/* * Copyright (C) 2009 Apple Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "config.h" #include "JIT.h" #if ENABLE(JIT) #include "JITInlineMethods.h" #include "JITStubCall.h" #include "JSArray.h" #include "JSCell.h" #include "JSFunction.h" #include "LinkBuffer.h" namespace JSC { #if USE(JSVALUE32_64) void JIT::privateCompileCTIMachineTrampolines(RefPtr* executablePool, JSGlobalData* globalData, CodePtr* ctiStringLengthTrampoline, CodePtr* ctiVirtualCallLink, CodePtr* ctiVirtualCall, CodePtr* ctiNativeCallThunk) { #if ENABLE(JIT_OPTIMIZE_PROPERTY_ACCESS) // (1) This function provides fast property access for string length Label stringLengthBegin = align(); // regT0 holds payload, regT1 holds tag Jump string_failureCases1 = branch32(NotEqual, regT1, Imm32(JSValue::CellTag)); Jump string_failureCases2 = branchPtr(NotEqual, Address(regT0), ImmPtr(m_globalData->jsStringVPtr)); // Checks out okay! - get the length from the Ustring. loadPtr(Address(regT0, OBJECT_OFFSETOF(JSString, m_value) + OBJECT_OFFSETOF(UString, m_rep)), regT2); load32(Address(regT2, OBJECT_OFFSETOF(UString::Rep, len)), regT2); Jump string_failureCases3 = branch32(Above, regT2, Imm32(INT_MAX)); move(regT2, regT0); move(Imm32(JSValue::Int32Tag), regT1); ret(); #endif // (2) Trampolines for the slow cases of op_call / op_call_eval / op_construct. #if ENABLE(JIT_OPTIMIZE_CALL) /* VirtualCallLink Trampoline */ Label virtualCallLinkBegin = align(); // regT0 holds callee, regT1 holds argCount. loadPtr(Address(regT0, OBJECT_OFFSETOF(JSFunction, m_body)), regT2); loadPtr(Address(regT2, OBJECT_OFFSETOF(FunctionBodyNode, m_code)), regT2); Jump hasCodeBlock2 = branchTestPtr(NonZero, regT2); // Lazily generate a CodeBlock. preserveReturnAddressAfterCall(regT3); // return address restoreArgumentReference(); Call callJSFunction2 = call(); move(regT0, regT2); emitGetJITStubArg(1, regT0); // callee emitGetJITStubArg(5, regT1); // argCount restoreReturnAddressBeforeReturn(regT3); // return address hasCodeBlock2.link(this); // regT2 holds codeBlock. Jump isNativeFunc2 = branch32(Equal, Address(regT2, OBJECT_OFFSETOF(CodeBlock, m_codeType)), Imm32(NativeCode)); // Check argCount matches callee arity. Jump arityCheckOkay2 = branch32(Equal, Address(regT2, OBJECT_OFFSETOF(CodeBlock, m_numParameters)), regT1); preserveReturnAddressAfterCall(regT3); emitPutJITStubArg(regT3, 3); // return address emitPutJITStubArg(regT2, 7); // codeBlock restoreArgumentReference(); Call callArityCheck2 = call(); move(regT1, callFrameRegister); emitGetJITStubArg(1, regT0); // callee emitGetJITStubArg(5, regT1); // argCount restoreReturnAddressBeforeReturn(regT3); // return address arityCheckOkay2.link(this); isNativeFunc2.link(this); compileOpCallInitializeCallFrame(); preserveReturnAddressAfterCall(regT3); emitPutJITStubArg(regT3, 3); restoreArgumentReference(); Call callLazyLinkCall = call(); restoreReturnAddressBeforeReturn(regT3); jump(regT0); #endif // ENABLE(JIT_OPTIMIZE_CALL) /* VirtualCall Trampoline */ Label virtualCallBegin = align(); // regT0 holds callee, regT1 holds argCount. loadPtr(Address(regT0, OBJECT_OFFSETOF(JSFunction, m_body)), regT2); loadPtr(Address(regT2, OBJECT_OFFSETOF(FunctionBodyNode, m_code)), regT2); Jump hasCodeBlock3 = branchTestPtr(NonZero, regT2); // Lazily generate a CodeBlock. preserveReturnAddressAfterCall(regT3); // return address restoreArgumentReference(); Call callJSFunction1 = call(); move(regT0, regT2); emitGetJITStubArg(1, regT0); // callee emitGetJITStubArg(5, regT1); // argCount restoreReturnAddressBeforeReturn(regT3); // return address hasCodeBlock3.link(this); // regT2 holds codeBlock. Jump isNativeFunc3 = branch32(Equal, Address(regT2, OBJECT_OFFSETOF(CodeBlock, m_codeType)), Imm32(NativeCode)); // Check argCount matches callee. Jump arityCheckOkay3 = branch32(Equal, Address(regT2, OBJECT_OFFSETOF(CodeBlock, m_numParameters)), regT1); preserveReturnAddressAfterCall(regT3); emitPutJITStubArg(regT3, 3); // return address emitPutJITStubArg(regT2, 7); // codeBlock restoreArgumentReference(); Call callArityCheck1 = call(); move(regT1, callFrameRegister); emitGetJITStubArg(1, regT0); // callee emitGetJITStubArg(5, regT1); // argCount restoreReturnAddressBeforeReturn(regT3); // return address arityCheckOkay3.link(this); isNativeFunc3.link(this); compileOpCallInitializeCallFrame(); loadPtr(Address(regT0, OBJECT_OFFSETOF(JSFunction, m_body)), regT0); loadPtr(Address(regT0, OBJECT_OFFSETOF(FunctionBodyNode, m_jitCode)), regT0); jump(regT0); #if PLATFORM(X86) Label nativeCallThunk = align(); preserveReturnAddressAfterCall(regT0); emitPutToCallFrameHeader(regT0, RegisterFile::ReturnPC); // Push return address // Load caller frame's scope chain into this callframe so that whatever we call can // get to its global data. emitGetFromCallFrameHeaderPtr(RegisterFile::CallerFrame, regT1); emitGetFromCallFrameHeaderPtr(RegisterFile::ScopeChain, regT1, regT1); emitPutToCallFrameHeader(regT1, RegisterFile::ScopeChain); emitGetFromCallFrameHeader32(RegisterFile::ArgumentCount, regT0); /* We have two structs that we use to describe the stackframe we set up for our * call to native code. NativeCallFrameStructure describes the how we set up the stack * in advance of the call. NativeFunctionCalleeSignature describes the callframe * as the native code expects it. We do this as we are using the fastcall calling * convention which results in the callee popping its arguments off the stack, but * not the rest of the callframe so we need a nice way to ensure we increment the * stack pointer by the right amount after the call. */ #if COMPILER(MSVC) || PLATFORM(LINUX) #if COMPILER(MSVC) #pragma pack(push) #pragma pack(4) #endif // COMPILER(MSVC) struct NativeCallFrameStructure { // CallFrame* callFrame; // passed in EDX JSObject* callee; JSValue thisValue; ArgList* argPointer; ArgList args; JSValue result; }; struct NativeFunctionCalleeSignature { JSObject* callee; JSValue thisValue; ArgList* argPointer; }; #if COMPILER(MSVC) #pragma pack(pop) #endif // COMPILER(MSVC) #else struct NativeCallFrameStructure { // CallFrame* callFrame; // passed in ECX // JSObject* callee; // passed in EDX JSValue thisValue; ArgList* argPointer; ArgList args; }; struct NativeFunctionCalleeSignature { JSValue thisValue; ArgList* argPointer; }; #endif const int NativeCallFrameSize = (sizeof(NativeCallFrameStructure) + 15) & ~15; // Allocate system stack frame subPtr(Imm32(NativeCallFrameSize), stackPointerRegister); // Set up arguments subPtr(Imm32(1), regT0); // Don't include 'this' in argcount // push argcount storePtr(regT0, Address(stackPointerRegister, OBJECT_OFFSETOF(NativeCallFrameStructure, args) + OBJECT_OFFSETOF(ArgList, m_argCount))); // Calculate the start of the callframe header, and store in regT1 addPtr(Imm32(-RegisterFile::CallFrameHeaderSize * (int)sizeof(Register)), callFrameRegister, regT1); // Calculate start of arguments as callframe header - sizeof(Register) * argcount (regT0) mul32(Imm32(sizeof(Register)), regT0, regT0); subPtr(regT0, regT1); storePtr(regT1, Address(stackPointerRegister, OBJECT_OFFSETOF(NativeCallFrameStructure, args) + OBJECT_OFFSETOF(ArgList, m_args))); // ArgList is passed by reference so is stackPointerRegister + 4 * sizeof(Register) addPtr(Imm32(OBJECT_OFFSETOF(NativeCallFrameStructure, args)), stackPointerRegister, regT0); storePtr(regT0, Address(stackPointerRegister, OBJECT_OFFSETOF(NativeCallFrameStructure, argPointer))); // regT1 currently points to the first argument, regT1 - sizeof(Register) points to 'this' loadPtr(Address(regT1, -(int)sizeof(Register) + OBJECT_OFFSETOF(JSValue, u.asBits.payload)), regT2); loadPtr(Address(regT1, -(int)sizeof(Register) + OBJECT_OFFSETOF(JSValue, u.asBits.tag)), regT3); storePtr(regT2, Address(stackPointerRegister, OBJECT_OFFSETOF(NativeCallFrameStructure, thisValue) + OBJECT_OFFSETOF(JSValue, u.asBits.payload))); storePtr(regT3, Address(stackPointerRegister, OBJECT_OFFSETOF(NativeCallFrameStructure, thisValue) + OBJECT_OFFSETOF(JSValue, u.asBits.tag))); #if COMPILER(MSVC) || PLATFORM(LINUX) // ArgList is passed by reference so is stackPointerRegister + 4 * sizeof(Register) addPtr(Imm32(OBJECT_OFFSETOF(NativeCallFrameStructure, result)), stackPointerRegister, X86::ecx); // Plant callee emitGetFromCallFrameHeaderPtr(RegisterFile::Callee, X86::eax); storePtr(X86::eax, Address(stackPointerRegister, OBJECT_OFFSETOF(NativeCallFrameStructure, callee))); // Plant callframe move(callFrameRegister, X86::edx); call(Address(X86::eax, OBJECT_OFFSETOF(JSFunction, m_data))); // JSValue is a non-POD type, so eax points to it emitLoad(0, regT1, regT0, X86::eax); #else emitGetFromCallFrameHeaderPtr(RegisterFile::Callee, X86::edx); // callee move(callFrameRegister, X86::ecx); // callFrame call(Address(X86::edx, OBJECT_OFFSETOF(JSFunction, m_data))); #endif // We've put a few temporaries on the stack in addition to the actual arguments // so pull them off now addPtr(Imm32(NativeCallFrameSize - sizeof(NativeFunctionCalleeSignature)), stackPointerRegister); // Check for an exception // FIXME: Maybe we can optimize this comparison to JSValue(). move(ImmPtr(&globalData->exception), regT2); Jump sawException1 = branch32(NotEqual, tagFor(0, regT2), Imm32(JSValue::CellTag)); Jump sawException2 = branch32(NonZero, payloadFor(0, regT2), Imm32(0)); // Grab the return address. emitGetFromCallFrameHeaderPtr(RegisterFile::ReturnPC, regT3); // Restore our caller's "r". emitGetFromCallFrameHeaderPtr(RegisterFile::CallerFrame, callFrameRegister); // Return. restoreReturnAddressBeforeReturn(regT3); ret(); // Handle an exception sawException1.link(this); sawException2.link(this); // Grab the return address. emitGetFromCallFrameHeaderPtr(RegisterFile::ReturnPC, regT1); move(ImmPtr(&globalData->exceptionLocation), regT2); storePtr(regT1, regT2); move(ImmPtr(reinterpret_cast(ctiVMThrowTrampoline)), regT2); emitGetFromCallFrameHeaderPtr(RegisterFile::CallerFrame, callFrameRegister); poke(callFrameRegister, OBJECT_OFFSETOF(struct JITStackFrame, callFrame) / sizeof (void*)); restoreReturnAddressBeforeReturn(regT2); ret(); #elif ENABLE(JIT_OPTIMIZE_NATIVE_CALL) #error "JIT_OPTIMIZE_NATIVE_CALL not yet supported on this platform." #else breakpoint(); #endif #if ENABLE(JIT_OPTIMIZE_PROPERTY_ACCESS) Call string_failureCases1Call = makeTailRecursiveCall(string_failureCases1); Call string_failureCases2Call = makeTailRecursiveCall(string_failureCases2); Call string_failureCases3Call = makeTailRecursiveCall(string_failureCases3); #endif // All trampolines constructed! copy the code, link up calls, and set the pointers on the Machine object. LinkBuffer patchBuffer(this, m_globalData->executableAllocator.poolForSize(m_assembler.size())); #if ENABLE(JIT_OPTIMIZE_PROPERTY_ACCESS) patchBuffer.link(string_failureCases1Call, FunctionPtr(cti_op_get_by_id_string_fail)); patchBuffer.link(string_failureCases2Call, FunctionPtr(cti_op_get_by_id_string_fail)); patchBuffer.link(string_failureCases3Call, FunctionPtr(cti_op_get_by_id_string_fail)); #endif patchBuffer.link(callArityCheck1, FunctionPtr(cti_op_call_arityCheck)); patchBuffer.link(callJSFunction1, FunctionPtr(cti_op_call_JSFunction)); #if ENABLE(JIT_OPTIMIZE_CALL) patchBuffer.link(callArityCheck2, FunctionPtr(cti_op_call_arityCheck)); patchBuffer.link(callJSFunction2, FunctionPtr(cti_op_call_JSFunction)); patchBuffer.link(callLazyLinkCall, FunctionPtr(cti_vm_lazyLinkCall)); #endif CodeRef finalCode = patchBuffer.finalizeCode(); *executablePool = finalCode.m_executablePool; *ctiVirtualCall = trampolineAt(finalCode, virtualCallBegin); *ctiNativeCallThunk = trampolineAt(finalCode, nativeCallThunk); #if ENABLE(JIT_OPTIMIZE_PROPERTY_ACCESS) *ctiStringLengthTrampoline = trampolineAt(finalCode, stringLengthBegin); #else UNUSED_PARAM(ctiStringLengthTrampoline); #endif #if ENABLE(JIT_OPTIMIZE_CALL) *ctiVirtualCallLink = trampolineAt(finalCode, virtualCallLinkBegin); #else UNUSED_PARAM(ctiVirtualCallLink); #endif } void JIT::emit_op_mov(Instruction* currentInstruction) { unsigned dst = currentInstruction[1].u.operand; unsigned src = currentInstruction[2].u.operand; if (m_codeBlock->isConstantRegisterIndex(src)) emitStore(dst, getConstantOperand(src)); else { emitLoad(src, regT1, regT0); emitStore(dst, regT1, regT0); map(m_bytecodeIndex + OPCODE_LENGTH(op_mov), dst, regT1, regT0); } } void JIT::emit_op_end(Instruction* currentInstruction) { if (m_codeBlock->needsFullScopeChain()) JITStubCall(this, cti_op_end).call(); ASSERT(returnValueRegister != callFrameRegister); emitLoad(currentInstruction[1].u.operand, regT1, regT0); restoreReturnAddressBeforeReturn(Address(callFrameRegister, RegisterFile::ReturnPC * static_cast(sizeof(Register)))); ret(); } void JIT::emit_op_jmp(Instruction* currentInstruction) { unsigned target = currentInstruction[1].u.operand; addJump(jump(), target + 1); } void JIT::emit_op_loop(Instruction* currentInstruction) { unsigned target = currentInstruction[1].u.operand; emitTimeoutCheck(); addJump(jump(), target + 1); } void JIT::emit_op_loop_if_less(Instruction* currentInstruction) { unsigned op1 = currentInstruction[1].u.operand; unsigned op2 = currentInstruction[2].u.operand; unsigned target = currentInstruction[3].u.operand; emitTimeoutCheck(); if (isOperandConstantImmediateInt(op1)) { emitLoad(op2, regT1, regT0); addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag))); addJump(branch32(GreaterThan, regT0, Imm32(getConstantOperand(op1).asInt32())), target + 3); return; } if (isOperandConstantImmediateInt(op2)) { emitLoad(op1, regT1, regT0); addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag))); addJump(branch32(LessThan, regT0, Imm32(getConstantOperand(op2).asInt32())), target + 3); return; } emitLoad2(op1, regT1, regT0, op2, regT3, regT2); addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag))); addSlowCase(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag))); addJump(branch32(LessThan, regT0, regT2), target + 3); } void JIT::emitSlow_op_loop_if_less(Instruction* currentInstruction, Vector::iterator& iter) { unsigned op1 = currentInstruction[1].u.operand; unsigned op2 = currentInstruction[2].u.operand; unsigned target = currentInstruction[3].u.operand; if (!isOperandConstantImmediateInt(op1) && !isOperandConstantImmediateInt(op2)) linkSlowCase(iter); // int32 check linkSlowCase(iter); // int32 check JITStubCall stubCall(this, cti_op_loop_if_less); stubCall.addArgument(op1); stubCall.addArgument(op2); stubCall.call(); emitJumpSlowToHot(branchTest32(NonZero, regT0), target + 3); } void JIT::emit_op_loop_if_lesseq(Instruction* currentInstruction) { unsigned op1 = currentInstruction[1].u.operand; unsigned op2 = currentInstruction[2].u.operand; unsigned target = currentInstruction[3].u.operand; emitTimeoutCheck(); if (isOperandConstantImmediateInt(op1)) { emitLoad(op2, regT1, regT0); addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag))); addJump(branch32(GreaterThanOrEqual, regT0, Imm32(getConstantOperand(op1).asInt32())), target + 3); return; } if (isOperandConstantImmediateInt(op2)) { emitLoad(op1, regT1, regT0); addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag))); addJump(branch32(LessThanOrEqual, regT0, Imm32(getConstantOperand(op2).asInt32())), target + 3); return; } emitLoad2(op1, regT1, regT0, op2, regT3, regT2); addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag))); addSlowCase(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag))); addJump(branch32(LessThanOrEqual, regT0, regT2), target + 3); } void JIT::emitSlow_op_loop_if_lesseq(Instruction* currentInstruction, Vector::iterator& iter) { unsigned op1 = currentInstruction[1].u.operand; unsigned op2 = currentInstruction[2].u.operand; unsigned target = currentInstruction[3].u.operand; if (!isOperandConstantImmediateInt(op1) && !isOperandConstantImmediateInt(op2)) linkSlowCase(iter); // int32 check linkSlowCase(iter); // int32 check JITStubCall stubCall(this, cti_op_loop_if_lesseq); stubCall.addArgument(op1); stubCall.addArgument(op2); stubCall.call(); emitJumpSlowToHot(branchTest32(NonZero, regT0), target + 3); } void JIT::emit_op_new_object(Instruction* currentInstruction) { JITStubCall(this, cti_op_new_object).call(currentInstruction[1].u.operand); } void JIT::emit_op_instanceof(Instruction* currentInstruction) { unsigned dst = currentInstruction[1].u.operand; unsigned value = currentInstruction[2].u.operand; unsigned baseVal = currentInstruction[3].u.operand; unsigned proto = currentInstruction[4].u.operand; // Load the operands (baseVal, proto, and value respectively) into registers. // We use regT0 for baseVal since we will be done with this first, and we can then use it for the result. emitLoadPayload(proto, regT1); emitLoadPayload(baseVal, regT0); emitLoadPayload(value, regT2); // Check that baseVal & proto are cells. emitJumpSlowCaseIfNotJSCell(proto); emitJumpSlowCaseIfNotJSCell(baseVal); // Check that baseVal is an object, that it 'ImplementsHasInstance' but that it does not 'OverridesHasInstance'. loadPtr(Address(regT0, OBJECT_OFFSETOF(JSCell, m_structure)), regT0); addSlowCase(branch32(NotEqual, Address(regT0, OBJECT_OFFSETOF(Structure, m_typeInfo.m_type)), Imm32(ObjectType))); // FIXME: Maybe remove this test. addSlowCase(branchTest32(Zero, Address(regT0, OBJECT_OFFSETOF(Structure, m_typeInfo.m_flags)), Imm32(ImplementsHasInstance))); // FIXME: TOT checks ImplementsDefaultHasInstance. // If value is not an Object, return false. emitLoadTag(value, regT0); Jump valueIsImmediate = branch32(NotEqual, regT0, Imm32(JSValue::CellTag)); loadPtr(Address(regT2, OBJECT_OFFSETOF(JSCell, m_structure)), regT0); Jump valueIsNotObject = branch32(NotEqual, Address(regT0, OBJECT_OFFSETOF(Structure, m_typeInfo.m_type)), Imm32(ObjectType)); // FIXME: Maybe remove this test. // Check proto is object. loadPtr(Address(regT1, OBJECT_OFFSETOF(JSCell, m_structure)), regT0); addSlowCase(branch32(NotEqual, Address(regT0, OBJECT_OFFSETOF(Structure, m_typeInfo.m_type)), Imm32(ObjectType))); // Optimistically load the result true, and start looping. // Initially, regT1 still contains proto and regT2 still contains value. // As we loop regT2 will be updated with its prototype, recursively walking the prototype chain. move(Imm32(JSValue::TrueTag), regT0); Label loop(this); // Load the prototype of the object in regT2. If this is equal to regT1 - WIN! // Otherwise, check if we've hit null - if we have then drop out of the loop, if not go again. loadPtr(Address(regT2, OBJECT_OFFSETOF(JSCell, m_structure)), regT2); load32(Address(regT2, OBJECT_OFFSETOF(Structure, m_prototype) + OBJECT_OFFSETOF(JSValue, u.asBits.payload)), regT2); Jump isInstance = branchPtr(Equal, regT2, regT1); branch32(NotEqual, regT2, Imm32(0), loop); // We get here either by dropping out of the loop, or if value was not an Object. Result is false. valueIsImmediate.link(this); valueIsNotObject.link(this); move(Imm32(JSValue::FalseTag), regT0); // isInstance jumps right down to here, to skip setting the result to false (it has already set true). isInstance.link(this); emitStoreBool(dst, regT0); } void JIT::emitSlow_op_instanceof(Instruction* currentInstruction, Vector::iterator& iter) { unsigned dst = currentInstruction[1].u.operand; unsigned value = currentInstruction[2].u.operand; unsigned baseVal = currentInstruction[3].u.operand; unsigned proto = currentInstruction[4].u.operand; linkSlowCaseIfNotJSCell(iter, baseVal); linkSlowCaseIfNotJSCell(iter, proto); linkSlowCase(iter); linkSlowCase(iter); linkSlowCase(iter); JITStubCall stubCall(this, cti_op_instanceof); stubCall.addArgument(value); stubCall.addArgument(baseVal); stubCall.addArgument(proto); stubCall.call(dst); } void JIT::emit_op_new_func(Instruction* currentInstruction) { JITStubCall stubCall(this, cti_op_new_func); stubCall.addArgument(ImmPtr(m_codeBlock->function(currentInstruction[2].u.operand))); stubCall.call(currentInstruction[1].u.operand); } void JIT::emit_op_get_global_var(Instruction* currentInstruction) { int dst = currentInstruction[1].u.operand; JSGlobalObject* globalObject = static_cast(currentInstruction[2].u.jsCell); ASSERT(globalObject->isGlobalObject()); int index = currentInstruction[3].u.operand; loadPtr(&globalObject->d()->registers, regT2); emitLoad(index, regT1, regT0, regT2); emitStore(dst, regT1, regT0); map(m_bytecodeIndex + OPCODE_LENGTH(op_get_global_var), dst, regT1, regT0); } void JIT::emit_op_put_global_var(Instruction* currentInstruction) { JSGlobalObject* globalObject = static_cast(currentInstruction[1].u.jsCell); ASSERT(globalObject->isGlobalObject()); int index = currentInstruction[2].u.operand; int value = currentInstruction[3].u.operand; emitLoad(value, regT1, regT0); loadPtr(&globalObject->d()->registers, regT2); emitStore(index, regT1, regT0, regT2); map(m_bytecodeIndex + OPCODE_LENGTH(op_put_global_var), value, regT1, regT0); } void JIT::emit_op_get_scoped_var(Instruction* currentInstruction) { int dst = currentInstruction[1].u.operand; int index = currentInstruction[2].u.operand; int skip = currentInstruction[3].u.operand + m_codeBlock->needsFullScopeChain(); emitGetFromCallFrameHeaderPtr(RegisterFile::ScopeChain, regT2); while (skip--) loadPtr(Address(regT2, OBJECT_OFFSETOF(ScopeChainNode, next)), regT2); loadPtr(Address(regT2, OBJECT_OFFSETOF(ScopeChainNode, object)), regT2); loadPtr(Address(regT2, OBJECT_OFFSETOF(JSVariableObject, d)), regT2); loadPtr(Address(regT2, OBJECT_OFFSETOF(JSVariableObject::JSVariableObjectData, registers)), regT2); emitLoad(index, regT1, regT0, regT2); emitStore(dst, regT1, regT0); map(m_bytecodeIndex + OPCODE_LENGTH(op_get_scoped_var), dst, regT1, regT0); } void JIT::emit_op_put_scoped_var(Instruction* currentInstruction) { int index = currentInstruction[1].u.operand; int skip = currentInstruction[2].u.operand + m_codeBlock->needsFullScopeChain(); int value = currentInstruction[3].u.operand; emitLoad(value, regT1, regT0); emitGetFromCallFrameHeaderPtr(RegisterFile::ScopeChain, regT2); while (skip--) loadPtr(Address(regT2, OBJECT_OFFSETOF(ScopeChainNode, next)), regT2); loadPtr(Address(regT2, OBJECT_OFFSETOF(ScopeChainNode, object)), regT2); loadPtr(Address(regT2, OBJECT_OFFSETOF(JSVariableObject, d)), regT2); loadPtr(Address(regT2, OBJECT_OFFSETOF(JSVariableObject::JSVariableObjectData, registers)), regT2); emitStore(index, regT1, regT0, regT2); map(m_bytecodeIndex + OPCODE_LENGTH(op_put_scoped_var), value, regT1, regT0); } void JIT::emit_op_tear_off_activation(Instruction* currentInstruction) { JITStubCall stubCall(this, cti_op_tear_off_activation); stubCall.addArgument(currentInstruction[1].u.operand); stubCall.call(); } void JIT::emit_op_tear_off_arguments(Instruction*) { JITStubCall(this, cti_op_tear_off_arguments).call(); } void JIT::emit_op_new_array(Instruction* currentInstruction) { JITStubCall stubCall(this, cti_op_new_array); stubCall.addArgument(Imm32(currentInstruction[2].u.operand)); stubCall.addArgument(Imm32(currentInstruction[3].u.operand)); stubCall.call(currentInstruction[1].u.operand); } void JIT::emit_op_resolve(Instruction* currentInstruction) { JITStubCall stubCall(this, cti_op_resolve); stubCall.addArgument(ImmPtr(&m_codeBlock->identifier(currentInstruction[2].u.operand))); stubCall.call(currentInstruction[1].u.operand); } void JIT::emit_op_to_primitive(Instruction* currentInstruction) { int dst = currentInstruction[1].u.operand; int src = currentInstruction[2].u.operand; emitLoad(src, regT1, regT0); Jump isImm = branch32(NotEqual, regT1, Imm32(JSValue::CellTag)); addSlowCase(branchPtr(NotEqual, Address(regT0), ImmPtr(m_globalData->jsStringVPtr))); isImm.link(this); if (dst != src) emitStore(dst, regT1, regT0); map(m_bytecodeIndex + OPCODE_LENGTH(op_to_primitive), dst, regT1, regT0); } void JIT::emitSlow_op_to_primitive(Instruction* currentInstruction, Vector::iterator& iter) { int dst = currentInstruction[1].u.operand; linkSlowCase(iter); JITStubCall stubCall(this, cti_op_to_primitive); stubCall.addArgument(regT1, regT0); stubCall.call(dst); } void JIT::emit_op_strcat(Instruction* currentInstruction) { JITStubCall stubCall(this, cti_op_strcat); stubCall.addArgument(Imm32(currentInstruction[2].u.operand)); stubCall.addArgument(Imm32(currentInstruction[3].u.operand)); stubCall.call(currentInstruction[1].u.operand); } void JIT::emit_op_loop_if_true(Instruction* currentInstruction) { unsigned cond = currentInstruction[1].u.operand; unsigned target = currentInstruction[2].u.operand; emitTimeoutCheck(); emitLoad(cond, regT1, regT0); Jump isNotInteger = branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)); addJump(branch32(NotEqual, regT0, Imm32(0)), target + 2); Jump isNotZero = jump(); isNotInteger.link(this); addJump(branch32(Equal, regT1, Imm32(JSValue::TrueTag)), target + 2); addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::FalseTag))); isNotZero.link(this); } void JIT::emitSlow_op_loop_if_true(Instruction* currentInstruction, Vector::iterator& iter) { unsigned cond = currentInstruction[1].u.operand; unsigned target = currentInstruction[2].u.operand; linkSlowCase(iter); JITStubCall stubCall(this, cti_op_jtrue); stubCall.addArgument(cond); stubCall.call(); emitJumpSlowToHot(branchTest32(NonZero, regT0), target + 2); } void JIT::emit_op_resolve_base(Instruction* currentInstruction) { JITStubCall stubCall(this, cti_op_resolve_base); stubCall.addArgument(ImmPtr(&m_codeBlock->identifier(currentInstruction[2].u.operand))); stubCall.call(currentInstruction[1].u.operand); } void JIT::emit_op_resolve_skip(Instruction* currentInstruction) { JITStubCall