITStubCall stubCall(this, cti_op_rshift); if (isOperandConstantImmediateInt(op2)) { linkSlowCase(iter); stubCall.addArgument(regT0); stubCall.addArgument(op2, regT2); } else { if (supportsFloatingPointTruncate()) { #if USE(JSVALUE64) linkSlowCase(iter); linkSlowCase(iter); linkSlowCase(iter); #else linkSlowCaseIfNotJSCell(iter, op1); linkSlowCase(iter); linkSlowCase(iter); linkSlowCase(iter); linkSlowCase(iter); #endif // We're reloading op1 to regT0 as we can no longer guarantee that // we have not munged the operand. It may have already been shifted // correctly, but it still will not have been tagged. stubCall.addArgument(op1, regT0); stubCall.addArgument(regT2); } else { linkSlowCase(iter); linkSlowCase(iter); stubCall.addArgument(regT0); stubCall.addArgument(regT2); } } stubCall.call(result); } void JIT::emit_op_jnless(Instruction* currentInstruction) { unsigned op1 = currentInstruction[1].u.operand; unsigned op2 = currentInstruction[2].u.operand; unsigned target = currentInstruction[3].u.operand; // We generate inline code for the following cases in the fast path: // - int immediate to constant int immediate // - constant int immediate to int immediate // - int immediate to int immediate if (isOperandConstantImmediateInt(op2)) { emitGetVirtualRegister(op1, regT0); emitJumpSlowCaseIfNotImmediateInteger(regT0); #if USE(JSVALUE64) int32_t op2imm = getConstantOperandImmediateInt(op2); #else int32_t op2imm = static_cast(JSImmediate::rawValue(getConstantOperand(op2))); #endif addJump(branch32(GreaterThanOrEqual, regT0, Imm32(op2imm)), target + 3); } else if (isOperandConstantImmediateInt(op1)) { emitGetVirtualRegister(op2, regT1); emitJumpSlowCaseIfNotImmediateInteger(regT1); #if USE(JSVALUE64) int32_t op1imm = getConstantOperandImmediateInt(op1); #else int32_t op1imm = static_cast(JSImmediate::rawValue(getConstantOperand(op1))); #endif addJump(branch32(LessThanOrEqual, regT1, Imm32(op1imm)), target + 3); } else { emitGetVirtualRegisters(op1, regT0, op2, regT1); emitJumpSlowCaseIfNotImmediateInteger(regT0); emitJumpSlowCaseIfNotImmediateInteger(regT1); addJump(branch32(GreaterThanOrEqual, regT0, regT1), target + 3); } } void JIT::emitSlow_op_jnless(Instruction* currentInstruction, Vector::iterator& iter) { unsigned op1 = currentInstruction[1].u.operand; unsigned op2 = currentInstruction[2].u.operand; unsigned target = currentInstruction[3].u.operand; // We generate inline code for the following cases in the slow path: // - floating-point number to constant int immediate // - constant int immediate to floating-point number // - floating-point number to floating-point number. if (isOperandConstantImmediateInt(op2)) { linkSlowCase(iter); if (supportsFloatingPoint()) { #if USE(JSVALUE64) Jump fail1 = emitJumpIfNotImmediateNumber(regT0); addPtr(tagTypeNumberRegister, regT0); movePtrToDouble(regT0, fpRegT0); #else Jump fail1; if (!m_codeBlock->isKnownNotImmediate(op1)) fail1 = emitJumpIfNotJSCell(regT0); Jump fail2 = checkStructure(regT0, m_globalData->numberStructure.get()); loadDouble(Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0); #endif int32_t op2imm = getConstantOperand(op2).asInt32();; move(Imm32(op2imm), regT1); convertInt32ToDouble(regT1, fpRegT1); emitJumpSlowToHot(branchDouble(DoubleLessThanOrEqual, fpRegT1, fpRegT0), target + 3); emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnless)); #if USE(JSVALUE64) fail1.link(this); #else if (!m_codeBlock->isKnownNotImmediate(op1)) fail1.link(this); fail2.link(this); #endif } JITStubCall stubCall(this, cti_op_jless); stubCall.addArgument(regT0); stubCall.addArgument(op2, regT2); stubCall.call(); emitJumpSlowToHot(branchTest32(Zero, regT0), target + 3); } else if (isOperandConstantImmediateInt(op1)) { linkSlowCase(iter); if (supportsFloatingPoint()) { #if USE(JSVALUE64) Jump fail1 = emitJumpIfNotImmediateNumber(regT1); addPtr(tagTypeNumberRegister, regT1); movePtrToDouble(regT1, fpRegT1); #else Jump fail1; if (!m_codeBlock->isKnownNotImmediate(op2)) fail1 = emitJumpIfNotJSCell(regT1); Jump fail2 = checkStructure(regT1, m_globalData->numberStructure.get()); loadDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT1); #endif int32_t op1imm = getConstantOperand(op1).asInt32();; move(Imm32(op1imm), regT0); convertInt32ToDouble(regT0, fpRegT0); emitJumpSlowToHot(branchDouble(DoubleLessThanOrEqual, fpRegT1, fpRegT0), target + 3); emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnless)); #if USE(JSVALUE64) fail1.link(this); #else if (!m_codeBlock->isKnownNotImmediate(op2)) fail1.link(this); fail2.link(this); #endif } JITStubCall