/* * Copyright (C) 2005, 2006, 2007, 2008 Apple Inc. All rights reserved. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public License * along with this library; see the file COPYING.LIB. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, * Boston, MA 02110-1301, USA. * */ #ifndef WTF_Vector_h #define WTF_Vector_h #include "FastAllocBase.h" #include "Noncopyable.h" #include "NotFound.h" #include "VectorTraits.h" #include #include #if PLATFORM(QT) #include #endif namespace WTF { using std::min; using std::max; // WTF_ALIGN_OF / WTF_ALIGNED #if COMPILER(GCC) || COMPILER(MINGW) || COMPILER(RVCT) || COMPILER(WINSCW) #define WTF_ALIGN_OF(type) __alignof__(type) #define WTF_ALIGNED(variable_type, variable, n) variable_type variable __attribute__((__aligned__(n))) #elif COMPILER(MSVC) #define WTF_ALIGN_OF(type) __alignof(type) #define WTF_ALIGNED(variable_type, variable, n) __declspec(align(n)) variable_type variable #else #error WTF_ALIGN macros need alignment control. #endif #if COMPILER(GCC) && (((__GNUC__ * 100) + __GNUC_MINOR__) >= 303) typedef char __attribute__((__may_alias__)) AlignedBufferChar; #else typedef char AlignedBufferChar; #endif template struct AlignedBuffer; template struct AlignedBuffer { AlignedBufferChar buffer[size]; }; template struct AlignedBuffer { WTF_ALIGNED(AlignedBufferChar, buffer[size], 2); }; template struct AlignedBuffer { WTF_ALIGNED(AlignedBufferChar, buffer[size], 4); }; template struct AlignedBuffer { WTF_ALIGNED(AlignedBufferChar, buffer[size], 8); }; template struct AlignedBuffer { WTF_ALIGNED(AlignedBufferChar, buffer[size], 16); }; template struct AlignedBuffer { WTF_ALIGNED(AlignedBufferChar, buffer[size], 32); }; template struct AlignedBuffer { WTF_ALIGNED(AlignedBufferChar, buffer[size], 64); }; template class VectorDestructor; template struct VectorDestructor { static void destruct(T*, T*) {} }; template struct VectorDestructor { static void destruct(T* begin, T* end) { for (T* cur = begin; cur != end; ++cur) cur->~T(); } }; template class VectorInitializer; template struct VectorInitializer { static void initialize(T*, T*) {} }; template struct VectorInitializer { static void initialize(T* begin, T* end) { for (T* cur = begin; cur != end; ++cur) new (cur) T; } }; template struct VectorInitializer { static void initialize(T* begin, T* end) { memset(begin, 0, reinterpret_cast(end) - reinterpret_cast(begin)); } }; template class VectorMover; template struct VectorMover { static void move(const T* src, const T* srcEnd, T* dst) { while (src != srcEnd) { new (dst) T(*src); src->~T(); ++dst; ++src; } } static void moveOverlapping(const T* src, const T* srcEnd, T* dst) { if (src > dst) move(src, srcEnd, dst); else { T* dstEnd = dst + (srcEnd - src); while (src != srcEnd) { --srcEnd; --dstEnd; new (dstEnd) T(*srcEnd); srcEnd->~T(); } } } }; template struct VectorMover { static void move(const T* src, const T* srcEnd, T* dst) { memcpy(dst, src, reinterpret_cast(srcEnd) - reinterpret_cast(src)); } static void moveOverlapping(const T* src, const T* srcEnd, T* dst) { memmove(dst, src, reinterpret_cast(srcEnd) - reinterpret_cast(src)); } }; template class VectorCopier; template struct VectorCopier { static void uninitializedCopy(const T* src, const T* srcEnd, T* dst) { while (src != srcEnd) { new (dst) T(*src); ++dst; ++src; } } }; template struct VectorCopier { static void uninitializedCopy(const T* src, const T* srcEnd, T* dst) { memcpy(dst, src, reinterpret_cast(srcEnd) - reinterpret_cast(src)); } }; template class VectorFiller; template struct VectorFiller { static void uninitializedFill(T* dst, T* dstEnd, const T& val) { while (dst != dstEnd) { new (dst) T(val); ++dst; } } }; template struct VectorFiller { static void uninitializedFill(T* dst, T* dstEnd, const T& val) { ASSERT(sizeof(T) == sizeof(char)); memset(dst, val, dstEnd - dst); } }; template class VectorComparer; template struct VectorComparer { static