/* * Copyright (C) 1999-2001 Harri Porten (porten@kde.org) * Copyright (C) 2001 Peter Kelly (pmk@post.com) * Copyright (C) 2003, 2007, 2008 Apple Inc. All rights reserved. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public License * along with this library; see the file COPYING.LIB. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, * Boston, MA 02110-1301, USA. * */ #include "config.h" #include "value.h" #include "error_object.h" #include "nodes.h" #include #include #include namespace KJS { #if defined NAN && defined INFINITY extern const double NaN = NAN; extern const double Inf = INFINITY; #else // !(defined NAN && defined INFINITY) // The trick is to define the NaN and Inf globals with a different type than the declaration. // This trick works because the mangled name of the globals does not include the type, although // I'm not sure that's guaranteed. There could be alignment issues with this, since arrays of // characters don't necessarily need the same alignment doubles do, but for now it seems to work. // It would be good to figure out a 100% clean way that still avoids code that runs at init time. // Note, we have to use union to ensure alignment. Otherwise, NaN_Bytes can start anywhere, // while NaN_double has to be 4-byte aligned for 32-bits. // With -fstrict-aliasing enabled, unions are the only safe way to do type masquerading. static const union { struct { unsigned char NaN_Bytes[8]; unsigned char Inf_Bytes[8]; } bytes; struct { double NaN_Double; double Inf_Double; } doubles; } NaNInf = { { #if PLATFORM(BIG_ENDIAN) { 0x7f, 0xf8, 0, 0, 0, 0, 0, 0 }, { 0x7f, 0xf0, 0, 0, 0, 0, 0, 0 } #elif PLATFORM(MIDDLE_ENDIAN) { 0, 0, 0xf8, 0x7f, 0, 0, 0, 0 }, { 0, 0, 0xf0, 0x7f, 0, 0, 0, 0 } #else { 0, 0, 0, 0, 0, 0, 0xf8, 0x7f }, { 0, 0, 0, 0, 0, 0, 0xf0, 0x7f } #endif } } ; extern const double NaN = NaNInf.doubles.NaN_Double; extern const double Inf = NaNInf.doubles.Inf_Double; #endif // !(defined NAN && defined INFINITY) static const double D16 = 65536.0; static const double D32 = 4294967296.0; void *JSCell::operator new(size_t size) { return Collector::allocate(size); } bool JSCell::getUInt32(uint32_t&) const { return false; } bool JSCell::getTruncatedInt32(int32_t&) const { return false; } bool JSCell::getTruncatedUInt32(uint32_t&) const { return false; } // ECMA 9.4 double JSValue::toInteger(ExecState *exec) const { int32_t i; if (getTruncatedInt32(i)) return i; double d = toNumber(exec); return isnan(d) ? 0.0 : trunc(d); } double JSValue::toIntegerPreserveNaN(ExecState *exec) const { int32_t i; if (getTruncatedInt32(i)) return i; return trunc(toNumber(exec)); } int32_t JSValue::toInt32SlowCase(double d, bool& ok) { ok = true; if (d >= -D32 / 2 && d < D32 / 2) return static_cast(d); if (isnan(d) || isinf(d)) { ok = false; return 0; } double d32 = fmod(trunc(d), D32); if (d32 >= D32 / 2) d32 -= D32; else if (d32 < -D32 / 2) d32 += D32; return static_cast(d32); } int32_t JSValue::toInt32SlowCase(ExecState* exec, bool& ok) const { return JSValue::toInt32SlowCase(toNumber(exec), ok); } uint32_t JSValue::toUInt32SlowCase(double d, bool& ok) { ok = true; if (d >= 0.0 && d < D32) return static_cast(d); if (isnan(d) || isinf(d)) { ok = false; return 0; } double d32 = fmod(trunc(d), D32); if (d32 < 0) d32 += D32; return static_cast(d32); } uint32_t JSValue::toUInt32SlowCase(ExecState* exec, bool& ok) const { return JSValue::toUInt32SlowCase(toNumber(exec), ok); } float JSValue::toFloat(ExecState* exec) const { return static_cast(toNumber(exec)); } bool JSCell::getNumber(double &numericValue) const { if (!isNumber()) return false; numericValue = static_cast(this)->value(); return true; } double JSCell::getNumber() const { return isNumber() ? static_cast(this)->value() : NaN; } bool JSCell::getString(UString &stringValue) const { if (!isString()) return false; stringValue = static_cast(this)->value(); return true; } UString JSCell::getString() const { return isString() ? static_cast(this)->value() : UString(); } JSObject *JSCell::getObject() { return isObject() ? static_cast(this) : 0; } const JSObject *JSCell::getObject() const { return isObject() ? static_cast(this) : 0; } JSCell* jsString(const char* s) { return new StringImp(s ? s : ""); } JSCell* jsString(const UString& s) { return s.isNull() ? new StringImp("") : new StringImp(s); } JSCell* jsOwnedString(const UString& s) { return s.isNull() ? new StringImp("", StringImp::HasOtherOwner) : new StringImp(s, StringImp::HasOtherOwner); } // This method includes a PIC branch to set up the NumberImp's vtable, so we quarantine // it in a separate function to keep the normal case speedy. JSValue *jsNumberCell(double d) { return new NumberImp(d); } } // namespace KJS