stubCall(this, cti_op_jless); stubCall.addArgument(op1, regT2); stubCall.addArgument(regT1); stubCall.call(); emitJumpSlowToHot(branchTest32(Zero, regT0), target + 3); } else { linkSlowCase(iter); if (supportsFloatingPoint()) { #if USE(JSVALUE64) Jump fail1 = emitJumpIfNotImmediateNumber(regT0); Jump fail2 = emitJumpIfNotImmediateNumber(regT1); Jump fail3 = emitJumpIfImmediateInteger(regT1); addPtr(tagTypeNumberRegister, regT0); addPtr(tagTypeNumberRegister, regT1); movePtrToDouble(regT0, fpRegT0); movePtrToDouble(regT1, fpRegT1); #else Jump fail1; if (!m_codeBlock->isKnownNotImmediate(op1)) fail1 = emitJumpIfNotJSCell(regT0); Jump fail2; if (!m_codeBlock->isKnownNotImmediate(op2)) fail2 = emitJumpIfNotJSCell(regT1); Jump fail3 = checkStructure(regT0, m_globalData->numberStructure.get()); Jump fail4 = checkStructure(regT1, m_globalData->numberStructure.get()); loadDouble(Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0); loadDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT1); #endif emitJumpSlowToHot(branchDouble(DoubleLessThanOrEqual, fpRegT1, fpRegT0), target + 3); emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnless)); #if USE(JSVALUE64) fail1.link(this); fail2.link(this); fail3.link(this); #else if (!m_codeBlock->isKnownNotImmediate(op1)) fail1.link(this); if (!m_codeBlock->isKnownNotImmediate(op2)) fail2.link(this); fail3.link(this); fail4.link(this); #endif } linkSlowCase(iter); JITStubCall stubCall(this, cti_op_jless); stubCall.addArgument(regT0); stubCall.addArgument(regT1); stubCall.call(); emitJumpSlowToHot(branchTest32(Zero, regT0), target + 3); } } void JIT::emit_op_jnlesseq(Instruction* currentInstruction) { unsigned op1 = currentInstruction[1].u.operand; unsigned op2 = currentInstruction[2].u.operand; unsigned target = currentInstruction[3].u.operand; // We generate inline code for the following cases in the fast path: // - int immediate to constant int immediate // - constant int immediate to int immediate // - int immediate to int immediate if (isOperandConstantImmediateInt(op2)) { emitGetVirtualRegister(op1, regT0); emitJumpSlowCaseIfNotImmediateInteger(regT0); #if USE(JSVALUE64) int32_t op2imm = getConstantOperandImmediateInt(op2); #else int32_t op2imm = static_cast(JSImmediate::rawValue(getConstantOperand(op2))); #endif addJump(branch32(GreaterThan, regT0, Imm32(op2imm)), target + 3); } else if (isOperandConstantImmediateInt(op1)) { emitGetVirtualRegister(op2, regT1); emitJumpSlowCaseIfNotImmediateInteger(regT1); #if USE(JSVALUE64) int32_t op1imm = getConstantOperandImmediateInt(op1); #else int32_t op1imm = static_cast(JSImmediate::rawValue(getConstantOperand(op1))); #endif addJump(branch32(LessThan, regT1, Imm32(op1imm)), target + 3); } else { emitGetVirtualRegisters(op1, regT0, op2, regT1); emitJumpSlowCaseIfNotImmediateInteger(regT0); emitJumpSlowCaseIfNotImmediateInteger(regT1); addJump(branch32(GreaterThan, regT0, regT1), target + 3); } } void JIT::emitSlow_op_jnlesseq(Instruction* currentInstruction, Vector::iterator& iter) { unsigned op1 = currentInstruction[1].u.operand; unsigned op2 = currentInstruction[2].u.operand; unsigned target = currentInstruction[3].u.operand; // We generate inline code for the following cases in the slow path: // - floating-point number to constant int immediate // - constant int immediate to floating-point number // - floating-point number to floating-point number. if (isOperandConstantImmediateInt(op2)) { linkSlowCase(iter); if (supportsFloatingPoint()) { #if USE(JSVALUE64) Jump fail1 = emitJumpIfNotImmediateNumber(regT0); addPtr(tagTypeNumberRegister, regT0); movePtrToDouble(regT0, fpRegT0); #else Jump fail1; if (!m_codeBlock->isKnownNotImmediate(op1)) fail1 = emitJumpIfNotJSCell(regT0); Jump fail2 = checkStructure(regT0, m_globalData->numberStructure.get()); loadDouble(Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0); #endif int32_t op2imm = getConstantOperand(op2).asInt32();; move(Imm32(op2imm), regT1); convertInt32ToDouble(regT1, fpRegT1); emitJumpSlowToHot(branchDouble(DoubleLessThan, fpRegT1, fpRegT0), target + 3); emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnlesseq)); #if USE(JSVALUE64) fail1.link(this); #else if (!m_codeBlock->isKnownNotImmediate(op1)) fail1.link(this); fail2.link(this); #endif } JITStubCall stubCall(this, cti_op_jlesseq); stubCall.addArgument(regT0); stubCall.addArgument(op2, regT2); stubCall.call(); emitJumpSlowToHot(branchTest32(Zero, regT0), target + 3); } else if (isOperandConstantImmediateInt(op1)) { linkSlowCase(iter); if (supportsFloatingPoint()) { #if USE(JSVALUE64) Jump fail1 = emitJumpIfNotImmediateNumber(regT1); addPtr(tagTypeNumberRegister, regT1); movePtrToDouble(regT1, fpRegT1); #else Jump