/* * Copyright (C) 2009, 2010 Apple Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef LinkBuffer_h #define LinkBuffer_h #if ENABLE(ASSEMBLER) #define DUMP_LINK_STATISTICS 0 #define DUMP_CODE 0 #include #include namespace JSC { // LinkBuffer: // // This class assists in linking code generated by the macro assembler, once code generation // has been completed, and the code has been copied to is final location in memory. At this // time pointers to labels within the code may be resolved, and relative offsets to external // addresses may be fixed. // // Specifically: // * Jump objects may be linked to external targets, // * The address of Jump objects may taken, such that it can later be relinked. // * The return address of a Call may be acquired. // * The address of a Label pointing into the code may be resolved. // * The value referenced by a DataLabel may be set. // class LinkBuffer { WTF_MAKE_NONCOPYABLE(LinkBuffer); typedef MacroAssemblerCodeRef CodeRef; typedef MacroAssemblerCodePtr CodePtr; typedef MacroAssembler::Label Label; typedef MacroAssembler::Jump Jump; typedef MacroAssembler::JumpList JumpList; typedef MacroAssembler::Call Call; typedef MacroAssembler::DataLabel32 DataLabel32; typedef MacroAssembler::DataLabelPtr DataLabelPtr; typedef MacroAssembler::JmpDst JmpDst; #if ENABLE(BRANCH_COMPACTION) typedef MacroAssembler::LinkRecord LinkRecord; typedef MacroAssembler::JumpLinkType JumpLinkType; #endif public: // Note: Initialization sequence is significant, since executablePool is a PassRefPtr. // First, executablePool is copied into m_executablePool, then the initialization of // m_code uses m_executablePool, *not* executablePool, since this is no longer valid. // The linkOffset parameter should only be non-null when recompiling for exception info LinkBuffer(MacroAssembler* masm, PassRefPtr executablePool, void* linkOffset) : m_executablePool(executablePool) , m_size(0) , m_code(0) , m_assembler(masm) #ifndef NDEBUG , m_completed(false) #endif { linkCode(linkOffset); } ~LinkBuffer() { ASSERT(m_completed); } // These methods are used to link or set values at code generation time. void link(Call call, FunctionPtr function) { ASSERT(call.isFlagSet(Call::Linkable)); call.m_jmp = applyOffset(call.m_jmp); MacroAssembler::linkCall(code(), call, function); } void link(Jump jump, CodeLocationLabel label) { jump.m_jmp = applyOffset(jump.m_jmp); MacroAssembler::linkJump(code(), jump, label); } void link(JumpList list, CodeLocationLabel label) { for (unsigned i = 0; i < list.m_jumps.size(); ++i) link(list.m_jumps[i], label); } void patch(DataLabelPtr label, void* value) { JmpDst target = applyOffset(label.m_label); MacroAssembler::linkPointer(code(), target, value); } void patch(DataLabelPtr label, CodeLocationLabel value) { JmpDst target = applyOffset(label.m_label); MacroAssembler::linkPointer(code(), target, value.executableAddress()); } // These methods are used to obtain handles to allow the code to be relinked / repatched later. CodeLocationCall locationOf(Call call) { ASSERT(call.isFlagSet(Call::Linkable)); ASSERT(!call.isFlagSet(Call::Near)); return CodeLocationCall(MacroAssembler::getLinkerAddress(code(), applyOffset(call.m_jmp))); } CodeLocationNearCall locationOfNearCall(Call call) { ASSERT(call.isFlagSet(Call::Linkable)); ASSERT(call.isFlagSet(Call::Near)); return CodeLocationNearCall(MacroAssembler::getLinkerAddress(code(), applyOffset(call.m_jmp))); } CodeLocationLabel locationOf(Label label) { return CodeLocationLabel(MacroAssembler::getLinkerAddress(code(), applyOffset(label.m_label))); } CodeLocationDataLabelPtr locationOf(DataLabelPtr label) { return CodeLocationDataLabelPtr(MacroAssembler::getLinkerAddress(code(), applyOffset(label.m_label))); } CodeLocationDataLabel32 locationOf(DataLabel32 label) { return CodeLocationDataLabel32(MacroAssembler::getLinkerAddress(code(), applyOffset(label.m_label))); } // This method obtains the return address of the call, given as an offset from // the start of the code. unsigned returnAddressOffset(Call call) { call.m_jmp = applyOffset(call.m_jmp); return MacroAssembler::getLinkerCallReturnOffset(call); } // Upon completion of all patching either 'finalizeCode()' or 'finalizeCodeAddendum()' should be called // once to complete generation of the code. 