stubCall(this, cti_op_resolve_skip); stubCall.addArgument(ImmPtr(&m_codeBlock->identifier(currentInstruction[2].u.operand))); stubCall.addArgument(Imm32(currentInstruction[3].u.operand + m_codeBlock->needsFullScopeChain())); stubCall.call(currentInstruction[1].u.operand); } void JIT::emit_op_resolve_global(Instruction* currentInstruction) { // FIXME: Optimize to use patching instead of so many memory accesses. unsigned dst = currentInstruction[1].u.operand; void* globalObject = currentInstruction[2].u.jsCell; unsigned currentIndex = m_globalResolveInfoIndex++; void* structureAddress = &(m_codeBlock->globalResolveInfo(currentIndex).structure); void* offsetAddr = &(m_codeBlock->globalResolveInfo(currentIndex).offset); // Verify structure. move(ImmPtr(globalObject), regT0); loadPtr(structureAddress, regT1); addSlowCase(branchPtr(NotEqual, regT1, Address(regT0, OBJECT_OFFSETOF(JSCell, m_structure)))); // Load property. loadPtr(Address(regT0, OBJECT_OFFSETOF(JSGlobalObject, m_externalStorage)), regT2); load32(offsetAddr, regT3); load32(BaseIndex(regT2, regT3, TimesEight), regT0); // payload load32(BaseIndex(regT2, regT3, TimesEight, 4), regT1); // tag emitStore(dst, regT1, regT0); map(m_bytecodeIndex + OPCODE_LENGTH(op_resolve_global), dst, regT1, regT0); } void JIT::emitSlow_op_resolve_global(Instruction* currentInstruction, Vector::iterator& iter) { unsigned dst = currentInstruction[1].u.operand; void* globalObject = currentInstruction[2].u.jsCell; Identifier* ident = &m_codeBlock->identifier(currentInstruction[3].u.operand); unsigned currentIndex = m_globalResolveInfoIndex++; linkSlowCase(iter); JITStubCall stubCall(this, cti_op_resolve_global); stubCall.addArgument(ImmPtr(globalObject)); stubCall.addArgument(ImmPtr(ident)); stubCall.addArgument(Imm32(currentIndex)); stubCall.call(dst); } void JIT::emit_op_not(Instruction* currentInstruction) { unsigned dst = currentInstruction[1].u.operand; unsigned src = currentInstruction[2].u.operand; emitLoadTag(src, regT0); xor32(Imm32(JSValue::FalseTag), regT0); addSlowCase(branchTest32(NonZero, regT0, Imm32(~1))); xor32(Imm32(JSValue::TrueTag), regT0); emitStoreBool(dst, regT0, (dst == src)); } void JIT::emitSlow_op_not(Instruction* currentInstruction, Vector::iterator& iter) { unsigned dst = currentInstruction[1].u.operand; unsigned src = currentInstruction[2].u.operand; linkSlowCase(iter); JITStubCall stubCall(this, cti_op_not); stubCall.addArgument(src); stubCall.call(dst); } void JIT::emit_op_jfalse(Instruction* currentInstruction) { unsigned cond = currentInstruction[1].u.operand; unsigned target = currentInstruction[2].u.operand; emitLoad(cond, regT1, regT0); Jump isTrue = branch32(Equal, regT1, Imm32(JSValue::TrueTag)); addJump(branch32(Equal, regT1, Imm32(JSValue::FalseTag)), target + 2); Jump isNotInteger = branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)); Jump isTrue2 = branch32(NotEqual, regT0, Imm32(0)); addJump(jump(), target + 2); isNotInteger.link(this); addSlowCase(branch32(Above, regT1, Imm32(JSValue::LowestTag))); zeroDouble(fpRegT0); emitLoadDouble(cond, fpRegT1); addJump(branchDouble(DoubleEqual, fpRegT0, fpRegT1), target + 2); isTrue.link(this); isTrue2.link(this); } void JIT::emitSlow_op_jfalse(Instruction* currentInstruction, Vector::iterator& iter) { unsigned cond = currentInstruction[1].u.operand; unsigned target = currentInstruction[2].u.operand; linkSlowCase(iter); JITStubCall stubCall(this, cti_op_jtrue); stubCall.addArgument(cond); stubCall.call(); emitJumpSlowToHot(branchTest32(Zero, regT0), target + 2); // Inverted. } void JIT::emit_op_jtrue(Instruction* currentInstruction) { unsigned cond = currentInstruction[1].u.operand; unsigned target = currentInstruction[2].u.operand; emitLoad(cond, regT1, regT0); Jump isFalse = branch32(Equal, regT1, Imm32(JSValue::FalseTag)); addJump(branch32(Equal, regT1, Imm32(JSValue::TrueTag)), target + 2); Jump isNotInteger = branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)); Jump isFalse2 = branch32(Equal, regT0, Imm32(0)); addJump(jump(), target + 2); isNotInteger.link(this); addSlowCase(branch32(Above, regT1, Imm32(JSValue::LowestTag))); zeroDouble(fpRegT0); emitLoadDouble(cond, fpRegT1); addJump(branchDouble(DoubleNotEqual, fpRegT0, fpRegT1), target + 2); isFalse.link(this); isFalse2.link(this); } void JIT::emitSlow_op_jtrue(Instruction* currentInstruction, Vector::iterator& iter) { unsigned cond = currentInstruction[1].u.operand; unsigned target = currentInstruction[2].u.operand; linkSlowCase(iter); JITStubCall stubCall(this, cti_op_jtrue); stubCall.addArgument(cond); stubCall.call(); emitJumpSlowToHot(branchTest32(NonZero, regT0), target + 2); } void JIT::emit_op_jeq_null(Instruction* currentInstruction) { unsigned src = currentInstruction[1].u.operand; unsigned target = currentInstruction[2].u.operand; emitLoad(src, regT1, regT0); Jump isImmediate = branch32(NotEqual, regT1, Imm32(JSValue::CellTag)); // First, handle JSCell cases - check MasqueradesAsUndefined bit on the structure. loadPtr(Address(regT0, OBJECT_OFFSETOF(JSCell, m_structure)), regT2); addJump(branchTest32(NonZero, Address(regT2, OBJECT_OFFSETOF(Structure, m_typeInfo.m_flags)), Imm32(MasqueradesAsUndefined)), target + 2); Jump wasNotImmediate = jump(); // Now handle the immediate cases - undefined & null isImmediate.link(this); set32(Equal, regT1, Imm32(JSValue::NullTag), regT2); set32(Equal, regT1, Imm32(JSValue::UndefinedTag), regT1); or32(regT2, regT1); addJump(branchTest32(NonZero, regT1), target + 2); wasNotImmediate.link(this); } void JIT::emit_op_jneq_null(Instruction* currentInstruction) { unsigned src = currentInstruction[1].u.operand; unsigned target = currentInstruction[2].u.operand; emitLoad(src, regT1, regT0); Jump isImmediate = branch32(NotEqual, regT1, Imm32(JSValue::CellTag)); // First, handle JSCell cases - check MasqueradesAsUndefined bit on the structure. loadPtr(Address(regT0, OBJECT_OFFSETOF(JSCell, m_structure)), regT2); addJump(branchTest32(Zero, Address(regT2, OBJECT_OFFSETOF(Structure, m_typeInfo.m_flags)), Imm32(MasqueradesAsUndefined)), target + 2); Jump wasNotImmediate = jump(); // Now handle the immediate cases - undefined & null isImmediate.link(this); set32(Equal, regT1, Imm32(JSValue::NullTag), regT2); set32(Equal, regT1, Imm32(JSValue::UndefinedTag), regT1); or32(regT2, regT1); addJump(branchTest32(Zero, regT1), target + 2); wasNotImmediate.link(this); } void JIT::emit_op_jneq_ptr(Instruction* currentInstruction) { unsigned src = currentInstruction[1].u.operand; JSCell* ptr = currentInstruction[2].u.jsCell; unsigned target = currentInstruction[3].u.operand; emitLoad(src, regT1, regT0); addJump(branch32(NotEqual, regT1, Imm32(JSValue::CellTag)), target + 3); addJump(branchPtr(NotEqual, regT0, ImmPtr(ptr)), target + 3); } void JIT::emit_op_jsr(Instruction* currentInstruction) { int retAddrDst = currentInstruction[1].u.operand; int target = currentInstruction[2].u.operand; DataLabelPtr storeLocation = storePtrWithPatch(ImmPtr(0), Address(callFrameRegister, sizeof(Register) * retAddrDst)); addJump(jump(), target + 2); m_jsrSites.append(JSRInfo(storeLocation, label())); } void JIT::emit_op_sret(Instruction* currentInstruction) { jump(Address(callFrameRegister, sizeof(Register) * currentInstruction[1].u.operand)); } void JIT::emit_op_eq(Instruction* currentInstruction) { unsigned dst = currentInstruction[1].u.operand; unsigned src1 = currentInstruction[2].u.operand; unsigned src2 = currentInstruction[3].u.operand; emitLoad2(src1, regT1, regT0, src2, regT3, regT2); addSlowCase(branch32(NotEqual, regT1, regT3)); addSlowCase(branch32(Equal, regT1, Imm32(JSValue::CellTag))); addSlowCase(branch32(Below, regT1, Imm32(JSValue::LowestTag))); set8(Equal, regT0, regT2, regT0); or32(Imm32(JSValue::FalseTag), regT0); emitStoreBool(dst, regT0); } void JIT::emitSlow_op_eq(Instruction* currentInstruction, Vector::iterator& iter) { unsigned dst = currentInstruction[1].u.operand; unsigned op1 = currentInstruction[2].u.operand; unsigned op2 = currentInstruction[3].u.operand; JumpList storeResult; JumpList genericCase; genericCase.append(getSlowCase(iter)); // tags not equal linkSlowCase(iter); // tags equal and JSCell genericCase.append(branchPtr(NotEqual, Address(regT0), ImmPtr(m_globalData->jsStringVPtr))); genericCase.append(branchPtr(NotEqual, Address(regT2), ImmPtr(m_globalData->jsStringVPtr))); // String case. JITStubCall stubCallEqStrings(this, cti_op_eq_strings); stubCallEqStrings.addArgument(regT0); stubCallEqStrings.addArgument(regT2); stubCallEqStrings.call(); storeResult.append(jump()); // Generic case. genericCase.append(getSlowCase(iter)); // doubles genericCase.link(this); JITStubCall stubCallEq(this, cti_op_eq); stubCallEq.addArgument(op1); stubCallEq.addArgument(op2); stubCallEq.call(regT0); storeResult.link(this); or32(Imm32(JSValue::FalseTag), regT0); emitStoreBool(dst, regT0); } void JIT::emit_op_neq(Instruction* currentInstruction) { unsigned dst = currentInstruction[1].u.operand; unsigned src1 = currentInstruction[2].u.operand; unsigned src2 = currentInstruction[3].u.operand; emitLoad2(src1, regT1, regT0, src2, regT3, regT2); addSlowCase(branch32(NotEqual, regT1, regT3)); addSlowCase(branch32(Equal, regT1, Imm32(JSValue::CellTag))); addSlowCase(branch32(Below, regT1, Imm32(JSValue::LowestTag))); set8(NotEqual, regT0, regT2, regT0); or32(Imm32(JSValue::FalseTag), regT0); emitStoreBool(dst, regT0); } void JIT::emitSlow_op_neq(Instruction* currentInstruction, Vector::iterator& iter) { unsigned dst = currentInstruction[1].u.operand; JumpList storeResult; JumpList genericCase; genericCase.append(getSlowCase(iter)); // tags not equal linkSlowCase(iter); // tags equal and JSCell genericCase.append(branchPtr(NotEqual, Address(regT0), ImmPtr(m_globalData->jsStringVPtr))); genericCase.append(branchPtr(NotEqual, Address(regT2), ImmPtr(m_globalData->jsStringVPtr))); // String case. JITStubCall stubCallEqStrings(this, cti_op_eq_strings); stubCallEqStrings.addArgument(regT0); stubCallEqStrings.addArgument(regT2); stubCallEqStrings.call(regT0); storeResult.append(jump()); // Generic case. genericCase.append(getSlowCase(iter)); // doubles genericCase.link(this); JITStubCall stubCallEq(this, cti_op_eq); stubCallEq.addArgument(regT1, regT0); stubCallEq.addArgument(regT3, regT2); stubCallEq.call(regT0); storeResult.link(this); xor32(Imm32(0x1), regT0); or32(Imm32(JSValue::FalseTag), regT0); emitStoreBool(dst, regT0); } void JIT::compileOpStrictEq(Instruction* currentInstruction, CompileOpStrictEqType type) { unsigned dst = currentInstruction[1].u.operand; unsigned src1 = currentInstruction[2].u.operand; unsigned src2 = currentInstruction[3].u.operand; emitLoadTag(src1, regT0); emitLoadTag(src2, regT1); // Jump to a slow case if either operand is double, or if both operands are // cells and/or Int32s. move(regT0, regT2); and32(regT1, regT2); addSlowCase(branch32(Below, regT2, Imm32(JSValue::LowestTag))); addSlowCase(branch32(AboveOrEqual, regT2, Imm32(JSValue::CellTag))); if (type == OpStrictEq) set8(Equal, regT0, regT1, regT0); else set8(NotEqual, regT0, regT1, regT0); or32(Imm32(JSValue::FalseTag), regT0); emitStoreBool(dst, regT0); } void JIT::emit_op_stricteq(Instruction* currentInstruction) { compileOpStrictEq(currentInstruction, OpStrictEq); } void JIT::emitSlow_op_stricteq(Instruction* currentInstruction, Vector::iterator& iter) { unsigned dst = currentInstruction[1].u.operand; unsigned src1 = currentInstruction[2].u.operand; unsigned src2 = currentInstruction[3].u.operand; linkSlowCase(iter); linkSlowCase(iter); JITStubCall stubCall(this, cti_op_stricteq); stubCall.addArgument(src1); stubCall.addArgument(src2); stubCall.call(dst); } void JIT::emit_op_nstricteq(Instruction* currentInstruction) { compileOpStrictEq(currentInstruction, OpNStrictEq); } void JIT::emitSlow_op_nstricteq(Instruction* currentInstruction, Vector::iterator& iter) { unsigned dst = currentInstruction[1].u.operand; unsigned src1 = currentInstruction[2].u.operand; unsigned src2 = currentInstruction[3].u.operand; linkSlowCase(iter); linkSlowCase(iter); JITStubCall stubCall(this, cti_op_nstricteq); stubCall.addArgument(src1); stubCall.addArgument(src2); stubCall.call(dst); } void JIT::emit_op_eq_null(Instruction* currentInstruction) { unsigned dst = currentInstruction[1].u.operand; unsigned src = currentInstruction[2].u.operand; emitLoad(src, regT1, regT0); Jump isImmediate = branch32(NotEqual, regT1, Imm32(JSValue::CellTag)); loadPtr(Address(regT0, OBJECT_OFFSETOF(JSCell, m_structure)), regT1); setTest8(NonZero, Address(regT1, OBJECT_OFFSETOF(Structure, m_typeInfo.m_flags)), Imm32(MasqueradesAsUndefined), regT1); Jump wasNotImmediate = jump(); isImmediate.link(this); set8(Equal, regT1, Imm32(JSValue::NullTag), regT2); set8(Equal, regT1, Imm32(JSValue::UndefinedTag), regT1); or32(regT2, regT1); wasNotImmediate.link(this); or32(Imm32(JSValue::FalseTag), regT1); emitStoreBool(dst, regT1); } void