fail1; if (!m_codeBlock->isKnownNotImmediate(op2)) fail1 = emitJumpIfNotJSCell(regT1); Jump fail2 = checkStructure(regT1, m_globalData->numberStructure.get()); loadDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT1); #endif int32_t op1imm = getConstantOperand(op1).asInt32();; move(Imm32(op1imm), regT0); convertInt32ToDouble(regT0, fpRegT0); emitJumpSlowToHot(branchDouble(DoubleLessThan, fpRegT1, fpRegT0), target + 3); emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnlesseq)); #if USE(JSVALUE64) fail1.link(this); #else if (!m_codeBlock->isKnownNotImmediate(op2)) fail1.link(this); fail2.link(this); #endif } JITStubCall stubCall(this, cti_op_jlesseq); stubCall.addArgument(op1, regT2); stubCall.addArgument(regT1); stubCall.call(); emitJumpSlowToHot(branchTest32(Zero, regT0), target + 3); } else { linkSlowCase(iter); if (supportsFloatingPoint()) { #if USE(JSVALUE64) Jump fail1 = emitJumpIfNotImmediateNumber(regT0); Jump fail2 = emitJumpIfNotImmediateNumber(regT1); Jump fail3 = emitJumpIfImmediateInteger(regT1); addPtr(tagTypeNumberRegister, regT0); addPtr(tagTypeNumberRegister, regT1); movePtrToDouble(regT0, fpRegT0); movePtrToDouble(regT1, fpRegT1); #else Jump fail1; if (!m_codeBlock->isKnownNotImmediate(op1)) fail1 = emitJumpIfNotJSCell(regT0); Jump fail2; if (!m_codeBlock->isKnownNotImmediate(op2)) fail2 = emitJumpIfNotJSCell(regT1); Jump fail3 = checkStructure(regT0, m_globalData->numberStructure.get()); Jump fail4 = checkStructure(regT1, m_globalData->numberStructure.get()); loadDouble(Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0); loadDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT1); #endif emitJumpSlowToHot(branchDouble(DoubleLessThan, fpRegT1, fpRegT0), target + 3); emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnlesseq)); #if USE(JSVALUE64) fail1.link(this); fail2.link(this); fail3.link(this); #else if (!m_codeBlock->isKnownNotImmediate(op1)) fail1.link(this); if (!m_codeBlock->isKnownNotImmediate(op2)) fail2.link(this); fail3.link(this); fail4.link(this); #endif } linkSlowCase(iter); JITStubCall stubCall(this, cti_op_jlesseq); stubCall.addArgument(regT0); stubCall.addArgument(regT1); stubCall.call(); emitJumpSlowToHot(branchTest32(Zero, regT0), target + 3); } } void JIT::emit_op_bitand(Instruction* currentInstruction) { unsigned result = currentInstruction[1].u.operand; unsigned op1 = currentInstruction[2].u.operand; unsigned op2 = currentInstruction[3].u.operand; if (isOperandConstantImmediateInt(op1)) { emitGetVirtualRegister(op2, regT0); emitJumpSlowCaseIfNotImmediateInteger(regT0); #if USE(JSVALUE64) int32_t imm = getConstantOperandImmediateInt(op1); andPtr(Imm32(imm), regT0); if (imm >= 0) emitFastArithIntToImmNoCheck(regT0, regT0); #else andPtr(Imm32(static_cast(JSImmediate::rawValue(getConstantOperand(op1)))), regT0); #endif } else if (isOperandConstantImmediateInt(op2)) { emitGetVirtualRegister(op1, regT0); emitJumpSlowCaseIfNotImmediateInteger(regT0); #if USE(JSVALUE64) int32_t imm = getConstantOperandImmediateInt(op2); andPtr(Imm32(imm), regT0); if (imm >= 0) emitFastArithIntToImmNoCheck(regT0, regT0); #else andPtr(Imm32(static_cast(JSImmediate::rawValue(getConstantOperand(op2)))), regT0); #endif } else { emitGetVirtualRegisters(op1, regT0, op2, regT1); andPtr(regT1, regT0); emitJumpSlowCaseIfNotImmediateInteger(regT0); } emitPutVirtualRegister(result); } void JIT::emitSlow_op_bitand(Instruction* currentInstruction, Vector::iterator& iter) { unsigned result = currentInstruction[1].u.operand; unsigned op1 = currentInstruction[2].u.operand; unsigned op2 = currentInstruction[3].u.operand; linkSlowCase(iter); if (isOperandConstantImmediateInt(op1)) { JITStubCall stubCall(this, cti_op_bitand); stubCall.addArgument(op1, regT2); stubCall.addArgument(regT0); stubCall.call(result); } else if (isOperandConstantImmediateInt(op2)) { JITStubCall stubCall(this, cti_op_bitand); stubCall.addArgument(regT0); stubCall.addArgument(op2, regT2); stubCall.call(result); } else { JITStubCall stubCall(this, cti_op_bitand); stubCall.addArgument(op1, regT2); stubCall.addArgument(regT1); stubCall.call(result); } } void JIT::emit_op_post_inc(Instruction* currentInstruction) { unsigned result = currentInstruction[1].u.operand; unsigned srcDst = currentInstruction[2].u.operand; emitGetVirtualRegister(srcDst, regT0); move(regT0, regT1); emitJumpSlowCaseIfNotImmediateInteger(regT0); #if USE(JSVALUE64) addSlowCase(branchAdd32(Overflow, Imm32(1), regT1)); emitFastArithIntToImmNoCheck(regT1, regT1); #else addSlowCase(branchAdd32(Overflow, Imm32(1 << JSImmediate::IntegerPayloadShift), regT1)); signExtend32ToPtr(regT1, regT1); #endif