// Copyright (c) 2005, 2007, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // --- // Author: Sanjay Ghemawat #include "config.h" #include "TCSystemAlloc.h" #include #include #include "Assertions.h" #include "TCSpinLock.h" #include "UnusedParam.h" #if HAVE(STDINT_H) #include #elif HAVE(INTTYPES_H) #include #else #include #endif #if PLATFORM(WIN_OS) #include "windows.h" #else #include #include #include #endif #ifndef MAP_ANONYMOUS #define MAP_ANONYMOUS MAP_ANON #endif using namespace std; // Structure for discovering alignment union MemoryAligner { void* p; double d; size_t s; }; static SpinLock spinlock = SPINLOCK_INITIALIZER; // Page size is initialized on demand static size_t pagesize = 0; // Configuration parameters. // // if use_devmem is true, either use_sbrk or use_mmap must also be true. // For 2.2 kernels, it looks like the sbrk address space (500MBish) and // the mmap address space (1300MBish) are disjoint, so we need both allocators // to get as much virtual memory as possible. #ifndef WTF_CHANGES static bool use_devmem = false; #endif #if HAVE(SBRK) static bool use_sbrk = false; #endif #if HAVE(MMAP) static bool use_mmap = true; #endif #if HAVE(VIRTUALALLOC) static bool use_VirtualAlloc = true; #endif // Flags to keep us from retrying allocators that failed. static bool devmem_failure = false; static bool sbrk_failure = false; static bool mmap_failure = false; static bool VirtualAlloc_failure = false; #ifndef WTF_CHANGES DEFINE_int32(malloc_devmem_start, 0, "Physical memory starting location in MB for /dev/mem allocation." " Setting this to 0 disables /dev/mem allocation"); DEFINE_int32(malloc_devmem_limit, 0, "Physical memory limit location in MB for /dev/mem allocation." " Setting this to 0 means no limit."); #else static const int32_t FLAGS_malloc_devmem_start = 0; static const int32_t FLAGS_malloc_devmem_limit = 0; #endif #if HAVE(SBRK) static void* TrySbrk(size_t size, size_t *actual_size, size_t alignment) { size = ((size + alignment - 1) / alignment) * alignment; // could theoretically return the "extra" bytes here, but this // is simple and correct. if (actual_size) *actual_size = size; void* result = sbrk(size); if (result == reinterpret_cast(-1)) { sbrk_failure = true; return NULL; } // Is it aligned? uintptr_t ptr = reinterpret_cast(result); if ((ptr & (alignment-1)) == 0) return result; // Try to get more memory for alignment size_t extra = alignment - (ptr & (alignment-1)); void* r2 = sbrk(extra); if (reinterpret_cast(r2) == (ptr + size)) { // Contiguous with previous result return reinterpret_cast(ptr + extra); } // Give up and ask for "size + alignment - 1" bytes so // that we can find an aligned region within it. result = sbrk(size + alignment - 1); if (result == reinterpret_cast(-1)) { sbrk_failure = true; return NULL; } ptr = reinterpret_cast(result); if ((ptr & (alignment-1)) != 0) { ptr += alignment - (ptr & (alignment-1)); } return reinterpret_cast(ptr); } #endif /* HAVE(SBRK) */ #if HAVE(MMAP) static void* TryMmap(size_t size, size_t *actual_size, size_t alignment) { // Enforce page alignment if (pagesize == 0) pagesize = getpagesize(); if (alignment < pagesize) alignment = pagesize; size = ((size + alignment - 1) / alignment) * alignment; // could theoretically return the "extra" bytes here, but this // is simple and correct. if (actual_size) *actual_size = size; // Ask for extra memory if alignment > pagesize size_t extra = 0; if (alignment > pagesize) { extra = alignment - pagesize; } void* result = mmap(NULL, size + extra, PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0); if (result == reinterpret_cast(MAP_FAILED)) { mmap_failure = true; return NULL; } // Adjust the return memory so it is aligned uintptr_t ptr = reinterpret_cast(result); size_t adjust = 0; if ((ptr & (alignment - 1)) != 0) { adjust = alignment - (ptr & (alignment - 1)); } // Return the unused memory to the system if (adjust > 0) { munmap(reinterpret_cast(ptr), adjust); } if (adjust < extra) { munmap(reinterpret_cast(ptr + adjust + size), extra - adjust); } ptr += adjust; return reinterpret_cast(ptr); } #endif /* HAVE(MMAP) */ #if HAVE(VIRTUALALLOC) static void* TryVirtualAlloc(size_t size, size_t *actual_size, size_t alignment) { // Enforce