JIT::emit_op_neq_null(Instruction* currentInstruction) { unsigned dst = currentInstruction[1].u.operand; unsigned src = currentInstruction[2].u.operand; emitLoad(src, regT1, regT0); Jump isImmediate = branch32(NotEqual, regT1, Imm32(JSValue::CellTag)); loadPtr(Address(regT0, OBJECT_OFFSETOF(JSCell, m_structure)), regT1); setTest8(Zero, Address(regT1, OBJECT_OFFSETOF(Structure, m_typeInfo.m_flags)), Imm32(MasqueradesAsUndefined), regT1); Jump wasNotImmediate = jump(); isImmediate.link(this); set8(NotEqual, regT1, Imm32(JSValue::NullTag), regT2); set8(NotEqual, regT1, Imm32(JSValue::UndefinedTag), regT1); and32(regT2, regT1); wasNotImmediate.link(this); or32(Imm32(JSValue::FalseTag), regT1); emitStoreBool(dst, regT1); } void JIT::emit_op_resolve_with_base(Instruction* currentInstruction) { JITStubCall stubCall(this, cti_op_resolve_with_base); stubCall.addArgument(ImmPtr(&m_codeBlock->identifier(currentInstruction[3].u.operand))); stubCall.addArgument(Imm32(currentInstruction[1].u.operand)); stubCall.call(currentInstruction[2].u.operand); } void JIT::emit_op_new_func_exp(Instruction* currentInstruction) { JITStubCall stubCall(this, cti_op_new_func_exp); stubCall.addArgument(ImmPtr(m_codeBlock->functionExpression(currentInstruction[2].u.operand))); stubCall.call(currentInstruction[1].u.operand); } void JIT::emit_op_new_regexp(Instruction* currentInstruction) { JITStubCall stubCall(this, cti_op_new_regexp); stubCall.addArgument(ImmPtr(m_codeBlock->regexp(currentInstruction[2].u.operand))); stubCall.call(currentInstruction[1].u.operand); } void JIT::emit_op_throw(Instruction* currentInstruction) { unsigned exception = currentInstruction[1].u.operand; JITStubCall stubCall(this, cti_op_throw); stubCall.addArgument(exception); stubCall.call(); #ifndef NDEBUG // cti_op_throw always changes it's return address, // this point in the code should never be reached. breakpoint(); #endif } void JIT::emit_op_next_pname(Instruction* currentInstruction) { int dst = currentInstruction[1].u.operand; int iter = currentInstruction[2].u.operand; int target = currentInstruction[3].u.operand; load32(Address(callFrameRegister, (iter * sizeof(Register))), regT0); JITStubCall stubCall(this, cti_op_next_pname); stubCall.addArgument(regT0); stubCall.call(); Jump endOfIter = branchTestPtr(Zero, regT0); emitStore(dst, regT1, regT0); map(m_bytecodeIndex + OPCODE_LENGTH(op_next_pname), dst, regT1, regT0); addJump(jump(), target + 3); endOfIter.link(this); } void JIT::emit_op_push_scope(Instruction* currentInstruction) { JITStubCall stubCall(this, cti_op_push_scope); stubCall.addArgument(currentInstruction[1].u.operand); stubCall.call(currentInstruction[1].u.operand); } void JIT::emit_op_pop_scope(Instruction*) { JITStubCall(this, cti_op_pop_scope).call(); } void JIT::emit_op_to_jsnumber(Instruction* currentInstruction) { int dst = currentInstruction[1].u.operand; int src = currentInstruction[2].u.operand; emitLoad(src, regT1, regT0); Jump isInt32 = branch32(Equal, regT1, Imm32(JSValue::Int32Tag)); addSlowCase(branch32(AboveOrEqual, regT1, Imm32(JSValue::DeletedValueTag))); isInt32.link(this); if (src != dst) emitStore(dst, regT1, regT0); map(m_bytecodeIndex + OPCODE_LENGTH(op_to_jsnumber), dst, regT1, regT0); } void JIT::emitSlow_op_to_jsnumber(Instruction* currentInstruction, Vector::iterator& iter) { int dst = currentInstruction[1].u.operand; linkSlowCase(iter); JITStubCall stubCall(this, cti_op_to_jsnumber); stubCall.addArgument(regT1, regT0); stubCall.call(dst); } void JIT::emit_op_push_new_scope(Instruction* currentInstruction) { JITStubCall stubCall(this, cti_op_push_new_scope); stubCall.addArgument(ImmPtr(&m_codeBlock->identifier(currentInstruction[2].u.operand))); stubCall.addArgument(currentInstruction[3].u.operand); stubCall.call(currentInstruction[1].u.operand); } void JIT::emit_op_catch(Instruction* currentInstruction) { unsigned exception = currentInstruction[1].u.operand; // This opcode only executes after a return from cti_op_throw. // cti_op_throw may have taken us to a call frame further up the stack; reload // the call frame pointer to adjust. peek(callFrameRegister, OBJECT_OFFSETOF(struct JITStackFrame, callFrame) / sizeof (void*)); // Now store the exception returned by cti_op_throw. emitStore(exception, regT1, regT0); map(m_bytecodeIndex + OPCODE_LENGTH(op_catch), exception, regT1, regT0); } void JIT::emit_op_jmp_scopes(Instruction* currentInstruction) { JITStubCall stubCall(this, cti_op_jmp_scopes); stubCall.addArgument(Imm32(currentInstruction[1].u.operand)); stubCall.call(); addJump(jump(), currentInstruction[2].u.operand + 2); } void JIT::emit_op_switch_imm(Instruction* currentInstruction) { unsigned tableIndex = currentInstruction[1].u.operand; unsigned defaultOffset = currentInstruction[2].u.operand; unsigned scrutinee = currentInstruction[3].u.operand; // create jump table for switch destinations, track this switch statement. SimpleJumpTable* jumpTable = &m_codeBlock->immediateSwitchJumpTable(tableIndex); m_switches.append(SwitchRecord(jumpTable, m_bytecodeIndex, defaultOffset, SwitchRecord::Immediate)); jumpTable->ctiOffsets.grow(jumpTable->branchOffsets.size()); JITStubCall stubCall(this, cti_op_switch_imm); stubCall.addArgument(scrutinee); stubCall.addArgument(Imm32(tableIndex)); stubCall.call(); jump(regT0); } void JIT::emit_op_switch_char(Instruction* currentInstruction) { unsigned tableIndex = currentInstruction[1].u.operand; unsigned defaultOffset = currentInstruction[2].u.operand; unsigned scrutinee = currentInstruction[3].u.operand; // create jump table for switch destinations, track this switch statement. SimpleJumpTable* jumpTable = &m_codeBlock->characterSwitchJumpTable(tableIndex); m_switches.append(SwitchRecord(jumpTable, m_bytecodeIndex, defaultOffset, SwitchRecord::Character)); jumpTable->ctiOffsets.grow(jumpTable->branchOffsets.size()); JITStubCall stubCall(this, cti_op_switch_char); stubCall.addArgument(scrutinee); stubCall.addArgument(Imm32(tableIndex)); stubCall.call(); jump(regT0); } void JIT::emit_op_switch_string(Instruction* currentInstruction) { unsigned tableIndex = currentInstruction[1].u.operand; unsigned defaultOffset = currentInstruction[2].u.operand; unsigned scrutinee = currentInstruction[3].u.operand; // create jump table for switch destinations, track this switch statement. StringJumpTable* jumpTable = &m_codeBlock->stringSwitchJumpTable(tableIndex); m_switches.append(SwitchRecord(jumpTable, m_bytecodeIndex, defaultOffset)); JITStubCall stubCall(this, cti_op_switch_string); stubCall.addArgument(scrutinee); stubCall.addArgument(Imm32(tableIndex)); stubCall.call(); jump(regT0); } void JIT::emit_op_new_error(Instruction* currentInstruction) { unsigned dst = currentInstruction[1].u.operand; unsigned type = currentInstruction[2].u.operand; unsigned message = currentInstruction[3].u.operand; JITStubCall stubCall(this, cti_op_new_error); stubCall.addArgument(Imm32(type)); stubCall.addArgument(m_codeBlock->getConstant(message)); stubCall.addArgument(Imm32(m_bytecodeIndex)); stubCall.call(dst); } void JIT::emit_op_debug(Instruction* currentInstruction) { JITStubCall stubCall(this, cti_op_debug); stubCall.addArgument(Imm32(currentInstruction[1].u.operand)); stubCall.addArgument(Imm32(currentInstruction[2].u.operand)); stubCall.addArgument(Imm32(currentInstruction[3].u.operand)); stubCall.call(); } void JIT::emit_op_enter(Instruction*) { // Even though JIT code doesn't use them, we initialize our constant // registers to zap stale pointers, to avoid unnecessarily prolonging // object lifetime and increasing GC pressure. for (int i = 0; i < m_codeBlock->m_numVars; ++i) emitStore(i, jsUndefined()); } void JIT::emit_op_enter_with_activation(Instruction* currentInstruction) { emit_op_enter(currentInstruction); JITStubCall(this, cti_op_push_activation).call(currentInstruction[1].u.operand); } void JIT::emit_op_create_arguments(Instruction*) { Jump argsNotCell = branch32(NotEqual, tagFor(RegisterFile::ArgumentsRegister, callFrameRegister), Imm32(JSValue::CellTag)); Jump argsNotNull = branchTestPtr(NonZero, payloadFor(RegisterFile::ArgumentsRegister, callFrameRegister)); // If we get here the arguments pointer is a null cell - i.e. arguments need lazy creation. if (m_codeBlock->m_numParameters == 1) JITStubCall(this, cti_op_create_arguments_no_params).call(); else JITStubCall(this, cti_op_create_arguments).call(); argsNotCell.link(this); argsNotNull.link(this); } void JIT::emit_op_init_arguments(Instruction*) { emitStore(RegisterFile::ArgumentsRegister, JSValue(), callFrameRegister); } void JIT::emit_op_convert_this(Instruction* currentInstruction) { unsigned thisRegister = currentInstruction[1].u.operand; emitLoad(thisRegister, regT1, regT0); addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::CellTag))); loadPtr(Address(regT0, OBJECT_OFFSETOF(JSCell, m_structure)), regT2); addSlowCase(branchTest32(NonZero, Address(regT2, OBJECT_OFFSETOF(Structure, m_typeInfo.m_flags)), Imm32(NeedsThisConversion))); map(m_bytecodeIndex + OPCODE_LENGTH(op_convert_this), thisRegister, regT1, regT0); } void JIT::emitSlow_op_convert_this(Instruction* currentInstruction, Vector::iterator& iter) { unsigned thisRegister = currentInstruction[1].u.operand; linkSlowCase(iter); linkSlowCase(iter); JITStubCall stubCall(this, cti_op_convert_this); stubCall.addArgument(regT1, regT0); stubCall.call(thisRegister); } void JIT::emit_op_profile_will_call(Instruction* currentInstruction) { peek(regT2, OBJECT_OFFSETOF(JITStackFrame, enabledProfilerReference) / sizeof (void*)); Jump noProfiler = branchTestPtr(Zero, Address(regT2)); JITStubCall stubCall(this, cti_op_profile_will_call); stubCall.addArgument(currentInstruction[1].u.operand); stubCall.call(); noProfiler.link(this); } void JIT::emit_op_profile_did_call(Instruction* currentInstruction) { peek(regT2, OBJECT_OFFSETOF(JITStackFrame, enabledProfilerReference) / sizeof (void*)); Jump noProfiler = branchTestPtr(Zero, Address(regT2)); JITStubCall stubCall(this, cti_op_profile_did_call); stubCall.addArgument(currentInstruction[1].u.operand); stubCall.call(); noProfiler.link(this); } #else // USE(JSVALUE32_64) #define RECORD_JUMP_TARGET(targetOffset) \ do { m_labels[m_bytecodeIndex + (targetOffset)].used(); } while (false) void JIT::privateCompileCTIMachineTrampolines(RefPtr* executablePool, JSGlobalData* globalData, CodePtr* ctiStringLengthTrampoline, CodePtr* ctiVirtualCallLink, CodePtr* ctiVirtualCall, CodePtr* ctiNativeCallThunk) { #if ENABLE(JIT_OPTIMIZE_PROPERTY_ACCESS) // (2) The second function provides fast property access for string length Label stringLengthBegin = align(); // Check eax is a string Jump string_failureCases1 = emitJumpIfNotJSCell(regT0); Jump string_failureCases2 = branchPtr(NotEqual, Address(regT0), ImmPtr(m_globalData->jsStringVPtr)); // Checks out okay! - get the length from the Ustring. loadPtr(Address(regT0, OBJECT_OFFSETOF(JSString, m_value) + OBJECT_OFFSETOF(UString, m_rep)), regT0); load32(Address(regT0, OBJECT_OFFSETOF(UString::Rep, len)), regT0); Jump string_failureCases3 = branch32(Above, regT0, Imm32(JSImmediate::maxImmediateInt)); // regT0 contains a 64 bit value (is positive, is zero extended) so we don't need sign extend here. emitFastArithIntToImmNoCheck(regT0, regT0); ret(); #endif // (3) Trampolines for the slow cases of op_call / op_call_eval / op_construct. COMPILE_ASSERT(sizeof(CodeType) == 4, CodeTypeEnumMustBe32Bit); Label virtualCallLinkBegin = align(); // Load the callee CodeBlock* into eax loadPtr(Address(regT2, OBJECT_OFFSETOF(JSFunction, m_body)), regT3); loadPtr(Address(regT3, OBJECT_OFFSETOF(FunctionBodyNode, m_code)), regT0); Jump hasCodeBlock2 = branchTestPtr(NonZero, regT0); preserveReturnAddressAfterCall(regT3); restoreArgumentReference(); Call callJSFunction2 = call(); emitGetJITStubArg(1, regT2); emitGetJITStubArg(3, regT1); restoreReturnAddressBeforeReturn(regT3); hasCodeBlock2.link(this); Jump isNativeFunc2 = branch32(Equal, Address(regT0, OBJECT_OFFSETOF(CodeBlock, m_codeType)), Imm32(NativeCode)); // Check argCount matches callee arity. Jump arityCheckOkay2 = branch32(Equal, Address(regT0, OBJECT_OFFSETOF(CodeBlock, m_numParameters)), regT1); preserveReturnAddressAfterCall(regT3); emitPutJITStubArg(regT3, 2); emitPutJITStubArg(regT0, 4); restoreArgumentReference(); Call callArityCheck2 = call(); move(regT1, callFrameRegister); emitGetJITStubArg(1, regT2); emitGetJITStubArg(3, regT1); restoreReturnAddressBeforeReturn(regT3); arityCheckOkay2.link(this); isNativeFunc2.link(this); compileOpCallInitializeCallFrame(); preserveReturnAddressAfterCall(regT3); emitPutJITStubArg(regT3, 2); restoreArgumentReference(); Call callLazyLinkCall = call(); restoreReturnAddressBeforeReturn(regT3); jump(regT0); Label