emitPutVirtualRegister(srcDst, regT1); emitPutVirtualRegister(result); } void JIT::emitSlow_op_post_inc(Instruction* currentInstruction, Vector::iterator& iter) { unsigned result = currentInstruction[1].u.operand; unsigned srcDst = currentInstruction[2].u.operand; linkSlowCase(iter); linkSlowCase(iter); JITStubCall stubCall(this, cti_op_post_inc); stubCall.addArgument(regT0); stubCall.addArgument(Imm32(srcDst)); stubCall.call(result); } void JIT::emit_op_post_dec(Instruction* currentInstruction) { unsigned result = currentInstruction[1].u.operand; unsigned srcDst = currentInstruction[2].u.operand; emitGetVirtualRegister(srcDst, regT0); move(regT0, regT1); emitJumpSlowCaseIfNotImmediateInteger(regT0); #if USE(JSVALUE64) addSlowCase(branchSub32(Zero, Imm32(1), regT1)); emitFastArithIntToImmNoCheck(regT1, regT1); #else addSlowCase(branchSub32(Zero, Imm32(1 << JSImmediate::IntegerPayloadShift), regT1)); signExtend32ToPtr(regT1, regT1); #endif emitPutVirtualRegister(srcDst, regT1); emitPutVirtualRegister(result); } void JIT::emitSlow_op_post_dec(Instruction* currentInstruction, Vector::iterator& iter) { unsigned result = currentInstruction[1].u.operand; unsigned srcDst = currentInstruction[2].u.operand; linkSlowCase(iter); linkSlowCase(iter); JITStubCall stubCall(this, cti_op_post_dec); stubCall.addArgument(regT0); stubCall.addArgument(Imm32(srcDst)); stubCall.call(result); } void JIT::emit_op_pre_inc(Instruction* currentInstruction) { unsigned srcDst = currentInstruction[1].u.operand; emitGetVirtualRegister(srcDst, regT0); emitJumpSlowCaseIfNotImmediateInteger(regT0); #if USE(JSVALUE64) addSlowCase(branchAdd32(Overflow, Imm32(1), regT0)); emitFastArithIntToImmNoCheck(regT0, regT0); #else addSlowCase(branchAdd32(Overflow, Imm32(1 << JSImmediate::IntegerPayloadShift), regT0)); signExtend32ToPtr(regT0, regT0); #endif emitPutVirtualRegister(srcDst); } void JIT::emitSlow_op_pre_inc(Instruction* currentInstruction, Vector::iterator& iter) { unsigned srcDst = currentInstruction[1].u.operand; Jump notImm = getSlowCase(iter); linkSlowCase(iter); emitGetVirtualRegister(srcDst, regT0); notImm.link(this); JITStubCall stubCall(this, cti_op_pre_inc); stubCall.addArgument(regT0); stubCall.call(srcDst); } void JIT::emit_op_pre_dec(Instruction* currentInstruction) { unsigned srcDst = currentInstruction[1].u.operand; emitGetVirtualRegister(srcDst, regT0); emitJumpSlowCaseIfNotImmediateInteger(regT0); #if USE(JSVALUE64) addSlowCase(branchSub32(Zero, Imm32(1), regT0)); emitFastArithIntToImmNoCheck(regT0, regT0); #else addSlowCase(branchSub32(Zero, Imm32(1 << JSImmediate::IntegerPayloadShift), regT0)); signExtend32ToPtr(regT0, regT0); #endif emitPutVirtualRegister(srcDst); } void JIT::emitSlow_op_pre_dec(Instruction* currentInstruction, Vector::iterator& iter) { unsigned srcDst = currentInstruction[1].u.operand; Jump notImm = getSlowCase(iter); linkSlowCase(iter); emitGetVirtualRegister(srcDst, regT0); notImm.link(this); JITStubCall stubCall(this, cti_op_pre_dec); stubCall.addArgument(regT0); stubCall.call(srcDst); } /* ------------------------------ BEGIN: OP_MOD ------------------------------ */ #if PLATFORM(X86) || PLATFORM(X86_64) void JIT::emit_op_mod(Instruction* currentInstruction) { unsigned result = currentInstruction[1].u.operand; unsigned op1 = currentInstruction[2].u.operand; unsigned op2 = currentInstruction[3].u.operand; emitGetVirtualRegisters(op1, X86::eax, op2, X86::ecx); emitJumpSlowCaseIfNotImmediateInteger(X86::eax); emitJumpSlowCaseIfNotImmediateInteger(X86::ecx); #if USE(JSVALUE64) addSlowCase(branchPtr(Equal, X86::ecx, ImmPtr(JSValue::encode(jsNumber(m_globalData, 0))))); m_assembler.cdq(); m_assembler.idivl_r(X86::ecx); #else emitFastArithDeTagImmediate(X86::eax); addSlowCase(emitFastArithDeTagImmediateJumpIfZero(X86::ecx)); m_assembler.cdq(); m_assembler.idivl_r(X86::ecx); signExtend32ToPtr(X86::edx, X86::edx); #endif emitFastArithReTagImmediate(X86::edx, X86::eax); emitPutVirtualRegister(result); } void JIT::emitSlow_op_mod(Instruction* currentInstruction, Vector::iterator& iter) { unsigned result = currentInstruction[1].u.operand; #if USE(JSVALUE64) linkSlowCase(iter); linkSlowCase(iter); linkSlowCase(iter); #else Jump notImm1 = getSlowCase(iter); Jump notImm2 = getSlowCase(iter); linkSlowCase(iter); emitFastArithReTagImmediate(X86::eax, X86::eax); emitFastArithReTagImmediate(X86::ecx, X86::ecx); notImm1.link(this); notImm2.link(this); #endif JITStubCall stubCall(this, cti_op_mod); stubCall.addArgument(X86::eax); stubCall.addArgument(X86::ecx); stubCall.call(result); } #else // PLATFORM(X86) || PLATFORM(X86_64) void JIT::emit_op_mod(Instruction* currentInstruction) { unsigned