page alignment if (pagesize == 0) { SYSTEM_INFO system_info; GetSystemInfo(&system_info); pagesize = system_info.dwPageSize; } if (alignment < pagesize) alignment = pagesize; size = ((size + alignment - 1) / alignment) * alignment; // could theoretically return the "extra" bytes here, but this // is simple and correct. if (actual_size) *actual_size = size; // Ask for extra memory if alignment > pagesize size_t extra = 0; if (alignment > pagesize) { extra = alignment - pagesize; } void* result = VirtualAlloc(NULL, size + extra, MEM_RESERVE | MEM_COMMIT | MEM_TOP_DOWN, PAGE_READWRITE); if (result == NULL) { VirtualAlloc_failure = true; return NULL; } // Adjust the return memory so it is aligned uintptr_t ptr = reinterpret_cast(result); size_t adjust = 0; if ((ptr & (alignment - 1)) != 0) { adjust = alignment - (ptr & (alignment - 1)); } // Return the unused memory to the system - we'd like to release but the best we can do // is decommit, since Windows only lets you free the whole allocation. if (adjust > 0) { VirtualFree(reinterpret_cast(ptr), adjust, MEM_DECOMMIT); } if (adjust < extra) { VirtualFree(reinterpret_cast(ptr + adjust + size), extra-adjust, MEM_DECOMMIT); } ptr += adjust; return reinterpret_cast(ptr); } #endif /* HAVE(MMAP) */ #ifndef WTF_CHANGES static void* TryDevMem(size_t size, size_t *actual_size, size_t alignment) { static bool initialized = false; static off_t physmem_base; // next physical memory address to allocate static off_t physmem_limit; // maximum physical address allowed static int physmem_fd; // file descriptor for /dev/mem // Check if we should use /dev/mem allocation. Note that it may take // a while to get this flag initialized, so meanwhile we fall back to // the next allocator. (It looks like 7MB gets allocated before // this flag gets initialized -khr.) if (FLAGS_malloc_devmem_start == 0) { // NOTE: not a devmem_failure - we'd like TCMalloc_SystemAlloc to // try us again next time. return NULL; } if (!initialized) { physmem_fd = open("/dev/mem", O_RDWR); if (physmem_fd < 0) { devmem_failure = true; return NULL; } physmem_base = FLAGS_malloc_devmem_start*1024LL*1024LL; physmem_limit = FLAGS_malloc_devmem_limit*1024LL*1024LL; initialized = true; } // Enforce page alignment if (pagesize == 0) pagesize = getpagesize(); if (alignment < pagesize) alignment = pagesize; size = ((size + alignment - 1) / alignment) * alignment; // could theoretically return the "extra" bytes here, but this // is simple and correct. if (actual_size) *actual_size = size; // Ask for extra memory if alignment > pagesize size_t extra = 0; if (alignment > pagesize) { extra = alignment - pagesize; } // check to see if we have any memory left if (physmem_limit != 0 && physmem_base + size + extra > physmem_limit) { devmem_failure = true; return NULL; } void *result = mmap(0, size + extra, PROT_READ | PROT_WRITE, MAP_SHARED, physmem_fd, physmem_base); if (result == reinterpret_cast(MAP_FAILED)) { devmem_failure = true; return NULL; } uintptr_t ptr = reinterpret_cast(result); // Adjust the return memory so it is aligned size_t adjust = 0; if ((ptr & (alignment - 1)) != 0) { adjust = alignment - (ptr & (alignment - 1)); } // Return the unused virtual memory to the system if (adjust > 0) { munmap(reinterpret_cast(ptr), adjust); } if (adjust < extra) { munmap(reinterpret_cast(ptr + adjust + size), extra - adjust); } ptr += adjust; physmem_base += adjust + size; return reinterpret_cast(ptr); } #endif void* TCMalloc_SystemAlloc(size_t size, size_t *actual_size, size_t alignment) { // Discard requests that overflow if (size + alignment < size) return NULL; SpinLockHolder lock_holder(&spinlock); // Enforce minimum alignment if (alignment < sizeof(MemoryAligner)) alignment = sizeof(MemoryAligner); // Try twice, once avoiding allocators that failed before, and once // more trying all allocators even if they failed before. for (int i = 0; i < 2; i++) { #ifndef WTF_CHANGES if (use_devmem && !devmem_failure) { void* result = TryDevMem(size, actual_size, alignment); if (result != NULL) return result; } #endif #if HAVE(SBRK) if (use_sbrk && !sbrk_failure) { void* result = TrySbrk(size, actual_size, alignment); if (result != NULL) return result; } #endif #if HAVE(MMAP) if (use_mmap && !mmap_failure) { void* result = TryMmap(size, actual_size, alignment); if (result != NULL) return result; } #endif #if HAVE(VIRTUALALLOC) if (use_VirtualAlloc && !VirtualAlloc_failure) { void* result = TryVirtualAlloc(size, actual_size, alignment); if (result != NULL) return result; } #endif // nothing worked - reset failure flags and try again devmem_failure = false; sbrk_failure = false; mmap_failure = false; VirtualAlloc_failure = false; } return NULL; } #if HAVE(MADV_FREE_REUSE) void TCMalloc_SystemRelease(void* start, size_t length) { while (madvise(start, length, MADV_FREE_REUSABLE) == -1 && errno == EAGAIN) { } } #elif HAVE(MADV_FREE) || HAVE(MADV_DONTNEED) void TCMalloc_SystemRelease(void* start, size_t length) { // MADV_FREE clears the modified bit on pages, which allows // them to be discarded immediately. #if HAVE(MADV_FREE) const int advice = MADV_FREE; #else const int advice = MADV_DONTNEED; #endif if (FLAGS_malloc_devmem_start) { // It's not safe to use MADV_DONTNEED if we've been mapping // /dev/mem for heap memory return; } if (pagesize == 0) pagesize = getpagesize(); const size_t pagemask = pagesize - 1; size_t new_start = reinterpret_cast(start); size_t end = new_start + length; size_t new_end = end; // Round up the starting address and round down the ending address // to be page aligned: new_start = (new_start + pagesize - 1) & ~pagemask; new_end = new_end & ~pagemask; ASSERT((new_start & pagemask) == 0); ASSERT((new_end & pagemask) == 0); ASSERT(new_start >= reinterpret_cast(start)); ASSERT(new_end <= end); if (new_end > new_start) { // Note -- ignoring most return codes, because if this fails it // doesn't matter... while (madvise(reinterpret_cast(new_start), new_end - new_start, advice) == -1 && errno == EAGAIN) { // NOP } } } #elif HAVE(MMAP) void TCMalloc_SystemRelease(void* start, size_t length) { void* newAddress = mmap(start, length, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED, -1, 0); // If the mmap failed then that's ok, we just won't return the memory to the system. ASSERT_UNUSED(newAddress, newAddress == start || newAddress == reinterpret_cast(MAP_FAILED)); } #elif HAVE(VIRTUALALLOC) void TCMalloc_SystemRelease(void* start, size_t length) { if (VirtualFree(start, length, MEM_DECOMMIT)) return; // The decommit may fail if the memory region consists of allocations // from more than one call to VirtualAlloc. In this case, fall back to // using VirtualQuery to retrieve the allocation boundaries and decommit // them each individually. char* ptr = static_cast(start); char* end = ptr + length; MEMORY_BASIC_INFORMATION info; while (ptr < end) { size_t resultSize = VirtualQuery(ptr, &info, sizeof(info)); ASSERT_UNUSED(resultSize, resultSize == sizeof(info)); size_t decommitSize = min(info.RegionSize, end - ptr); BOOL success = VirtualFree(ptr, decommitSize, MEM_DECOMMIT); ASSERT_UNUSED(success, success); ptr += decommitSize; } } #else // Platforms that don't support returning memory use an empty inline version of TCMalloc_SystemRelease // declared in TCSystemAlloc.h #endif #if HAVE(MADV_FREE_REUSE) void TCMalloc_SystemCommit(void* start, size_t length) { while (madvise(start, length, MADV_FREE_REUSE) == -1 && errno == EAGAIN) { } } #elif HAVE(VIRTUALALLOC) void TCMalloc_SystemCommit(void* start, size_t length) { if (VirtualAlloc(start, length, MEM_COMMIT, PAGE_READWRITE) == start) return; // The commit may fail if the memory region consists of allocations // from more than one call to VirtualAlloc. In this case, fall back to // using VirtualQuery to retrieve the allocation boundaries and commit them // each individually. char* ptr = static_cast(start); char* end = ptr + length; MEMORY_BASIC_INFORMATION info; while (ptr < end) { size_t resultSize = VirtualQuery(ptr, &info, sizeof(info)); ASSERT_UNUSED(resultSize, resultSize == sizeof(info)); size_t commitSize = min(info.RegionSize, end - ptr); void* newAddress = VirtualAlloc(ptr, commitSize, MEM_COMMIT, PAGE_READWRITE); ASSERT_UNUSED(newAddress, newAddress == ptr); ptr += commitSize; } } #else // Platforms that don't need to explicitly commit memory use an empty inline version of TCMalloc_SystemCommit // declared in TCSystemAlloc.h #endif