bool compare(const T* a, const T* b, size_t size) { for (size_t i = 0; i < size; ++i) if (a[i] != b[i]) return false; return true; } }; template struct VectorComparer { static bool compare(const T* a, const T* b, size_t size) { return memcmp(a, b, sizeof(T) * size) == 0; } }; template struct VectorTypeOperations { static void destruct(T* begin, T* end) { VectorDestructor::needsDestruction, T>::destruct(begin, end); } static void initialize(T* begin, T* end) { VectorInitializer::needsInitialization, VectorTraits::canInitializeWithMemset, T>::initialize(begin, end); } static void move(const T* src, const T* srcEnd, T* dst) { VectorMover::canMoveWithMemcpy, T>::move(src, srcEnd, dst); } static void moveOverlapping(const T* src, const T* srcEnd, T* dst) { VectorMover::canMoveWithMemcpy, T>::moveOverlapping(src, srcEnd, dst); } static void uninitializedCopy(const T* src, const T* srcEnd, T* dst) { VectorCopier::canCopyWithMemcpy, T>::uninitializedCopy(src, srcEnd, dst); } static void uninitializedFill(T* dst, T* dstEnd, const T& val) { VectorFiller::canFillWithMemset, T>::uninitializedFill(dst, dstEnd, val); } static bool compare(const T* a, const T* b, size_t size) { return VectorComparer::canCompareWithMemcmp, T>::compare(a, b, size); } }; template class VectorBufferBase : public Noncopyable { public: void allocateBuffer(size_t newCapacity) { m_capacity = newCapacity; if (newCapacity > std::numeric_limits::max() / sizeof(T)) CRASH(); m_buffer = static_cast(fastMalloc(newCapacity * sizeof(T))); } void deallocateBuffer(T* bufferToDeallocate) { if (m_buffer == bufferToDeallocate) { m_buffer = 0; m_capacity = 0; } fastFree(bufferToDeallocate); } T* buffer() { return m_buffer; } const T* buffer() const { return m_buffer; } T** bufferSlot() { return &m_buffer; } size_t capacity() const { return m_capacity; } T* releaseBuffer() { T* buffer = m_buffer; m_buffer = 0; m_capacity = 0; return buffer; } protected: VectorBufferBase() : m_buffer(0) , m_capacity(0) { } VectorBufferBase(T* buffer, size_t capacity) : m_buffer(buffer) , m_capacity(capacity) { } ~VectorBufferBase() { // FIXME: It would be nice to find a way to ASSERT that m_buffer hasn't leaked here. } T* m_buffer; size_t m_capacity; }; template class VectorBuffer; template class VectorBuffer : private VectorBufferBase { private: typedef VectorBufferBase Base; public: VectorBuffer() { } VectorBuffer(size_t capacity) { allocateBuffer(capacity); } ~VectorBuffer() { deallocateBuffer(buffer()); } void swap(VectorBuffer& other) { std::swap(m_buffer, other.m_buffer); std::swap(m_capacity, other.m_capacity); } void restoreInlineBufferIfNeeded() { } using Base::allocateBuffer; using Base::deallocateBuffer; using Base::buffer; using Base::bufferSlot; using Base::capacity; using Base::releaseBuffer; private: using Base::m_buffer; using Base::m_capacity; }; template class VectorBuffer : private VectorBufferBase { private: typedef VectorBufferBase Base; public: VectorBuffer() : Base(inlineBuffer(), inlineCapacity) { } VectorBuffer(size_t capacity) : Base(inlineBuffer(), inlineCapacity) { if (capacity > inlineCapacity) Base::allocateBuffer(capacity); } ~VectorBuffer() { deallocateBuffer(buffer()); } void allocateBuffer(size_t newCapacity) { if (newCapacity > inlineCapacity) Base::allocateBuffer(newCapacity); else { m_buffer = inlineBuffer(); m_capacity = inlineCapacity; } } void deallocateBuffer(T* bufferToDeallocate) { if (bufferToDeallocate == inlineBuffer()) return; Base::deallocateBuffer(bufferToDeallocate); } void restoreInlineBufferIfNeeded() { if (m_buffer) return; m_buffer = inlineBuffer(); m_capacity = inlineCapacity; } using Base::buffer; using Base::bufferSlot; using Base::capacity; T* releaseBuffer() { if (buffer() == inlineBuffer()) return 0; return Base::releaseBuffer(); } private: using Base::m_buffer; using Base::m_capacity; static const size_t m_inlineBufferSize = inlineCapacity * sizeof(T); T* inlineBuffer() { return