result = currentInstruction[1].u.operand; unsigned op1 = currentInstruction[2].u.operand; unsigned op2 = currentInstruction[3].u.operand; JITStubCall stubCall(this, cti_op_mod); stubCall.addArgument(op1, regT2); stubCall.addArgument(op2, regT2); stubCall.call(result); } void JIT::emitSlow_op_mod(Instruction*, Vector::iterator&) { ASSERT_NOT_REACHED(); } #endif // PLATFORM(X86) || PLATFORM(X86_64) /* ------------------------------ END: OP_MOD ------------------------------ */ #if USE(JSVALUE64) /* ------------------------------ BEGIN: USE(JSVALUE64) (OP_ADD, OP_SUB, OP_MUL) ------------------------------ */ void JIT::compileBinaryArithOp(OpcodeID opcodeID, unsigned, unsigned op1, unsigned op2, OperandTypes) { emitGetVirtualRegisters(op1, regT0, op2, regT1); emitJumpSlowCaseIfNotImmediateInteger(regT0); emitJumpSlowCaseIfNotImmediateInteger(regT1); if (opcodeID == op_add) addSlowCase(branchAdd32(Overflow, regT1, regT0)); else if (opcodeID == op_sub) addSlowCase(branchSub32(Overflow, regT1, regT0)); else { ASSERT(opcodeID == op_mul); addSlowCase(branchMul32(Overflow, regT1, regT0)); addSlowCase(branchTest32(Zero, regT0)); } emitFastArithIntToImmNoCheck(regT0, regT0); } void JIT::compileBinaryArithOpSlowCase(OpcodeID opcodeID, Vector::iterator& iter, unsigned result, unsigned op1, unsigned, OperandTypes types) { // We assume that subtracting TagTypeNumber is equivalent to adding DoubleEncodeOffset. COMPILE_ASSERT(((JSImmediate::TagTypeNumber + JSImmediate::DoubleEncodeOffset) == 0), TagTypeNumber_PLUS_DoubleEncodeOffset_EQUALS_0); Jump notImm1 = getSlowCase(iter); Jump notImm2 = getSlowCase(iter); linkSlowCase(iter); // Integer overflow case - we could handle this in JIT code, but this is likely rare. if (opcodeID == op_mul) // op_mul has an extra slow case to handle 0 * negative number. linkSlowCase(iter); emitGetVirtualRegister(op1, regT0); Label stubFunctionCall(this); JITStubCall stubCall(this, opcodeID == op_add ? cti_op_add : opcodeID == op_sub ? cti_op_sub : cti_op_mul); stubCall.addArgument(regT0); stubCall.addArgument(regT1); stubCall.call(result); Jump end = jump(); // if we get here, eax is not an int32, edx not yet checked. notImm1.link(this); if (!types.first().definitelyIsNumber()) emitJumpIfNotImmediateNumber(regT0).linkTo(stubFunctionCall, this); if (!types.second().definitelyIsNumber()) emitJumpIfNotImmediateNumber(regT1).linkTo(stubFunctionCall, this); addPtr(tagTypeNumberRegister, regT0); movePtrToDouble(regT0, fpRegT1); Jump op2isDouble = emitJumpIfNotImmediateInteger(regT1); convertInt32ToDouble(regT1, fpRegT2); Jump op2wasInteger = jump(); // if we get here, eax IS an int32, edx is not. notImm2.link(this); if (!types.second().definitelyIsNumber()) emitJumpIfNotImmediateNumber(regT1).linkTo(stubFunctionCall, this); convertInt32ToDouble(regT0, fpRegT1); op2isDouble.link(this); addPtr(tagTypeNumberRegister, regT1); movePtrToDouble(regT1, fpRegT2); op2wasInteger.link(this); if (opcodeID == op_add) addDouble(fpRegT2, fpRegT1); else if (opcodeID == op_sub) subDouble(fpRegT2, fpRegT1); else { ASSERT(opcodeID == op_mul); mulDouble(fpRegT2, fpRegT1); } moveDoubleToPtr(fpRegT1, regT0); subPtr(tagTypeNumberRegister, regT0); emitPutVirtualRegister(result, regT0); end.link(this); } void JIT::emit_op_add(Instruction* currentInstruction) { unsigned result = currentInstruction[1].u.operand; unsigned op1 = currentInstruction[2].u.operand; unsigned op2 = currentInstruction[3].u.operand; OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); if (!types.first().mightBeNumber() || !types.second().mightBeNumber()) { JITStubCall stubCall(this, cti_op_add); stubCall.addArgument(op1, regT2); stubCall.addArgument(op2, regT2); stubCall.call(result); return; } if (isOperandConstantImmediateInt(op1)) { emitGetVirtualRegister(op2, regT0); emitJumpSlowCaseIfNotImmediateInteger(regT0); addSlowCase(branchAdd32(Overflow, Imm32(getConstantOperandImmediateInt(op1)), regT0)); emitFastArithIntToImmNoCheck(regT0, regT0); } else if (isOperandConstantImmediateInt(op2)) { emitGetVirtualRegister(op1, regT0); emitJumpSlowCaseIfNotImmediateInteger(regT0); addSlowCase(branchAdd32(Overflow, Imm32(getConstantOperandImmediateInt(op2)), regT0)); emitFastArithIntToImmNoCheck(regT0, regT0); } else compileBinaryArithOp(op_add, result, op1, op2, types); emitPutVirtualRegister(result); } void JIT::emitSlow_op_add(Instruction* currentInstruction, Vector::iterator& iter) { unsigned result = currentInstruction[1].u.operand; unsigned op1 = currentInstruction[2].u.operand; unsigned op2 = currentInstruction[3].u.operand; if (isOperandConstantImmediateInt(op1) || isOperandConstantImmediateInt(op2)) { linkSlowCase(iter); linkSlowCase(iter); JITStubCall