virtualCallBegin = align(); // Load the callee CodeBlock* into eax loadPtr(Address(regT2, OBJECT_OFFSETOF(JSFunction, m_body)), regT3); loadPtr(Address(regT3, OBJECT_OFFSETOF(FunctionBodyNode, m_code)), regT0); Jump hasCodeBlock3 = branchTestPtr(NonZero, regT0); preserveReturnAddressAfterCall(regT3); restoreArgumentReference(); Call callJSFunction1 = call(); emitGetJITStubArg(1, regT2); emitGetJITStubArg(3, regT1); restoreReturnAddressBeforeReturn(regT3); loadPtr(Address(regT2, OBJECT_OFFSETOF(JSFunction, m_body)), regT3); // reload the function body nody, so we can reload the code pointer. hasCodeBlock3.link(this); Jump isNativeFunc3 = branch32(Equal, Address(regT0, OBJECT_OFFSETOF(CodeBlock, m_codeType)), Imm32(NativeCode)); // Check argCount matches callee arity. Jump arityCheckOkay3 = branch32(Equal, Address(regT0, OBJECT_OFFSETOF(CodeBlock, m_numParameters)), regT1); preserveReturnAddressAfterCall(regT3); emitPutJITStubArg(regT3, 2); emitPutJITStubArg(regT0, 4); restoreArgumentReference(); Call callArityCheck1 = call(); move(regT1, callFrameRegister); emitGetJITStubArg(1, regT2); emitGetJITStubArg(3, regT1); restoreReturnAddressBeforeReturn(regT3); loadPtr(Address(regT2, OBJECT_OFFSETOF(JSFunction, m_body)), regT3); // reload the function body nody, so we can reload the code pointer. arityCheckOkay3.link(this); isNativeFunc3.link(this); // load ctiCode from the new codeBlock. loadPtr(Address(regT3, OBJECT_OFFSETOF(FunctionBodyNode, m_jitCode)), regT0); compileOpCallInitializeCallFrame(); jump(regT0); Label nativeCallThunk = align(); preserveReturnAddressAfterCall(regT0); emitPutToCallFrameHeader(regT0, RegisterFile::ReturnPC); // Push return address // Load caller frame's scope chain into this callframe so that whatever we call can // get to its global data. emitGetFromCallFrameHeaderPtr(RegisterFile::CallerFrame, regT1); emitGetFromCallFrameHeaderPtr(RegisterFile::ScopeChain, regT1, regT1); emitPutToCallFrameHeader(regT1, RegisterFile::ScopeChain); #if PLATFORM(X86_64) emitGetFromCallFrameHeader32(RegisterFile::ArgumentCount, X86::ecx); // Allocate stack space for our arglist subPtr(Imm32(sizeof(ArgList)), stackPointerRegister); COMPILE_ASSERT((sizeof(ArgList) & 0xf) == 0, ArgList_should_by_16byte_aligned); // Set up arguments subPtr(Imm32(1), X86::ecx); // Don't include 'this' in argcount // Push argcount storePtr(X86::ecx, Address(stackPointerRegister, OBJECT_OFFSETOF(ArgList, m_argCount))); // Calculate the start of the callframe header, and store in edx addPtr(Imm32(-RegisterFile::CallFrameHeaderSize * (int32_t)sizeof(Register)), callFrameRegister, X86::edx); // Calculate start of arguments as callframe header - sizeof(Register) * argcount (ecx) mul32(Imm32(sizeof(Register)), X86::ecx, X86::ecx); subPtr(X86::ecx, X86::edx); // push pointer to arguments storePtr(X86::edx, Address(stackPointerRegister, OBJECT_OFFSETOF(ArgList, m_args))); // ArgList is passed by reference so is stackPointerRegister move(stackPointerRegister, X86::ecx); // edx currently points to the first argument, edx-sizeof(Register) points to 'this' loadPtr(Address(X86::edx, -(int32_t)sizeof(Register)), X86::edx); emitGetFromCallFrameHeaderPtr(RegisterFile::Callee, X86::esi); move(callFrameRegister, X86::edi); call(Address(X86::esi, OBJECT_OFFSETOF(JSFunction, m_data))); addPtr(Imm32(sizeof(ArgList)), stackPointerRegister); #elif PLATFORM(X86) emitGetFromCallFrameHeader32(RegisterFile::ArgumentCount, regT0); /* We have two structs that we use to describe the stackframe we set up for our * call to native code. NativeCallFrameStructure describes the how we set up the stack * in advance of the call. NativeFunctionCalleeSignature describes the callframe * as the native code expects it. We do this as we are using the fastcall calling * convention which results in the callee popping its arguments off the stack, but * not the rest of the callframe so we need a nice way to ensure we increment the * stack pointer by the right amount after the call. */ #if COMPILER(MSVC) || PLATFORM(LINUX) struct NativeCallFrameStructure { // CallFrame* callFrame; // passed in EDX JSObject* callee; JSValue thisValue; ArgList* argPointer; ArgList args; JSValue result; }; struct NativeFunctionCalleeSignature { JSObject* callee; JSValue thisValue; ArgList* argPointer; }; #else struct NativeCallFrameStructure { // CallFrame* callFrame; // passed in ECX // JSObject* callee; // passed in EDX JSValue thisValue; ArgList* argPointer; ArgList args; }; struct NativeFunctionCalleeSignature { JSValue thisValue; ArgList* argPointer; }; #endif const int NativeCallFrameSize = (sizeof(NativeCallFrameStructure) + 15) & ~15; // Allocate system stack frame subPtr(Imm32(NativeCallFrameSize), stackPointerRegister); // Set up arguments subPtr(Imm32(1), regT0); // Don't include 'this' in argcount // push argcount storePtr(regT0, Address(stackPointerRegister, OBJECT_OFFSETOF(NativeCallFrameStructure, args) + OBJECT_OFFSETOF(ArgList, m_argCount))); // Calculate the start of the callframe header, and store in regT1 addPtr(Imm32(-RegisterFile::CallFrameHeaderSize * (int)sizeof(Register)), callFrameRegister, regT1); // Calculate start of arguments as callframe header - sizeof(Register) * argcount (regT0) mul32(Imm32(sizeof(Register)), regT0, regT0); subPtr(regT0, regT1); storePtr(regT1, Address(stackPointerRegister, OBJECT_OFFSETOF(NativeCallFrameStructure, args) + OBJECT_OFFSETOF(ArgList, m_args))); // ArgList is passed by reference so is stackPointerRegister + 4 * sizeof(Register) addPtr(Imm32(OBJECT_OFFSETOF(NativeCallFrameStructure, args)), stackPointerRegister, regT0); storePtr(regT0, Address(stackPointerRegister, OBJECT_OFFSETOF(NativeCallFrameStructure, argPointer))); // regT1 currently points to the first argument, regT1 - sizeof(Register) points to 'this' loadPtr(Address(regT1, -(int)sizeof(Register)), regT1); storePtr(regT1, Address(stackPointerRegister, OBJECT_OFFSETOF(NativeCallFrameStructure, thisValue))); #if COMPILER(MSVC) || PLATFORM(LINUX) // ArgList is passed by reference so is stackPointerRegister + 4 * sizeof(Register) addPtr(Imm32(OBJECT_OFFSETOF(NativeCallFrameStructure, result)), stackPointerRegister, X86::ecx); // Plant callee emitGetFromCallFrameHeaderPtr(RegisterFile::Callee, X86::eax); storePtr(X86::eax, Address(stackPointerRegister, OBJECT_OFFSETOF(NativeCallFrameStructure, callee))); // Plant callframe move(callFrameRegister, X86::edx); call(Address(X86::eax, OBJECT_OFFSETOF(JSFunction, m_data))); // JSValue is a non-POD type loadPtr(Address(X86::eax), X86::eax); #else // Plant callee emitGetFromCallFrameHeaderPtr(RegisterFile::Callee, X86::edx); // Plant callframe move(callFrameRegister, X86::ecx); call(Address(X86::edx, OBJECT_OFFSETOF(JSFunction, m_data))); #endif // We've put a few temporaries on the stack in addition to the actual arguments // so pull them off now addPtr(Imm32(NativeCallFrameSize - sizeof(NativeFunctionCalleeSignature)), stackPointerRegister); #elif PLATFORM(ARM) && !PLATFORM_ARM_ARCH(7) emitGetFromCallFrameHeader32(RegisterFile::ArgumentCount, regT0); // Allocate stack space for our arglist COMPILE_ASSERT((sizeof(ArgList) & 0x7) == 0, ArgList_should_by_8byte_aligned); subPtr(Imm32(sizeof(ArgList)), stackPointerRegister); // Set up arguments subPtr(Imm32(1), regT0); // Don't include 'this' in argcount // Push argcount storePtr(regT0, Address(stackPointerRegister, OBJECT_OFFSETOF(ArgList, m_argCount))); // Calculate the start of the callframe header, and store in regT1 move(callFrameRegister, regT1); sub32(Imm32(RegisterFile::CallFrameHeaderSize * (int32_t)sizeof(Register)), regT1); // Calculate start of arguments as callframe header - sizeof(Register) * argcount (regT1) mul32(Imm32(sizeof(Register)), regT0, regT0); subPtr(regT0, regT1); // push pointer to arguments storePtr(regT1, Address(stackPointerRegister, OBJECT_OFFSETOF(ArgList, m_args))); // Setup arg3: regT1 currently points to the first argument, regT1-sizeof(Register) points to 'this' loadPtr(Address(regT1, -(int32_t)sizeof(Register)), regT2); // Setup arg2: emitGetFromCallFrameHeaderPtr(RegisterFile::Callee, regT1); // Setup arg1: move(callFrameRegister, regT0); // Setup arg4: This is a plain hack move(stackPointerRegister, ARM::S0); move(ctiReturnRegister, ARM::lr); call(Address(regT1, OBJECT_OFFSETOF(JSFunction, m_data))); addPtr(Imm32(sizeof(ArgList)), stackPointerRegister); #elif ENABLE(JIT_OPTIMIZE_NATIVE_CALL) #error "JIT_OPTIMIZE_NATIVE_CALL not yet supported on this platform." #else breakpoint(); #endif // Check for an exception loadPtr(&(globalData->exception), regT2); Jump exceptionHandler = branchTestPtr(NonZero, regT2); // Grab the return address. emitGetFromCallFrameHeaderPtr(RegisterFile::ReturnPC, regT1); // Restore our caller's "r". emitGetFromCallFrameHeaderPtr(RegisterFile::CallerFrame, callFrameRegister); // Return. restoreReturnAddressBeforeReturn(regT1); ret(); // Handle an exception exceptionHandler.link(this); // Grab the return address. emitGetFromCallFrameHeaderPtr(RegisterFile::ReturnPC, regT1); move(ImmPtr(&globalData->exceptionLocation), regT2); storePtr(regT1, regT2); move(ImmPtr(reinterpret_cast(ctiVMThrowTrampoline)), regT2); emitGetFromCallFrameHeaderPtr(RegisterFile::CallerFrame, callFrameRegister); poke(callFrameRegister, OBJECT_OFFSETOF(struct JITStackFrame, callFrame) / sizeof (void*)); restoreReturnAddressBeforeReturn(regT2); ret(); #if ENABLE(JIT_OPTIMIZE_PROPERTY_ACCESS) Call string_failureCases1Call = makeTailRecursiveCall(string_failureCases1); Call string_failureCases2Call = makeTailRecursiveCall(string_failureCases2); Call string_failureCases3Call = makeTailRecursiveCall(string_failureCases3); #endif // All trampolines constructed! copy the code, link up calls, and set the pointers on the Machine object. LinkBuffer patchBuffer(this, m_globalData->executableAllocator.poolForSize(m_assembler.size())); #if ENABLE(JIT_OPTIMIZE_PROPERTY_ACCESS) patchBuffer.link(string_failureCases1Call, FunctionPtr(cti_op_get_by_id_string_fail)); patchBuffer.link(string_failureCases2Call, FunctionPtr(cti_op_get_by_id_string_fail)); patchBuffer.link(string_failureCases3Call, FunctionPtr(cti_op_get_by_id_string_fail)); #endif patchBuffer.link(callArityCheck1, FunctionPtr(cti_op_call_arityCheck)); patchBuffer.link(callJSFunction1, FunctionPtr(cti_op_call_JSFunction)); #if ENABLE(JIT_OPTIMIZE_CALL) patchBuffer.link(callArityCheck2, FunctionPtr(cti_op_call_arityCheck)); patchBuffer.link(callJSFunction2, FunctionPtr(cti_op_call_JSFunction)); patchBuffer.link(callLazyLinkCall, FunctionPtr(cti_vm_lazyLinkCall)); #endif CodeRef finalCode = patchBuffer.finalizeCode(); *executablePool = finalCode.m_executablePool; *ctiVirtualCallLink = trampolineAt(finalCode, virtualCallLinkBegin); *ctiVirtualCall = trampolineAt(finalCode, virtualCallBegin); *ctiNativeCallThunk = trampolineAt(finalCode, nativeCallThunk); #if ENABLE(JIT_OPTIMIZE_PROPERTY_ACCESS) *ctiStringLengthTrampoline = trampolineAt(finalCode, stringLengthBegin); #else UNUSED_PARAM(ctiStringLengthTrampoline); #endif } void JIT::emit_op_mov(Instruction* currentInstruction) { int dst = currentInstruction[1].u.operand; int src = currentInstruction[2].u.operand; if (m_codeBlock->isConstantRegisterIndex(src)) { storePtr(ImmPtr(JSValue::encode(getConstantOperand(src))), Address(callFrameRegister, dst * sizeof(Register))); if (dst == m_lastResultBytecodeRegister) killLastResultRegister(); } else if ((src == m_lastResultBytecodeRegister) || (dst == m_lastResultBytecodeRegister)) { // If either the src or dst is the cached register go though // get/put registers to make sure we track this correctly. emitGetVirtualRegister(src, regT0); emitPutVirtualRegister(dst); } else { // Perform the copy via regT1; do not disturb any mapping in regT0. loadPtr(Address(callFrameRegister, src * sizeof(Register)), regT1); storePtr(regT1, Address(callFrameRegister, dst * sizeof(Register))); } } void JIT::emit_op_end(Instruction* currentInstruction) { if (m_codeBlock->needsFullScopeChain()) JITStubCall(this, cti_op_end).call(); ASSERT(returnValueRegister != callFrameRegister); emitGetVirtualRegister(currentInstruction[1].u.operand, returnValueRegister); restoreReturnAddressBeforeReturn(Address(callFrameRegister, RegisterFile::ReturnPC * static_cast(sizeof(Register)))); ret(); } void JIT::emit_op_jmp(Instruction* currentInstruction) { unsigned target = currentInstruction[1].u.operand; addJump(jump(), target + 1); RECORD_JUMP_TARGET(target + 1); } void JIT::emit_op_loop(Instruction* currentInstruction) { emitTimeoutCheck(); unsigned target = currentInstruction[1].u.operand; addJump(jump(), target + 1); } void JIT::emit_op_loop_if_less(Instruction* currentInstruction) { emitTimeoutCheck(); unsigned op1 = currentInstruction[1].u.operand; unsigned