'finalizeCode()' is suited to situations // where the executable pool must also be retained, the lighter-weight 'finalizeCodeAddendum()' is // suited to adding to an existing allocation. CodeRef finalizeCode() { performFinalization(); return CodeRef(m_code, m_executablePool, m_size); } CodeLocationLabel finalizeCodeAddendum() { performFinalization(); return CodeLocationLabel(code()); } CodePtr trampolineAt(Label label) { return CodePtr(MacroAssembler::AssemblerType_T::getRelocatedAddress(code(), applyOffset(label.m_label))); } #ifndef NDEBUG void* debugAddress() { return m_code; } #endif private: template T applyOffset(T src) { #if ENABLE(BRANCH_COMPACTION) src.m_offset -= m_assembler->executableOffsetFor(src.m_offset); #endif return src; } // Keep this private! - the underlying code should only be obtained externally via // finalizeCode() or finalizeCodeAddendum(). void* code() { return m_code; } void linkCode(void* linkOffset) { UNUSED_PARAM(linkOffset); ASSERT(!m_code); #if !ENABLE(BRANCH_COMPACTION) m_code = m_assembler->m_assembler.executableCopy(m_executablePool.get()); m_size = m_assembler->size(); #else size_t initialSize = m_assembler->size(); m_code = (uint8_t*)m_executablePool->alloc(initialSize); if (!m_code) return; ExecutableAllocator::makeWritable(m_code, m_assembler->size()); uint8_t* inData = (uint8_t*)m_assembler->unlinkedCode(); uint8_t* outData = reinterpret_cast(m_code); const uint8_t* linkBase = linkOffset ? reinterpret_cast(linkOffset) : outData; int readPtr = 0; int writePtr = 0; Vector& jumpsToLink = m_assembler->jumpsToLink(); unsigned jumpCount = jumpsToLink.size(); for (unsigned i = 0; i < jumpCount; ++i) { int offset = readPtr - writePtr; ASSERT(!(offset & 1)); // Copy the instructions from the last jump to the current one. size_t regionSize = jumpsToLink[i].from() - readPtr; memcpy(outData + writePtr, inData + readPtr, regionSize); m_assembler->recordLinkOffsets(readPtr, jumpsToLink[i].from(), offset); readPtr += regionSize; writePtr += regionSize; // Calculate absolute address of the jump target, in the case of backwards // branches we need to be precise, forward branches we are pessimistic const uint8_t* target; if (jumpsToLink[i].to() >= jumpsToLink[i].from()) target = linkBase + jumpsToLink[i].to() - offset; // Compensate for what we have collapsed so far else target = linkBase + jumpsToLink[i].to() - m_assembler->executableOffsetFor(jumpsToLink[i].to()); JumpLinkType jumpLinkType = m_assembler->computeJumpType(jumpsToLink[i], linkBase + writePtr, target); // Compact branch if we can... if (m_assembler->canCompact(jumpsToLink[i].type())) { // Step back in the write stream int32_t delta = m_assembler->jumpSizeDelta(jumpsToLink[i].type(), jumpLinkType); if (delta) { writePtr -= delta; m_assembler->recordLinkOffsets(jumpsToLink[i].from() - delta, readPtr, readPtr - writePtr); } } jumpsToLink[i].setFrom(writePtr); } // Copy everything after the last jump memcpy(outData + writePtr, inData + readPtr, m_assembler->size() - readPtr); m_assembler->recordLinkOffsets(readPtr, m_assembler->size(), readPtr - writePtr); // Actually link everything (don't link if we've be given a linkoffset as it's a // waste of time: linkOffset is used for recompiling to get exception info) if (!linkOffset) { for (unsigned i = 0; i < jumpCount; ++i) { uint8_t* location = outData + jumpsToLink[i].from(); uint8_t* target = outData + jumpsToLink[i].to() - m_assembler->executableOffsetFor(jumpsToLink[i].to()); m_assembler->link(jumpsToLink[i], location, target); } } jumpsToLink.clear(); m_size = writePtr + m_assembler->size() - readPtr; m_executablePool->tryShrink(m_code, initialSize, m_size); #if DUMP_LINK_STATISTICS dumpLinkStatistics(m_code, initialSize, m_size); #endif #if DUMP_CODE dumpCode(m_code, m_size); #endif #endif } void performFinalization() { #ifndef NDEBUG ASSERT(!m_completed); m_completed = true; #endif ExecutableAllocator::makeExecutable(code(), m_size); ExecutableAllocator::cacheFlush(code(), m_size); } #if DUMP_LINK_STATISTICS static void dumpLinkStatistics(void* code, size_t initialSize, size_t finalSize) { static unsigned linkCount = 0; static unsigned totalInitialSize = 0; static unsigned totalFinalSize = 0; linkCount++; totalInitialSize += initialSize; totalFinalSize += finalSize; printf("link %p: orig %u, compact %u (delta %u, %.2f%%)\n", code, static_cast(initialSize), static_cast(finalSize), static_cast(initialSize - finalSize), 100.0 * (initialSize - finalSize) / initialSize); printf("\ttotal %u: orig %u, compact %u (delta %u, %.2f%%)\n", linkCount, totalInitialSize, totalFinalSize, totalInitialSize - totalFinalSize, 100.0 * (totalInitialSize - totalFinalSize) / totalInitialSize); } #endif #if DUMP_CODE static void dumpCode(void* code, size_t size) { #if CPU(ARM_THUMB2) // Dump the generated code in an asm file format that can be assembled and then disassembled // for debugging purposes. For example, save this output as jit.s: // gcc -arch armv7 -c jit.s // otool -tv jit.o static unsigned codeCount = 0; unsigned short* tcode = static_cast(code); size_t tsize = size / sizeof(short); char nameBuf[128]; snprintf(nameBuf, sizeof(nameBuf), "_jsc_jit%u", codeCount++); printf("\t.syntax unified\n" "\t.section\t__TEXT,__text,regular,pure_instructions\n" "\t.globl\t%s\n" "\t.align 2\n" "\t.code 16\n" "\t.thumb_func\t%s\n" "# %p\n" "%s:\n", nameBuf, nameBuf, code, nameBuf); for (unsigned i = 0; i < tsize; i++) printf("\t.short\t0x%x\n", tcode[i]); #endif } #endif RefPtr m_executablePool; size_t m_size; void* m_code; MacroAssembler* m_assembler; #ifndef NDEBUG bool m_completed; #endif }; } // namespace JSC #endif // ENABLE(ASSEMBLER) #endif // LinkBuffer_h