stubCall(this, cti_op_add); stubCall.addArgument(op1, regT2); stubCall.addArgument(op2, regT2); stubCall.call(result); } else compileBinaryArithOpSlowCase(op_add, iter, result, op1, op2, OperandTypes::fromInt(currentInstruction[4].u.operand)); } void JIT::emit_op_mul(Instruction* currentInstruction) { unsigned result = currentInstruction[1].u.operand; unsigned op1 = currentInstruction[2].u.operand; unsigned op2 = currentInstruction[3].u.operand; OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); // For now, only plant a fast int case if the constant operand is greater than zero. int32_t value; if (isOperandConstantImmediateInt(op1) && ((value = getConstantOperandImmediateInt(op1)) > 0)) { emitGetVirtualRegister(op2, regT0); emitJumpSlowCaseIfNotImmediateInteger(regT0); addSlowCase(branchMul32(Overflow, Imm32(value), regT0, regT0)); emitFastArithReTagImmediate(regT0, regT0); } else if (isOperandConstantImmediateInt(op2) && ((value = getConstantOperandImmediateInt(op2)) > 0)) { emitGetVirtualRegister(op1, regT0); emitJumpSlowCaseIfNotImmediateInteger(regT0); addSlowCase(branchMul32(Overflow, Imm32(value), regT0, regT0)); emitFastArithReTagImmediate(regT0, regT0); } else compileBinaryArithOp(op_mul, result, op1, op2, types); emitPutVirtualRegister(result); } void JIT::emitSlow_op_mul(Instruction* currentInstruction, Vector::iterator& iter) { unsigned result = currentInstruction[1].u.operand; unsigned op1 = currentInstruction[2].u.operand; unsigned op2 = currentInstruction[3].u.operand; OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); if ((isOperandConstantImmediateInt(op1) && (getConstantOperandImmediateInt(op1) > 0)) || (isOperandConstantImmediateInt(op2) && (getConstantOperandImmediateInt(op2) > 0))) { linkSlowCase(iter); linkSlowCase(iter); // There is an extra slow case for (op1 * -N) or (-N * op2), to check for 0 since this should produce a result of -0. JITStubCall stubCall(this, cti_op_mul); stubCall.addArgument(op1, regT2); stubCall.addArgument(op2, regT2); stubCall.call(result); } else compileBinaryArithOpSlowCase(op_mul, iter, result, op1, op2, types); } void JIT::emit_op_sub(Instruction* currentInstruction) { unsigned result = currentInstruction[1].u.operand; unsigned op1 = currentInstruction[2].u.operand; unsigned op2 = currentInstruction[3].u.operand; OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); compileBinaryArithOp(op_sub, result, op1, op2, types); emitPutVirtualRegister(result); } void JIT::emitSlow_op_sub(Instruction* currentInstruction, Vector::iterator& iter) { unsigned result = currentInstruction[1].u.operand; unsigned op1 = currentInstruction[2].u.operand; unsigned op2 = currentInstruction[3].u.operand; OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); compileBinaryArithOpSlowCase(op_sub, iter, result, op1, op2, types); } #else // USE(JSVALUE64) /* ------------------------------ BEGIN: !USE(JSVALUE64) (OP_ADD, OP_SUB, OP_MUL) ------------------------------ */ void JIT::compileBinaryArithOp(OpcodeID opcodeID, unsigned dst, unsigned src1, unsigned src2, OperandTypes types) { Structure* numberStructure = m_globalData->numberStructure.get(); Jump wasJSNumberCell1; Jump wasJSNumberCell2; emitGetVirtualRegisters(src1, regT0, src2, regT1); if (types.second().isReusable() && supportsFloatingPoint()) { ASSERT(types.second().mightBeNumber()); // Check op2 is a number Jump op2imm = emitJumpIfImmediateInteger(regT1); if (!types.second().definitelyIsNumber()) { emitJumpSlowCaseIfNotJSCell(regT1, src2); addSlowCase(checkStructure(regT1, numberStructure)); } // (1) In this case src2 is a reusable number cell. // Slow case if src1 is not a number type. Jump op1imm = emitJumpIfImmediateInteger(regT0); if (!types.first().definitelyIsNumber()) { emitJumpSlowCaseIfNotJSCell(regT0, src1); addSlowCase(checkStructure(regT0, numberStructure)); } // (1a) if we get here, src1 is also a number cell loadDouble(Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0); Jump loadedDouble = jump(); // (1b) if we get here, src1 is an immediate op1imm.link(this); emitFastArithImmToInt(regT0); convertInt32ToDouble(regT0, fpRegT0); // (1c) loadedDouble.link(this); if (opcodeID == op_add) addDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0); else if (opcodeID == op_sub) subDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0); else { ASSERT(opcodeID == op_mul); mulDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0); } // Store the result to the JSNumberCell and jump. storeDouble(fpRegT0, Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value))); move(regT1, regT0); emitPutVirtualRegister(dst); wasJSNumberCell2 = jump(); // (2) This handles cases where src2 is an immediate number. // Two slow cases - either src1 isn't an immediate, or the subtract overflows. op2imm.link(this); emitJumpSlowCaseIfNotImmediateInteger(regT0); } else if (types.first().isReusable() && supportsFloatingPoint()) { ASSERT(types.first().mightBeNumber()); // Check op1 is a number Jump op1imm = emitJumpIfImmediateInteger(regT0); if (!types.first().definitelyIsNumber()) { emitJumpSlowCaseIfNotJSCell(regT0, src1); addSlowCase(checkStructure(regT0, numberStructure)); } // (1) In this case src1 is a reusable number cell. // Slow case if src2 is not a number type. Jump op2imm = emitJumpIfImmediateInteger(regT1); if (!types.second().definitelyIsNumber()) { emitJumpSlowCaseIfNotJSCell(regT1, src2); addSlowCase(checkStructure(regT1, numberStructure)); } // (1a) if we get here, src2 is also a number cell loadDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT1); Jump loadedDouble = jump(); // (1b) if we get here, src2 is an immediate op2imm.link(this); emitFastArithImmToInt(regT1); convertInt32ToDouble(regT1, fpRegT1); // (1c) loadedDouble.link(this); loadDouble(Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0); if (opcodeID == op_add) addDouble(fpRegT1, fpRegT0); else if (opcodeID == op_sub) subDouble(fpRegT1, fpRegT0); else { ASSERT(opcodeID == op_mul); mulDouble(fpRegT1, fpRegT0); } storeDouble(fpRegT0, Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value))); emitPutVirtualRegister(dst); // Store the result to the JSNumberCell and jump. storeDouble(fpRegT0, Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value))); emitPutVirtualRegister(dst); wasJSNumberCell1 = jump(); // (2) This handles cases where src1 is an immediate number. // Two slow cases - either src2 isn't an immediate, or the subtract overflows. op1imm.link(this); emitJumpSlowCaseIfNotImmediateInteger(regT1); } else emitJumpSlowCaseIfNotImmediateIntegers(regT0, regT1, regT2); if (opcodeID == op_add) { emitFastArithDeTagImmediate(regT0); addSlowCase(branchAdd32(Overflow, regT1, regT0)); } else if (opcodeID == op_sub) { addSlowCase(branchSub32(Overflow, regT1, regT0)); signExtend32ToPtr(regT0, regT0); emitFastArithReTagImmediate(regT0, regT0); } else { ASSERT(opcodeID == op_mul); // convert eax & edx from JSImmediates to ints, and check if either are zero emitFastArithImmToInt(regT1); Jump op1Zero = emitFastArithDeTagImmediateJumpIfZero(regT0); Jump op2NonZero = branchTest32(NonZero, regT1); op1Zero.link(this); // if either input is zero, add the two together, and check if the result is < 0. // If it is, we have a problem (N < 0), (N * 0) == -0, not representatble as a JSImmediate. move(regT0, regT2); addSlowCase(branchAdd32(Signed, regT1, regT2)); // Skip the above check if neither input is zero op2NonZero.link(this); addSlowCase(branchMul32(Overflow, regT1, regT0)); signExtend32ToPtr(regT0, regT0); emitFastArithReTagImmediate(regT0, regT0); } emitPutVirtualRegister(dst); if (types.second().isReusable() && supportsFloatingPoint()) wasJSNumberCell2.link(this); else if (types.first().isReusable() && supportsFloatingPoint()) wasJSNumberCell1.link(this); } void JIT::compileBinaryArithOpSlowCase(OpcodeID opcodeID, Vector::iterator& iter, unsigned dst, unsigned src1, unsigned src2, OperandTypes types) { linkSlowCase(iter); if (types.second().isReusable() && supportsFloatingPoint()) { if (!types.first().definitelyIsNumber()) { linkSlowCaseIfNotJSCell(iter, src1); linkSlowCase(iter); } if (!types.second().definitelyIsNumber()) { linkSlowCaseIfNotJSCell(iter, src2); linkSlowCase(iter); } } else if (types.first().isReusable() && supportsFloatingPoint()) { if (!types.first().definitelyIsNumber()) { linkSlowCaseIfNotJSCell(iter, src1); linkSlowCase(iter); } if (!types.second().definitelyIsNumber()) { linkSlowCaseIfNotJSCell(iter, src2); linkSlowCase(iter); } } linkSlowCase(iter); // additional entry point to handle -0 cases. if (opcodeID == op_mul) linkSlowCase(iter); JITStubCall stubCall(this, opcodeID == op_add ? cti_op_add : opcodeID == op_sub ? cti_op_sub : cti_op_mul); stubCall.addArgument(src1, regT2); stubCall.addArgument(src2, regT2); stubCall.call(dst); } void JIT::emit_op_add(Instruction* currentInstruction) { unsigned result = currentInstruction[1].u.operand; unsigned op1 = currentInstruction[2].u.operand; unsigned op2 = currentInstruction[3].u.operand; if (isOperandConstantImmediateInt(op1)) { emitGetVirtualRegister(op2, regT0); emitJumpSlowCaseIfNotImmediateInteger(regT0); addSlowCase(branchAdd32(Overflow, Imm32(getConstantOperandImmediateInt(op1) << JSImmediate::IntegerPayloadShift), regT0)); signExtend32ToPtr(regT0, regT0); emitPutVirtualRegister(result); } else