op2 = currentInstruction[2].u.operand; unsigned target = currentInstruction[3].u.operand; if (isOperandConstantImmediateInt(op2)) { emitGetVirtualRegister(op1, regT0); emitJumpSlowCaseIfNotImmediateInteger(regT0); #if USE(JSVALUE64) int32_t op2imm = getConstantOperandImmediateInt(op2); #else int32_t op2imm = static_cast(JSImmediate::rawValue(getConstantOperand(op2))); #endif addJump(branch32(LessThan, regT0, Imm32(op2imm)), target + 3); } else if (isOperandConstantImmediateInt(op1)) { emitGetVirtualRegister(op2, regT0); emitJumpSlowCaseIfNotImmediateInteger(regT0); #if USE(JSVALUE64) int32_t op1imm = getConstantOperandImmediateInt(op1); #else int32_t op1imm = static_cast(JSImmediate::rawValue(getConstantOperand(op1))); #endif addJump(branch32(GreaterThan, regT0, Imm32(op1imm)), target + 3); } else { emitGetVirtualRegisters(op1, regT0, op2, regT1); emitJumpSlowCaseIfNotImmediateInteger(regT0); emitJumpSlowCaseIfNotImmediateInteger(regT1); addJump(branch32(LessThan, regT0, regT1), target + 3); } } void JIT::emit_op_loop_if_lesseq(Instruction* currentInstruction) { emitTimeoutCheck(); unsigned op1 = currentInstruction[1].u.operand; unsigned op2 = currentInstruction[2].u.operand; unsigned target = currentInstruction[3].u.operand; if (isOperandConstantImmediateInt(op2)) { emitGetVirtualRegister(op1, regT0); emitJumpSlowCaseIfNotImmediateInteger(regT0); #if USE(JSVALUE64) int32_t op2imm = getConstantOperandImmediateInt(op2); #else int32_t op2imm = static_cast(JSImmediate::rawValue(getConstantOperand(op2))); #endif addJump(branch32(LessThanOrEqual, regT0, Imm32(op2imm)), target + 3); } else { emitGetVirtualRegisters(op1, regT0, op2, regT1); emitJumpSlowCaseIfNotImmediateInteger(regT0); emitJumpSlowCaseIfNotImmediateInteger(regT1); addJump(branch32(LessThanOrEqual, regT0, regT1), target + 3); } } void JIT::emit_op_new_object(Instruction* currentInstruction) { JITStubCall(this, cti_op_new_object).call(currentInstruction[1].u.operand); } void JIT::emit_op_instanceof(Instruction* currentInstruction) { // Load the operands (baseVal, proto, and value respectively) into registers. // We use regT0 for baseVal since we will be done with this first, and we can then use it for the result. emitGetVirtualRegister(currentInstruction[3].u.operand, regT0); emitGetVirtualRegister(currentInstruction[4].u.operand, regT1); emitGetVirtualRegister(currentInstruction[2].u.operand, regT2); // Check that baseVal & proto are cells. emitJumpSlowCaseIfNotJSCell(regT0); emitJumpSlowCaseIfNotJSCell(regT1); // Check that baseVal is an object, that it 'ImplementsHasInstance' but that it does not 'OverridesHasInstance'. loadPtr(Address(regT0, OBJECT_OFFSETOF(JSCell, m_structure)), regT0); addSlowCase(branch32(NotEqual, Address(regT0, OBJECT_OFFSETOF(Structure, m_typeInfo.m_type)), Imm32(ObjectType))); addSlowCase(branchTest32(Zero, Address(regT0, OBJECT_OFFSETOF(Structure, m_typeInfo.m_flags)), Imm32(ImplementsDefaultHasInstance))); // If value is not an Object, return false. Jump valueIsImmediate = emitJumpIfNotJSCell(regT2); loadPtr(Address(regT2, OBJECT_OFFSETOF(JSCell, m_structure)), regT0); Jump valueIsNotObject = branch32(NotEqual, Address(regT0, OBJECT_OFFSETOF(Structure, m_typeInfo.m_type)), Imm32(ObjectType)); // Check proto is object. loadPtr(Address(regT1, OBJECT_OFFSETOF(JSCell, m_structure)), regT0); addSlowCase(branch32(NotEqual, Address(regT0, OBJECT_OFFSETOF(Structure, m_typeInfo.m_type)), Imm32(ObjectType))); // Optimistically load the result true, and start looping. // Initially, regT1 still contains proto and regT2 still contains value. // As we loop regT2 will be updated with its prototype, recursively walking the prototype chain. move(ImmPtr(JSValue::encode(jsBoolean(true))), regT0); Label loop(this); // Load the prototype of the object in regT2. If this is equal to regT1 - WIN! // Otherwise, check if we've hit null - if we have then drop out of the loop, if not go again. loadPtr(Address(regT2, OBJECT_OFFSETOF(JSCell, m_structure)), regT2); loadPtr(Address(regT2, OBJECT_OFFSETOF(Structure, m_prototype)), regT2); Jump isInstance = branchPtr(Equal, regT2, regT1); branchPtr(NotEqual, regT2, ImmPtr(JSValue::encode(jsNull())), loop); // We get here either by dropping out of the loop, or if value was not an Object. Result is false. valueIsImmediate.link(this); valueIsNotObject.link(this); move(ImmPtr(JSValue::encode(jsBoolean(false))), regT0); // isInstance jumps right down to here, to skip setting the result to false (it has already set true). isInstance.link(this); emitPutVirtualRegister(currentInstruction[1].u.operand); } void JIT::emit_op_new_func(Instruction* currentInstruction) { JITStubCall stubCall(this, cti_op_new_func); stubCall.addArgument(ImmPtr(m_codeBlock->function(currentInstruction[2].u.operand))); stubCall.call(currentInstruction[1].u.operand); } void JIT::emit_op_call(Instruction* currentInstruction) { compileOpCall(op_call, currentInstruction, m_callLinkInfoIndex++); } void JIT::emit_op_call_eval(Instruction* currentInstruction) { compileOpCall(op_call_eval, currentInstruction, m_callLinkInfoIndex++); } void JIT::emit_op_load_varargs(Instruction* currentInstruction) { int argCountDst = currentInstruction[1].u.operand; int argsOffset = currentInstruction[2].u.operand; JITStubCall stubCall(this, cti_op_load_varargs); stubCall.addArgument(Imm32(argsOffset)); stubCall.call(); // Stores a naked int32 in the register file. store32(returnValueRegister, Address(callFrameRegister, argCountDst * sizeof(Register))); } void JIT::emit_op_call_varargs(Instruction* currentInstruction) { compileOpCallVarargs(currentInstruction); } void JIT::emit_op_construct(Instruction* currentInstruction) { compileOpCall(op_construct, currentInstruction, m_callLinkInfoIndex++); } void JIT::emit_op_get_global_var(Instruction* currentInstruction) { JSVariableObject* globalObject = static_cast(currentInstruction[2].u.jsCell); move(ImmPtr(globalObject), regT0); emitGetVariableObjectRegister(regT0, currentInstruction[3].u.operand, regT0); emitPutVirtualRegister(currentInstruction[1].u.operand); } void JIT::emit_op_put_global_var(Instruction* currentInstruction) { emitGetVirtualRegister(currentInstruction[3].u.operand, regT1); JSVariableObject* globalObject = static_cast(currentInstruction[1].u.jsCell); move(ImmPtr(globalObject), regT0); emitPutVariableObjectRegister(regT1, regT0, currentInstruction[2].u.operand); } void JIT::emit_op_get_scoped_var(Instruction* currentInstruction) { int skip = currentInstruction[3].u.operand + m_codeBlock->needsFullScopeChain(); emitGetFromCallFrameHeaderPtr(RegisterFile::ScopeChain, regT0); while (skip--) loadPtr(Address(regT0, OBJECT_OFFSETOF(ScopeChainNode, next)), regT0); loadPtr(Address(regT0, OBJECT_OFFSETOF(ScopeChainNode, object)), regT0); emitGetVariableObjectRegister(regT0, currentInstruction[2].u.operand, regT0); emitPutVirtualRegister(currentInstruction[1].u.operand); } void JIT::emit_op_put_scoped_var(Instruction* currentInstruction) { int skip = currentInstruction[2].u.operand + m_codeBlock->needsFullScopeChain(); emitGetFromCallFrameHeaderPtr(RegisterFile::ScopeChain, regT1); emitGetVirtualRegister(currentInstruction[3].u.operand, regT0); while (skip--) loadPtr(Address(regT1, OBJECT_OFFSETOF(ScopeChainNode, next)), regT1); loadPtr(Address(regT1, OBJECT_OFFSETOF(ScopeChainNode, object)), regT1); emitPutVariableObjectRegister(regT0, regT1, currentInstruction[1].u.operand); } void JIT::emit_op_tear_off_activation(Instruction* currentInstruction) { JITStubCall stubCall(this, cti_op_tear_off_activation); stubCall.addArgument(currentInstruction[1].u.operand, regT2); stubCall.call(); } void JIT::emit_op_tear_off_arguments(Instruction*) { JITStubCall(this, cti_op_tear_off_arguments).call(); } void JIT::emit_op_ret(Instruction* currentInstruction) { // We could JIT generate the deref, only calling out to C when the refcount hits zero. if (m_codeBlock->needsFullScopeChain()) JITStubCall(this, cti_op_ret_scopeChain).call(); ASSERT(callFrameRegister != regT1); ASSERT(regT1 != returnValueRegister); ASSERT(returnValueRegister != callFrameRegister); // Return the result in %eax. emitGetVirtualRegister(currentInstruction[1].u.operand, returnValueRegister); // Grab the return address. emitGetFromCallFrameHeaderPtr(RegisterFile::ReturnPC, regT1); // Restore our caller's "r". emitGetFromCallFrameHeaderPtr(RegisterFile::CallerFrame, callFrameRegister); // Return. restoreReturnAddressBeforeReturn(regT1); ret(); } void JIT::emit_op_new_array(Instruction* currentInstruction) { JITStubCall stubCall(this, cti_op_new_array); stubCall.addArgument(Imm32(currentInstruction[2].u.operand)); stubCall.addArgument(Imm32(currentInstruction[3].u.operand)); stubCall.call(currentInstruction[1].u.operand); } void JIT::emit_op_resolve(Instruction* currentInstruction) { JITStubCall stubCall(this, cti_op_resolve); stubCall.addArgument(ImmPtr(&m_codeBlock->identifier(currentInstruction[2].u.operand))); stubCall.call(currentInstruction[1].u.operand); } void JIT::emit_op_construct_verify(Instruction* currentInstruction) { emitGetVirtualRegister(currentInstruction[1].u.operand, regT0); emitJumpSlowCaseIfNotJSCell(regT0); loadPtr(Address(regT0, OBJECT_OFFSETOF(JSCell, m_structure)), regT2); addSlowCase(branch32(NotEqual, Address(regT2, OBJECT_OFFSETOF(Structure, m_typeInfo) + OBJECT_OFFSETOF(TypeInfo, m_type)), Imm32(ObjectType))); } void JIT::emit_op_to_primitive(Instruction* currentInstruction) { int dst = currentInstruction[1].u.operand; int src = currentInstruction[2].u.operand; emitGetVirtualRegister(src, regT0); Jump isImm = emitJumpIfNotJSCell(regT0); addSlowCase(branchPtr(NotEqual, Address(regT0), ImmPtr(m_globalData->jsStringVPtr))); isImm.link(this); if (dst != src) emitPutVirtualRegister(dst); } void JIT::emit_op_strcat(Instruction* currentInstruction) { JITStubCall stubCall(this, cti_op_strcat); stubCall.addArgument(Imm32(currentInstruction[2].u.operand)); stubCall.addArgument(Imm32(currentInstruction[3].u.operand)); stubCall.call(currentInstruction[1].u.operand); } void JIT::emit_op_loop_if_true(Instruction* currentInstruction) { emitTimeoutCheck(); unsigned target = currentInstruction[2].u.operand; emitGetVirtualRegister(currentInstruction[1].u.operand, regT0); Jump isZero = branchPtr(Equal, regT0, ImmPtr(JSValue::encode(jsNumber(m_globalData, 0)))); addJump(emitJumpIfImmediateInteger(regT0), target + 2); addJump(branchPtr(Equal, regT0, ImmPtr(JSValue::encode(jsBoolean(true)))), target + 2); addSlowCase(branchPtr(NotEqual, regT0, ImmPtr(JSValue::encode(jsBoolean(false))))); isZero.link(this); }; void JIT::emit_op_resolve_base(Instruction* currentInstruction) { JITStubCall stubCall(this, cti_op_resolve_base); stubCall.addArgument(ImmPtr(&m_codeBlock->identifier(currentInstruction[2].u.operand))); stubCall.call(currentInstruction[1].u.operand); } void JIT::emit_op_resolve_skip(Instruction* currentInstruction) { JITStubCall stubCall(this, cti_op_resolve_skip); stubCall.addArgument(ImmPtr(&m_codeBlock->identifier(currentInstruction[2].u.operand))); stubCall.addArgument(Imm32(currentInstruction[3].u.operand + m_codeBlock->needsFullScopeChain())); stubCall.call(currentInstruction[1].u.operand); } void JIT::emit_op_resolve_global(Instruction* currentInstruction) { // Fast case void* globalObject = currentInstruction[2].u.jsCell; Identifier* ident = &m_codeBlock->identifier(currentInstruction[3].u.operand); unsigned currentIndex = m_globalResolveInfoIndex++; void* structureAddress = &(m_codeBlock->globalResolveInfo(currentIndex).structure); void* offsetAddr = &(m_codeBlock->globalResolveInfo(currentIndex).offset); // Check Structure of global object move(ImmPtr(globalObject), regT0); loadPtr(structureAddress, regT1); Jump noMatch = branchPtr(NotEqual, regT1, Address(regT0, OBJECT_OFFSETOF(JSCell, m_structure))); // Structures don't match // Load cached property // Assume that the global object always uses external storage. loadPtr(Address(regT0, OBJECT_OFFSETOF(JSGlobalObject, m_externalStorage)), regT0); load32(offsetAddr, regT1); loadPtr(BaseIndex(regT0, regT1, ScalePtr), regT0); emitPutVirtualRegister(currentInstruction[1].u.operand); Jump end = jump(); // Slow case noMatch.link(this); JITStubCall stubCall(this, cti_op_resolve_global); stubCall.addArgument(ImmPtr(globalObject)); stubCall.addArgument(ImmPtr(ident)); stubCall.addArgument(Imm32(currentIndex)); stubCall.call(currentInstruction[1].u.operand); end.link(this); } void JIT::emit_op_not(Instruction* currentInstruction) { emitGetVirtualRegister(currentInstruction[2].u.operand, regT0); xorPtr(Imm32(static_cast(JSImmediate::FullTagTypeBool)), regT0); addSlowCase(branchTestPtr(NonZero, regT0, Imm32(static_cast(~JSImmediate::ExtendedPayloadBitBoolValue)))); xorPtr(Imm32(static_cast(JSImmediate::FullTagTypeBool | JSImmediate::ExtendedPayloadBitBoolValue)), regT0); emitPutVirtualRegister(currentInstruction[1].u.operand); } void JIT::emit_op_jfalse(Instruction* currentInstruction) { unsigned target = currentInstruction[2].u.operand; emitGetVirtualRegister(currentInstruction[1].u.operand, regT0); addJump(branchPtr(Equal, regT0, ImmPtr(JSValue::encode(jsNumber(m_globalData, 0)))), target + 2); Jump isNonZero = emitJumpIfImmediateInteger(regT0); addJump(branchPtr(Equal, regT0, ImmPtr(JSValue::encode(jsBoolean(false)))), target + 2); addSlowCase(branchPtr(NotEqual, regT0, ImmPtr(JSValue::encode(jsBoolean(true))))); isNonZero.link(this); RECORD_JUMP_TARGET(target + 2); }; void JIT::emit_op_jeq_null(Instruction* currentInstruction) { unsigned src = currentInstruction[1].u.operand; unsigned target = currentInstruction[2].u.operand; emitGetVirtualRegister(src, regT0); Jump isImmediate = emitJumpIfNotJSCell(regT0); // First, handle JSCell cases - check MasqueradesAsUndefined bit on the structure. loadPtr(Address(regT0, OBJECT_OFFSETOF(JSCell, m_structure)), regT2); addJump(branchTest32(NonZero, Address(regT2, OBJECT_OFFSETOF(Structure, m_typeInfo.m_flags)), Imm32(MasqueradesAsUndefined)), target + 2); Jump wasNotImmediate = jump(); // Now handle the immediate cases - undefined & null isImmediate.link(this); andPtr(Imm32(~JSImmediate::ExtendedTagBitUndefined), regT0); addJump(branchPtr(Equal, regT0, ImmPtr(JSValue::encode(jsNull()))), target + 2); wasNotImmediate.link(this); RECORD_JUMP_TARGET(target + 2); }; void JIT::emit_op_jneq_null(Instruction* currentInstruction) { unsigned src = currentInstruction[1].u.operand; unsigned target = currentInstruction[2].u.operand; emitGetVirtualRegister(src, regT0); Jump isImmediate = emitJumpIfNotJSCell(regT0); // First, handle JSCell cases - check MasqueradesAsUndefined bit on the structure. loadPtr(Address(regT0, OBJECT_OFFSETOF(JSCell, m_structure)), regT2); addJump(branchTest32(Zero, Address(regT2, OBJECT_OFFSETOF(Structure, m_typeInfo.m_flags)), Imm32(MasqueradesAsUndefined)), target + 2); Jump wasNotImmediate = jump(); // Now handle the immediate cases - undefined & null isImmediate.link(this); andPtr(Imm32(~JSImmediate::ExtendedTagBitUndefined), regT0); addJump(branchPtr(NotEqual, regT0, ImmPtr(JSValue::encode(jsNull()))), target + 2); wasNotImmediate.link(this); RECORD_JUMP_TARGET(target + 2); } void JIT::emit_op_jneq_ptr(Instruction* currentInstruction) { unsigned src = currentInstruction[1].u.operand; JSCell* ptr = currentInstruction[2].u.jsCell; unsigned target = currentInstruction[3].u.operand; emitGetVirtualRegister(src, regT0); addJump(branchPtr(NotEqual, regT0, ImmPtr(JSValue::encode(JSValue(ptr)))), target + 3); RECORD_JUMP_TARGET(target + 3); } void JIT::emit_op_jsr(Instruction* currentInstruction) { int retAddrDst = currentInstruction[1].u.operand; int target = currentInstruction[2].u.operand; DataLabelPtr storeLocation = storePtrWithPatch(ImmPtr(0), Address(callFrameRegister, sizeof(Register) * retAddrDst)); addJump(jump(), target + 2); m_jsrSites.append(JSRInfo(storeLocation, label())); killLastResultRegister(); RECORD_JUMP_TARGET(target + 2); } void JIT::emit_op_sret(Instruction* currentInstruction) { jump(Address(callFrameRegister, sizeof(Register) * currentInstruction[1].u.operand)); killLastResultRegister(); } void JIT::emit_op_eq(Instruction* currentInstruction) { emitGetVirtualRegisters(currentInstruction[2].u.operand, regT0, currentInstruction[3].u.operand, regT1); emitJumpSlowCaseIfNotImmediateIntegers(regT0, regT1, regT2); set32(Equal, regT1, regT0, regT0); emitTagAsBoolImmediate(regT0); emitPutVirtualRegister(currentInstruction[1].u.operand); } void JIT::emit_op_bitnot(Instruction* currentInstruction) { emitGetVirtualRegister(currentInstruction[2].u.operand, regT0); emitJumpSlowCaseIfNotImmediateInteger(regT0); #if USE(JSVALUE64) not32(regT0); emitFastArithIntToImmNoCheck(regT0, regT0); #else xorPtr(Imm32(~JSImmediate::TagTypeNumber), regT0); #endif emitPutVirtualRegister(currentInstruction[1].u.operand); } void JIT::emit_op_resolve_with_base(Instruction* currentInstruction) { JITStubCall stubCall(this, cti_op_resolve_with_base); stubCall.addArgument(ImmPtr(&m_codeBlock->identifier(currentInstruction[3].u.operand))); stubCall.addArgument(Imm32(currentInstruction[1].u.operand)); stubCall.call(currentInstruction[2].u.operand); } void JIT::emit_op_new_func_exp(Instruction* currentInstruction) { JITStubCall stubCall(this, cti_op_new_func_exp); stubCall.addArgument(ImmPtr(m_codeBlock->functionExpression(currentInstruction[2].u.operand))); stubCall.call(currentInstruction[1].u.operand); } void JIT::emit_op_jtrue(Instruction* currentInstruction) { unsigned target = currentInstruction[2].u.operand; emitGetVirtualRegister(currentInstruction[1].u.operand, regT0); Jump isZero = branchPtr(Equal, regT0, ImmPtr(JSValue::encode(jsNumber(m_globalData, 0)))); addJump(emitJumpIfImmediateInteger(regT0), target + 2); addJump(branchPtr(Equal, regT0, ImmPtr(JSValue::encode(jsBoolean(true)))), target + 2); addSlowCase(branchPtr(NotEqual, regT0, ImmPtr(JSValue::encode(jsBoolean(false))))); isZero.link(this); RECORD_JUMP_TARGET(target + 2); } void JIT::emit_op_neq(Instruction* currentInstruction) { emitGetVirtualRegisters(currentInstruction[2].u.operand, regT0, currentInstruction[3].u.operand, regT1); emitJumpSlowCaseIfNotImmediateIntegers(regT0, regT1, regT2); set32(NotEqual, regT1, regT0, regT0); emitTagAsBoolImmediate(regT0); emitPutVirtualRegister(currentInstruction[1].u.operand); } void JIT::emit_op_bitxor(Instruction* currentInstruction) { emitGetVirtualRegisters(currentInstruction[2].u.operand, regT0, currentInstruction[3].u.operand, regT1); emitJumpSlowCaseIfNotImmediateIntegers(regT0, regT1, regT2); xorPtr(regT1, regT0); emitFastArithReTagImmediate(regT0, regT0); emitPutVirtualRegister(currentInstruction[1].u.operand); } void JIT::emit_op_new_regexp(Instruction* currentInstruction) { JITStubCall stubCall(this, cti_op_new_regexp); stubCall.addArgument(ImmPtr(m_codeBlock->regexp(currentInstruction[2].u.operand))); stubCall.call(currentInstruction[1].u.operand); } void JIT::emit_op_bitor(Instruction* currentInstruction) { emitGetVirtualRegisters(currentInstruction[2].u.operand, regT0, currentInstruction[3].u.operand, regT1); emitJumpSlowCaseIfNotImmediateIntegers(regT0, regT1, regT2); orPtr(regT1, regT0); emitPutVirtualRegister(currentInstruction[1].u.operand); } void JIT::emit_op_throw(Instruction* currentInstruction) { JITStubCall stubCall(this, cti_op_throw); stubCall.addArgument(currentInstruction[1].u.operand, regT2); stubCall.call(); ASSERT(regT0 == returnValueRegister); #ifndef NDEBUG // cti_op_throw always changes it's return address, // this point in the code should never be reached. breakpoint(); #endif } void JIT::emit_op_next_pname(Instruction* currentInstruction) { JITStubCall stubCall(this, cti_op_next_pname); stubCall.addArgument(currentInstruction[2].u.operand, regT2); stubCall.call(); Jump endOfIter = branchTestPtr(Zero, regT0); emitPutVirtualRegister(currentInstruction[1].u.operand); addJump(jump(), currentInstruction[3].u.operand + 3); endOfIter.link(this); } void JIT::emit_op_push_scope(Instruction* currentInstruction) { JITStubCall stubCall(this, cti_op_push_scope); stubCall.addArgument(currentInstruction[1].u.operand, regT2); stubCall.call(currentInstruction[1].u.operand); } void JIT::emit_op_pop_scope(Instruction*) { JITStubCall(this, cti_op_pop_scope).call(); } void JIT::compileOpStrictEq(Instruction* currentInstruction, CompileOpStrictEqType type) { unsigned dst = currentInstruction[1].u.operand; unsigned src1 = currentInstruction[2].u.operand; unsigned src2 = currentInstruction[3].u.operand; emitGetVirtualRegisters(src1, regT0, src2, regT1); // Jump to a slow case if either operand is a number, or if both are JSCell*s. move(regT0, regT2); orPtr(regT1, regT2); addSlowCase(emitJumpIfJSCell(regT2)); addSlowCase(emitJumpIfImmediateNumber(regT2)); if (type == OpStrictEq) set32(Equal, regT1, regT0, regT0); else set32(NotEqual, regT1, regT0, regT0); emitTagAsBoolImmediate(regT0); emitPutVirtualRegister(dst); } void JIT::emit_op_stricteq(Instruction* currentInstruction) { compileOpStrictEq(currentInstruction, OpStrictEq); } void JIT::emit_op_nstricteq(Instruction* currentInstruction) { compileOpStrictEq(currentInstruction, OpNStrictEq); } void JIT::emit_op_to_jsnumber(Instruction* currentInstruction) { int srcVReg = currentInstruction[2].u.operand; emitGetVirtualRegister(srcVReg, regT0); Jump wasImmediate = emitJumpIfImmediateInteger(regT0); emitJumpSlowCaseIfNotJSCell(regT0, srcVReg); loadPtr(Address(regT0, OBJECT_OFFSETOF(JSCell, m_structure)), regT2); addSlowCase(branch32(NotEqual, Address(regT2, OBJECT_OFFSETOF(Structure, m_typeInfo.m_type)), Imm32(NumberType))); wasImmediate.link(this); emitPutVirtualRegister(currentInstruction[1].u.operand); } void JIT::emit_op_push_new_scope(Instruction* currentInstruction) { JITStubCall stubCall(this, cti_op_push_new_scope); stubCall.addArgument(ImmPtr(&m_codeBlock->identifier(currentInstruction[2].u.operand))); stubCall.addArgument(currentInstruction[3].u.operand, regT2); stubCall.call(currentInstruction[1].u.operand); } void JIT::emit_op_catch(Instruction* currentInstruction) { killLastResultRegister(); // FIXME: Implicitly treat op_catch as a labeled statement, and remove this line of code. peek(callFrameRegister, OBJECT_OFFSETOF(struct JITStackFrame, callFrame) / sizeof (void*)); emitPutVirtualRegister(currentInstruction[1].u.operand); } void JIT::emit_op_jmp_scopes(Instruction* currentInstruction) { JITStubCall stubCall(this, cti_op_jmp_scopes); stubCall.addArgument(Imm32(currentInstruction[1].u.operand)); stubCall.call(); addJump(jump(), currentInstruction[2].u.operand + 2); RECORD_JUMP_TARGET(currentInstruction[2].u.operand + 2); } void JIT::emit_op_switch_imm(Instruction* currentInstruction) { unsigned tableIndex = currentInstruction[1].u.operand; unsigned defaultOffset = currentInstruction[2].u.operand; unsigned scrutinee = currentInstruction[3].u.operand; // create jump table for switch destinations, track this switch statement. SimpleJumpTable* jumpTable = &m_codeBlock->immediateSwitchJumpTable(tableIndex); m_switches.append(SwitchRecord(jumpTable, m_bytecodeIndex, defaultOffset, SwitchRecord::Immediate)); jumpTable->ctiOffsets.grow(jumpTable->branchOffsets.size()); JITStubCall stubCall(this, cti_op_switch_imm); stubCall.addArgument(scrutinee, regT2); stubCall.addArgument(Imm32(tableIndex)); stubCall.call(); jump(regT0); } void JIT::emit_op_switch_char(Instruction* currentInstruction) { unsigned tableIndex = currentInstruction[1].u.operand; unsigned defaultOffset = currentInstruction[2].u.operand; unsigned scrutinee = currentInstruction[3].u.operand; // create jump table for switch destinations, track this switch statement. SimpleJumpTable* jumpTable = &m_codeBlock->characterSwitchJumpTable(tableIndex); m_switches.append(SwitchRecord(jumpTable, m_bytecodeIndex, defaultOffset, SwitchRecord::Character)); jumpTable->ctiOffsets.grow(jumpTable->branchOffsets.size()); JITStubCall stubCall(this, cti_op_switch_char); stubCall.addArgument(scrutinee, regT2); stubCall.addArgument(Imm32(tableIndex)); stubCall.call(); jump(regT0); } void JIT::emit_op_switch_string(Instruction* currentInstruction) { unsigned tableIndex = currentInstruction[1].u.operand; unsigned defaultOffset = currentInstruction[2].u.operand; unsigned scrutinee = currentInstruction[3].u.operand; // create jump table for switch destinations, track this switch statement. StringJumpTable* jumpTable = &m_codeBlock->stringSwitchJumpTable(tableIndex); m_switches.append(SwitchRecord(jumpTable, m_bytecodeIndex, defaultOffset)); JITStubCall stubCall(this, cti_op_switch_string); stubCall.addArgument(scrutinee, regT2); stubCall.addArgument(Imm32(tableIndex)); stubCall.call(); jump(regT0); } void JIT::emit_op_new_error(Instruction* currentInstruction) { JITStubCall stubCall(this, cti_op_new_error); stubCall.addArgument(Imm32(currentInstruction[2].u.operand)); stubCall.addArgument(ImmPtr(JSValue::encode(m_codeBlock->getConstant(currentInstruction[3].u.operand)))); stubCall.addArgument(Imm32(m_bytecodeIndex)); stubCall.call(currentInstruction[1].u.operand); } void JIT::emit_op_debug(Instruction* currentInstruction) { JITStubCall stubCall(this, cti_op_debug); stubCall.addArgument(Imm32(currentInstruction[1].u.operand)); stubCall.addArgument(Imm32(currentInstruction[2].u.operand)); stubCall.addArgument(Imm32(currentInstruction[3].u.operand)); stubCall.call(); } void JIT::emit_op_eq_null(Instruction* currentInstruction) { unsigned dst = currentInstruction[1].u.operand; unsigned src1 = currentInstruction[2].u.operand; emitGetVirtualRegister(src1, regT0); Jump isImmediate = emitJumpIfNotJSCell(regT0); loadPtr(Address(regT0, OBJECT_OFFSETOF(JSCell, m_structure)), regT2); setTest32(NonZero, Address(regT2, OBJECT_OFFSETOF(Structure, m_typeInfo.m_flags)), Imm32(MasqueradesAsUndefined), regT0); Jump wasNotImmediate = jump(); isImmediate.link(this); andPtr(Imm32(~JSImmediate::ExtendedTagBitUndefined), regT0); setPtr(Equal, regT0, Imm32(JSImmediate::FullTagTypeNull), regT0); wasNotImmediate.link(this); emitTagAsBoolImmediate(regT0); emitPutVirtualRegister(dst); } void JIT::emit_op_neq_null(Instruction* currentInstruction) { unsigned dst = currentInstruction[1].u.operand; unsigned src1 = currentInstruction[2].u.operand; emitGetVirtualRegister(src1, regT0); Jump isImmediate = emitJumpIfNotJSCell(regT0); loadPtr(Address(regT0, OBJECT_OFFSETOF(JSCell, m_structure)), regT2); setTest32(Zero, Address(regT2, OBJECT_OFFSETOF(Structure, m_typeInfo.m_flags)), Imm32(MasqueradesAsUndefined), regT0); Jump wasNotImmediate = jump(); isImmediate.link(this); andPtr(Imm32(~JSImmediate::ExtendedTagBitUndefined), regT0); setPtr(NotEqual, regT0, Imm32(JSImmediate::FullTagTypeNull), regT0); wasNotImmediate.link(this); emitTagAsBoolImmediate(regT0); emitPutVirtualRegister(dst); } void JIT::emit_op_enter(Instruction*) { // Even though CTI doesn't use them, we initialize our constant // registers to zap stale pointers, to avoid unnecessarily prolonging // object lifetime and increasing GC pressure. size_t count = m_codeBlock->m_numVars; for (size_t j = 0; j < count; ++j) emitInitRegister(j); } void JIT::emit_op_enter_with_activation(Instruction* currentInstruction) { // Even though CTI doesn't use them, we initialize our constant // registers to zap stale pointers, to avoid unnecessarily prolonging // object lifetime and increasing GC pressure. size_t count = m_codeBlock->m_numVars; for (size_t j = 0; j < count; ++j) emitInitRegister(j); JITStubCall(this, cti_op_push_activation).call(currentInstruction[1].u.operand); } void JIT::emit_op_create_arguments(Instruction*) { Jump argsCreated = branchTestPtr(NonZero, Address(callFrameRegister, sizeof(Register) * RegisterFile::ArgumentsRegister)); if (m_codeBlock->m_numParameters == 1) JITStubCall(this, cti_op_create_arguments_no_params).call(); else JITStubCall(this, cti_op_create_arguments).call(); argsCreated.link(this); } void JIT::emit_op_init_arguments(Instruction*) { storePtr(ImmPtr(0), Address(callFrameRegister, sizeof(Register) * RegisterFile::ArgumentsRegister)); } void JIT::emit_op_convert_this(Instruction* currentInstruction) { emitGetVirtualRegister(currentInstruction[1].u.operand, regT0); emitJumpSlowCaseIfNotJSCell(regT0); loadPtr(Address(regT0, OBJECT_OFFSETOF(JSCell, m_structure)), regT1); addSlowCase(branchTest32(NonZero, Address(regT1, OBJECT_OFFSETOF(Structure, m_typeInfo.m_flags)), Imm32(NeedsThisConversion))); } void JIT::emit_op_profile_will_call(Instruction* currentInstruction) { peek(regT1, OBJECT_OFFSETOF(JITStackFrame, enabledProfilerReference) / sizeof (void*)); Jump noProfiler = branchTestPtr(Zero, Address(regT1)); JITStubCall stubCall(this, cti_op_profile_will_call); stubCall.addArgument(currentInstruction[1].u.operand, regT1); stubCall.call(); noProfiler.link(this); } void JIT::emit_op_profile_did_call(Instruction* currentInstruction) { peek(regT1, OBJECT_OFFSETOF(JITStackFrame, enabledProfilerReference) / sizeof (void*)); Jump noProfiler = branchTestPtr(Zero, Address(regT1)); JITStubCall stubCall(this, cti_op_profile_did_call); stubCall.addArgument(currentInstruction[1].u.operand, regT1); stubCall.call(); noProfiler.link(this); } // Slow cases void JIT::emitSlow_op_convert_this(Instruction* currentInstruction, Vector::iterator& iter) { linkSlowCase(iter); linkSlowCase(iter); JITStubCall stubCall(this, cti_op_convert_this); stubCall.addArgument(regT0); stubCall.call(currentInstruction[1].u.operand); } void JIT::emitSlow_op_construct_verify(Instruction* currentInstruction, Vector::iterator& iter) { linkSlowCase(iter); linkSlowCase(iter); emitGetVirtualRegister(currentInstruction[2].u.operand, regT0); emitPutVirtualRegister(currentInstruction[1].u.operand); } void JIT::emitSlow_op_to_primitive(Instruction* currentInstruction, Vector::iterator& iter) { linkSlowCase(iter); JITStubCall stubCall(this, cti_op_to_primitive); stubCall.addArgument(regT0); stubCall.call(currentInstruction[1].u.operand); } void JIT::emitSlow_op_get_by_val(Instruction* currentInstruction, Vector::iterator& iter) { // The slow void JIT::emitSlow_that handles accesses to arrays (below) may jump back up to here. Label beginGetByValSlow(this); Jump notImm = getSlowCase(iter); linkSlowCase(iter); linkSlowCase(iter); emitFastArithIntToImmNoCheck(regT1, regT1); notImm.link(this); JITStubCall stubCall(this, cti_op_get_by_val); stubCall.addArgument(regT0); stubCall.addArgument(regT1); stubCall.call(currentInstruction[1].u.operand); emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_get_by_val)); // This is slow void JIT::emitSlow_that handles accesses to arrays above the fast cut-off. // First, check if this is an access to the vector linkSlowCase(iter); branch32(AboveOrEqual, regT1, Address(regT2, OBJECT_OFFSETOF(ArrayStorage, m_vectorLength)), beginGetByValSlow); // okay, missed the fast region, but it is still in the vector. Get the value. loadPtr(BaseIndex(regT2, regT1, ScalePtr, OBJECT_OFFSETOF(ArrayStorage, m_vector[0])), regT2); // Check whether the value loaded is zero; if so we need to return undefined. branchTestPtr(Zero, regT2, beginGetByValSlow); move(regT2, regT0); emitPutVirtualRegister(currentInstruction[1].u.operand, regT0); } void JIT::emitSlow_op_loop_if_less(Instruction* currentInstruction, Vector::iterator& iter) { unsigned op1 = currentInstruction[1].u.operand; unsigned op2 = currentInstruction[2].u.operand; unsigned target = currentInstruction[3].u.operand; if (isOperandConstantImmediateInt(op2)) { linkSlowCase(iter); JITStubCall stubCall(this, cti_op_loop_if_less); stubCall.addArgument(regT0); stubCall.addArgument(op2, regT2); stubCall.call(); emitJumpSlowToHot(branchTest32(NonZero, regT0), target + 3); } else if (isOperandConstantImmediateInt(op1)) { linkSlowCase(iter); JITStubCall stubCall(this, cti_op_loop_if_less); stubCall.addArgument(op1, regT2); stubCall.addArgument(regT0); stubCall.call(); emitJumpSlowToHot(branchTest32(NonZero, regT0), target + 3); } else { linkSlowCase(iter); linkSlowCase(iter); JITStubCall stubCall(this, cti_op_loop_if_less); stubCall.addArgument(regT0); stubCall.addArgument(regT1); stubCall.call(); emitJumpSlowToHot(branchTest32(NonZero, regT0), target + 3); } } void JIT::emitSlow_op_loop_if_lesseq(Instruction* currentInstruction, Vector::iterator& iter) { unsigned op2 = currentInstruction[2].u.operand; unsigned target = currentInstruction[3].u.operand; if (isOperandConstantImmediateInt(op2)) { linkSlowCase(iter); JITStubCall stubCall(this, cti_op_loop_if_lesseq); stubCall.addArgument(regT0); stubCall.addArgument(currentInstruction[2].u.operand, regT2); stubCall.call(); emitJumpSlowToHot(branchTest32(NonZero, regT0), target + 3); } else { linkSlowCase(iter); linkSlowCase(iter); JITStubCall stubCall(this, cti_op_loop_if_lesseq); stubCall.addArgument(regT0); stubCall.addArgument(regT1); stubCall.call(); emitJumpSlowToHot(branchTest32(NonZero, regT0), target + 3); } } void JIT::emitSlow_op_put_by_val(Instruction* currentInstruction, Vector::iterator& iter) { // Normal slow cases - either is not an immediate imm, or is an array. Jump notImm = getSlowCase(iter); linkSlowCase(iter); linkSlowCase(iter); emitFastArithIntToImmNoCheck(regT1, regT1); notImm.link(this); { JITStubCall stubCall(this, cti_op_put_by_val); stubCall.addArgument(regT0); stubCall.addArgument(regT1); stubCall.addArgument(currentInstruction[3].u.operand, regT2); stubCall.call(); emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_put_by_val)); } // slow cases for immediate int accesses to arrays linkSlowCase(iter); linkSlowCase(iter); { JITStubCall stubCall(this, cti_op_put_by_val_array); stubCall.addArgument(regT0); stubCall.addArgument(regT1); stubCall.addArgument(currentInstruction[3].u.operand, regT2); stubCall.call(); } } void JIT::emitSlow_op_loop_if_true(Instruction* currentInstruction, Vector::iterator& iter) { linkSlowCase(iter); JITStubCall stubCall(this, cti_op_jtrue); stubCall.addArgument(regT0); stubCall.call(); emitJumpSlowToHot(branchTest32(NonZero, regT0), currentInstruction[2].u.operand + 2); } void JIT::emitSlow_op_not(Instruction* currentInstruction, Vector::iterator& iter) { linkSlowCase(iter); xorPtr(Imm32(static_cast(JSImmediate::FullTagTypeBool)), regT0); JITStubCall stubCall(this, cti_op_not); stubCall.addArgument(regT0); stubCall.call(currentInstruction[1].u.operand); } void JIT::emitSlow_op_jfalse(Instruction* currentInstruction, Vector::iterator& iter) { linkSlowCase(iter); JITStubCall stubCall(this, cti_op_jtrue); stubCall.addArgument(regT0); stubCall.call(); emitJumpSlowToHot(branchTest32(Zero, regT0), currentInstruction[2].u.operand + 2); // inverted! } void JIT::emitSlow_op_bitnot(Instruction* currentInstruction, Vector::iterator& iter) { linkSlowCase(iter); JITStubCall stubCall(this, cti_op_bitnot); stubCall.addArgument(regT0); stubCall.call(currentInstruction[1].u.operand); } void JIT::emitSlow_op_jtrue(Instruction* currentInstruction, Vector::iterator& iter) { linkSlowCase(iter); JITStubCall stubCall(this, cti_op_jtrue); stubCall.addArgument(regT0); stubCall.call(); emitJumpSlowToHot(branchTest32(NonZero, regT0), currentInstruction[2].u.operand + 2); } void JIT::emitSlow_op_bitxor(Instruction* currentInstruction, Vector::iterator& iter) { linkSlowCase(iter); JITStubCall stubCall(this, cti_op_bitxor); stubCall.addArgument(regT0); stubCall.addArgument(regT1); stubCall.call(currentInstruction[1].u.operand); } void JIT::emitSlow_op_bitor(Instruction* currentInstruction, Vector::iterator& iter) { linkSlowCase(iter); JITStubCall stubCall(this, cti_op_bitor); stubCall.addArgument(regT0); stubCall.addArgument(regT1); stubCall.call(currentInstruction[1].u.operand); } void JIT::emitSlow_op_eq(Instruction* currentInstruction, Vector::iterator& iter) { linkSlowCase(iter); JITStubCall stubCall(this, cti_op_eq); stubCall.addArgument(regT0); stubCall.addArgument(regT1); stubCall.call(); emitTagAsBoolImmediate(regT0); emitPutVirtualRegister(currentInstruction[1].u.operand); } void JIT::emitSlow_op_neq(Instruction* currentInstruction, Vector::iterator& iter) { linkSlowCase(iter); JITStubCall stubCall(this, cti_op_eq); stubCall.addArgument(regT0); stubCall.addArgument(regT1); stubCall.call(); xor32(Imm32(0x1), regT0); emitTagAsBoolImmediate(regT0); emitPutVirtualRegister(currentInstruction[1].u.operand); } void JIT::emitSlow_op_stricteq(Instruction* currentInstruction, Vector::iterator& iter) { linkSlowCase(iter); linkSlowCase(iter); JITStubCall stubCall(this, cti_op_stricteq); stubCall.addArgument(regT0); stubCall.addArgument(regT1); stubCall.call(currentInstruction[1].u.operand); } void JIT::emitSlow_op_nstricteq(Instruction* currentInstruction, Vector::iterator& iter) { linkSlowCase(iter); linkSlowCase(iter); JITStubCall stubCall(this, cti_op_nstricteq); stubCall.addArgument(regT0); stubCall.addArgument(regT1); stubCall.call(currentInstruction[1].u.operand); } void JIT::emitSlow_op_instanceof(Instruction* currentInstruction, Vector::iterator& iter) { linkSlowCase(iter); linkSlowCase(iter); linkSlowCase(iter); linkSlowCase(iter); linkSlowCase(iter); JITStubCall stubCall(this, cti_op_instanceof); stubCall.addArgument(currentInstruction[2].u.operand, regT2); stubCall.addArgument(currentInstruction[3].u.operand, regT2); stubCall.addArgument(currentInstruction[4].u.operand, regT2); stubCall.call(currentInstruction[1].u.operand); } void JIT::emitSlow_op_call(Instruction* currentInstruction, Vector::iterator& iter) { compileOpCallSlowCase(currentInstruction, iter, m_callLinkInfoIndex++, op_call); } void JIT::emitSlow_op_call_eval(Instruction* currentInstruction, Vector::iterator& iter) { compileOpCallSlowCase(currentInstruction, iter, m_callLinkInfoIndex++, op_call_eval); } void JIT::emitSlow_op_call_varargs(Instruction* currentInstruction, Vector::iterator& iter) { compileOpCallVarargsSlowCase(currentInstruction, iter); } void JIT::emitSlow_op_construct(Instruction* currentInstruction, Vector::iterator& iter) { compileOpCallSlowCase(currentInstruction, iter, m_callLinkInfoIndex++, op_construct); } void JIT::emitSlow_op_to_jsnumber(Instruction* currentInstruction, Vector::iterator& iter) { linkSlowCaseIfNotJSCell(iter, currentInstruction[2].u.operand); linkSlowCase(iter); JITStubCall stubCall(this, cti_op_to_jsnumber); stubCall.addArgument(regT0); stubCall.call(currentInstruction[1].u.operand); } #endif // USE(JSVALUE32_64) } // namespace JSC #endif // ENABLE(JIT)