reinterpret_cast(m_inlineBuffer.buffer); } AlignedBuffer m_inlineBuffer; }; template class Vector : public FastAllocBase { private: typedef VectorBuffer Buffer; typedef VectorTypeOperations TypeOperations; public: typedef T ValueType; typedef T* iterator; typedef const T* const_iterator; Vector() : m_size(0) { } explicit Vector(size_t size) : m_size(size) , m_buffer(size) { if (begin()) TypeOperations::initialize(begin(), end()); } ~Vector() { if (m_size) shrink(0); } Vector(const Vector&); template Vector(const Vector&); Vector& operator=(const Vector&); template Vector& operator=(const Vector&); size_t size() const { return m_size; } size_t capacity() const { return m_buffer.capacity(); } bool isEmpty() const { return !size(); } T& at(size_t i) { ASSERT(i < size()); return m_buffer.buffer()[i]; } const T& at(size_t i) const { ASSERT(i < size()); return m_buffer.buffer()[i]; } T& operator[](size_t i) { return at(i); } const T& operator[](size_t i) const { return at(i); } T* data() { return m_buffer.buffer(); } const T* data() const { return m_buffer.buffer(); } T** dataSlot() { return m_buffer.bufferSlot(); } iterator begin() { return data(); } iterator end() { return begin() + m_size; } const_iterator begin() const { return data(); } const_iterator end() const { return begin() + m_size; } T& first() { return at(0); } const T& first() const { return at(0); } T& last() { return at(size() - 1); } const T& last() const { return at(size() - 1); } template size_t find(const U&) const; void shrink(size_t size); void grow(size_t size); void resize(size_t size); void reserveCapacity(size_t newCapacity); void reserveInitialCapacity(size_t initialCapacity); void shrinkCapacity(size_t newCapacity); void shrinkToFit() { shrinkCapacity(size()); } void clear() { shrinkCapacity(0); } template void append(const U*, size_t); template void append(const U&); template void uncheckedAppend(const U& val); template void append(const Vector&); template void insert(size_t position, const U*, size_t); template void insert(size_t position, const U&); template void insert(size_t position, const Vector&); template void prepend(const U*, size_t); template void prepend(const U&); template void prepend(const Vector&); void remove(size_t position); void remove(size_t position, size_t length); void removeLast() { ASSERT(!isEmpty()); shrink(size() - 1); } Vector(size_t size, const T& val) : m_size(size) , m_buffer(size) { if (begin()) TypeOperations::uninitializedFill(begin(), end(), val); } void fill(const T&, size_t); void fill(const T& val) { fill(val, size()); } template void appendRange(Iterator start, Iterator end); T* releaseBuffer(); void swap(Vector& other) { std::swap(m_size, other.m_size); m_buffer.swap(other.m_buffer); } private: void expandCapacity(size_t newMinCapacity); const T* expandCapacity(size_t newMinCapacity, const T*); template U* expandCapacity(size_t newMinCapacity, U*); size_t m_size; Buffer m_buffer; }; #if PLATFORM(QT) template QDataStream& operator<<(QDataStream& stream, const Vector& data) { stream << qint64(data.size()); foreach (const T& i, data) stream << i; return stream; } template QDataStream& operator>>(QDataStream& stream, Vector& data) { data.clear(); qint64 count; T item; stream >> count; data.reserveCapacity(count); for (qint64 i = 0; i < count; ++i) { stream >> item; data.append(item); } return stream; } #endif template Vector::Vector(const Vector& other) : m_size(other.size()) , m_buffer(other.capacity()) { if (begin()) TypeOperations::uninitializedCopy(other.begin(), other.end(), begin()); } template template Vector::Vector(const Vector& other) : m_size(other.size()) , m_buffer(other.capacity()) { if (begin()) TypeOperations::uninitializedCopy(other.begin(), other.end(), begin()); } template Vector& Vector::operator=(const Vector& other) { if (&other == this) return *this; if (size() > other.size()) shrink(other.size()); else if (other.size() > capacity()) { clear(); reserveCapacity(other.size()); if (!begin()) return *this; } std::copy(other.begin(), other.begin() + size(), begin()); TypeOperations::uninitializedCopy(other.begin() + size(), other.end(), end()); m_size = other.size(); return *this; } template template Vector& Vector::operator=(const Vector& other) { if (&other == this) return *this; if (size() > other.size()) shrink(other.size()); else if (other.size() > capacity()) { clear(); reserveCapacity(other.size()); if (!begin()) return *this; } std::copy(other.begin(), other.begin() + size(), begin()); TypeOperations::uninitializedCopy(other.begin() + size(), other.end(), end()); m_size = other.size(); return *this; } template template size_t Vector::find(const U& value) const { for (size_t i = 0; i < size(); ++i) { if (at(i) == value) return i; } return notFound; } template void Vector::fill(const T& val, size_t newSize) { if (size() > newSize) shrink(newSize); else if (newSize > capacity()) { clear(); reserveCapacity(newSize); if (!begin()) return; } std::fill(begin(), end(), val); TypeOperations::uninitializedFill(end(), begin() + newSize, val); m_size = newSize; } template template void Vector::appendRange(Iterator start, Iterator end) { for (Iterator it = start; it != end; ++it) append(*it); } template void Vector::expandCapacity(size_t newMinCapacity) { reserveCapacity(max(newMinCapacity, max(static_cast(16), capacity() + capacity() / 4 + 1))); } template const T* Vector::expandCapacity(size_t newMinCapacity, const T* ptr) { if (ptr < begin() || ptr >= end()) { expandCapacity(newMinCapacity); return ptr; } size_t index = ptr - begin(); expandCapacity(newMinCapacity); return begin() + index; } template template inline U* Vector::expandCapacity(size_t newMinCapacity, U* ptr) { expandCapacity(newMinCapacity); return ptr; } template inline void Vector::resize(size_t size) { if (size <= m_size) TypeOperations::destruct(begin() + size, end()); else { if (size > capacity()) expandCapacity(size); if (begin()) TypeOperations::initialize(end(), begin() + size); } m_size = size; } template void Vector::shrink(size_t size) { ASSERT(size <= m_size); TypeOperations::destruct(begin() + size, end()); m_size = size; } template void Vector::grow(size_t size) { ASSERT(size >= m_size); if (size > capacity()) expandCapacity(size); if (begin()) TypeOperations::initialize(end(), begin() + size); m_size = size; } template void Vector::reserveCapacity(size_t newCapacity) { if (newCapacity <= capacity()) return; T* oldBuffer = begin(); T* oldEnd = end(); m_buffer.allocateBuffer(newCapacity); if (begin()) TypeOperations::move(oldBuffer, oldEnd, begin()); m_buffer.deallocateBuffer(oldBuffer); } template inline void Vector::reserveInitialCapacity(size_t initialCapacity) { ASSERT(!m_size); ASSERT(capacity() == inlineCapacity); if (initialCapacity > inlineCapacity) m_buffer.allocateBuffer(initialCapacity); } template void Vector::shrinkCapacity(size_t newCapacity) { if (newCapacity >= capacity()) return; if (newCapacity < size()) shrink(newCapacity); T* oldBuffer = begin(); if (newCapacity > 0) { T* oldEnd = end(); m_buffer.allocateBuffer(newCapacity); if (begin() != oldBuffer) TypeOperations::move(oldBuffer, oldEnd, begin()); } m_buffer.deallocateBuffer(oldBuffer); m_buffer.restoreInlineBufferIfNeeded(); } // Templatizing these is better than just letting the conversion happen implicitly, // because for instance it allows a PassRefPtr to be appended to a RefPtr vector // without refcount thrash. template template void Vector::append(const U* data, size_t dataSize) { size_t newSize = m_size + dataSize; if (newSize > capacity()) { data = expandCapacity(newSize, data); if (!begin()) return; } if (newSize < m_size) CRASH(); T* dest = end(); for (size_t i = 0; i < dataSize; ++i) new (&dest[i]) T(data[i]); m_size = newSize; } template template ALWAYS_INLINE void Vector::append(const U& val) { const