if (isOperandConstantImmediateInt(op2)) { emitGetVirtualRegister(op1, regT0); emitJumpSlowCaseIfNotImmediateInteger(regT0); addSlowCase(branchAdd32(Overflow, Imm32(getConstantOperandImmediateInt(op2) << JSImmediate::IntegerPayloadShift), regT0)); signExtend32ToPtr(regT0, regT0); emitPutVirtualRegister(result); } else { OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); if (types.first().mightBeNumber() && types.second().mightBeNumber()) compileBinaryArithOp(op_add, result, op1, op2, OperandTypes::fromInt(currentInstruction[4].u.operand)); else { JITStubCall stubCall(this, cti_op_add); stubCall.addArgument(op1, regT2); stubCall.addArgument(op2, regT2); stubCall.call(result); } } } void JIT::emitSlow_op_add(Instruction* currentInstruction, Vector::iterator& iter) { unsigned result = currentInstruction[1].u.operand; unsigned op1 = currentInstruction[2].u.operand; unsigned op2 = currentInstruction[3].u.operand; if (isOperandConstantImmediateInt(op1)) { Jump notImm = getSlowCase(iter); linkSlowCase(iter); sub32(Imm32(getConstantOperandImmediateInt(op1) << JSImmediate::IntegerPayloadShift), regT0); notImm.link(this); JITStubCall stubCall(this, cti_op_add); stubCall.addArgument(op1, regT2); stubCall.addArgument(regT0); stubCall.call(result); } else if (isOperandConstantImmediateInt(op2)) { Jump notImm = getSlowCase(iter); linkSlowCase(iter); sub32(Imm32(getConstantOperandImmediateInt(op2) << JSImmediate::IntegerPayloadShift), regT0); notImm.link(this); JITStubCall stubCall(this, cti_op_add); stubCall.addArgument(regT0); stubCall.addArgument(op2, regT2); stubCall.call(result); } else { OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); ASSERT(types.first().mightBeNumber() && types.second().mightBeNumber()); compileBinaryArithOpSlowCase(op_add, iter, result, op1, op2, types); } } void JIT::emit_op_mul(Instruction* currentInstruction) { unsigned result = currentInstruction[1].u.operand; unsigned op1 = currentInstruction[2].u.operand; unsigned op2 = currentInstruction[3].u.operand; // For now, only plant a fast int case if the constant operand is greater than zero. int32_t value; if (isOperandConstantImmediateInt(op1) && ((value = getConstantOperandImmediateInt(op1)) > 0)) { emitGetVirtualRegister(op2, regT0); emitJumpSlowCaseIfNotImmediateInteger(regT0); emitFastArithDeTagImmediate(regT0); addSlowCase(branchMul32(Overflow, Imm32(value), regT0, regT0)); signExtend32ToPtr(regT0, regT0); emitFastArithReTagImmediate(regT0, regT0); emitPutVirtualRegister(result); } else if (isOperandConstantImmediateInt(op2) && ((value = getConstantOperandImmediateInt(op2)) > 0)) { emitGetVirtualRegister(op1, regT0); emitJumpSlowCaseIfNotImmediateInteger(regT0); emitFastArithDeTagImmediate(regT0); addSlowCase(branchMul32(Overflow, Imm32(value), regT0, regT0)); signExtend32ToPtr(regT0, regT0); emitFastArithReTagImmediate(regT0, regT0); emitPutVirtualRegister(result); } else compileBinaryArithOp(op_mul, result, op1, op2, OperandTypes::fromInt(currentInstruction[4].u.operand)); } void JIT::emitSlow_op_mul(Instruction* currentInstruction, Vector::iterator& iter) { unsigned result = currentInstruction[1].u.operand; unsigned op1 = currentInstruction[2].u.operand; unsigned op2 = currentInstruction[3].u.operand; if ((isOperandConstantImmediateInt(op1) && (getConstantOperandImmediateInt(op1) > 0)) || (isOperandConstantImmediateInt(op2) && (getConstantOperandImmediateInt(op2) > 0))) { linkSlowCase(iter); linkSlowCase(iter); // There is an extra slow case for (op1 * -N) or (-N * op2), to check for 0 since this should produce a result of -0. JITStubCall stubCall(this, cti_op_mul); stubCall.addArgument(op1, regT2); stubCall.addArgument(op2, regT2); stubCall.call(result); } else compileBinaryArithOpSlowCase(op_mul, iter, result, op1, op2, OperandTypes::fromInt(currentInstruction[4].u.operand)); } void JIT::emit_op_sub(Instruction* currentInstruction) { compileBinaryArithOp(op_sub, currentInstruction[1].u.operand, currentInstruction[2].u.operand, currentInstruction[3].u.operand, OperandTypes::fromInt(currentInstruction[4].u.operand)); } void JIT::emitSlow_op_sub(Instruction* currentInstruction, Vector::iterator& iter) { compileBinaryArithOpSlowCase(op_sub, iter, currentInstruction[1].u.operand, currentInstruction[2].u.operand, currentInstruction[3].u.operand, OperandTypes::fromInt(currentInstruction[4].u.operand)); } #endif // USE(JSVALUE64) /* ------------------------------ END: OP_ADD, OP_SUB, OP_MUL ------------------------------ */ #endif // USE(JSVALUE32_64) } // namespace JSC #endif // ENABLE(JIT)