U* ptr = &val; if (size() == capacity()) { ptr = expandCapacity(size() + 1, ptr); if (!begin()) return; } #if COMPILER(MSVC7) // FIXME: MSVC7 generates compilation errors when trying to assign // a pointer to a Vector of its base class (i.e. can't downcast). So far // I've been unable to determine any logical reason for this, so I can // only assume it is a bug with the compiler. Casting is a bad solution, // however, because it subverts implicit conversions, so a better // one is needed. new (end()) T(static_cast(*ptr)); #else new (end()) T(*ptr); #endif ++m_size; } // This version of append saves a branch in the case where you know that the // vector's capacity is large enough for the append to succeed. template template inline void Vector::uncheckedAppend(const U& val) { ASSERT(size() < capacity()); const U* ptr = &val; new (end()) T(*ptr); ++m_size; } // This method should not be called append, a better name would be appendElements. // It could also be eliminated entirely, and call sites could just use // appendRange(val.begin(), val.end()). template template inline void Vector::append(const Vector& val) { append(val.begin(), val.size()); } template template void Vector::insert(size_t position, const U* data, size_t dataSize) { ASSERT(position <= size()); size_t newSize = m_size + dataSize; if (newSize > capacity()) { data = expandCapacity(newSize, data); if (!begin()) return; } if (newSize < m_size) CRASH(); T* spot = begin() + position; TypeOperations::moveOverlapping(spot, end(), spot + dataSize); for (size_t i = 0; i < dataSize; ++i) new (&spot[i]) T(data[i]); m_size = newSize; } template template inline void Vector::insert(size_t position, const U& val) { ASSERT(position <= size()); const U* data = &val; if (size() == capacity()) { data = expandCapacity(size() + 1, data); if (!begin()) return; } T* spot = begin() + position; TypeOperations::moveOverlapping(spot, end(), spot + 1); new (spot) T(*data); ++m_size; } template template inline void Vector::insert(size_t position, const Vector& val) { insert(position, val.begin(), val.size()); } template template void Vector::prepend(const U* data, size_t dataSize) { insert(0, data, dataSize); } template template inline void Vector::prepend(const U& val) { insert(0, val); } template template inline void Vector::prepend(const Vector& val) { insert(0, val.begin(), val.size()); } template inline void Vector::remove(size_t position) { ASSERT(position < size()); T* spot = begin() + position; spot->~T(); TypeOperations::moveOverlapping(spot + 1, end(), spot); --m_size; } template inline void Vector::remove(size_t position, size_t length) { ASSERT(position < size()); ASSERT(position + length <= size()); T* beginSpot = begin() + position; T* endSpot = beginSpot + length; TypeOperations::destruct(beginSpot, endSpot); TypeOperations::moveOverlapping(endSpot, end(), beginSpot); m_size -= length; } template inline T* Vector::releaseBuffer() { T* buffer = m_buffer.releaseBuffer(); if (inlineCapacity && !buffer && m_size) { // If the vector had some data, but no buffer to release, // that means it was using the inline buffer. In that case, // we create a brand new buffer so the caller always gets one. size_t bytes = m_size * sizeof(T); buffer = static_cast(fastMalloc(bytes)); memcpy(buffer, data(), bytes); } m_size = 0; return buffer; } template void deleteAllValues(const Vector& collection) { typedef typename Vector::const_iterator iterator; iterator end = collection.end(); for (iterator it = collection.begin(); it != end; ++it) delete *it; } template inline void swap(Vector& a, Vector& b) { a.swap(b); } template bool operator==(const Vector& a, const Vector& b) { if (a.size() != b.size()) return false; return VectorTypeOperations::compare(a.data(), b.data(), a.size()); } template inline bool operator!=(const Vector& a, const Vector& b) { return !(a == b); } } // namespace WTF using WTF::Vector; #endif // WTF_Vector_h