/* * Copyright (C) 2008 Apple Inc. * Copyright (C) 2009, 2010 University of Szeged * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef MacroAssemblerARM_h #define MacroAssemblerARM_h #if ENABLE(ASSEMBLER) && CPU(ARM_TRADITIONAL) #include "ARMAssembler.h" #include "AbstractMacroAssembler.h" namespace JSC { class MacroAssemblerARM : public AbstractMacroAssembler { static const int DoubleConditionMask = 0x0f; static const int DoubleConditionBitSpecial = 0x10; COMPILE_ASSERT(!(DoubleConditionBitSpecial & DoubleConditionMask), DoubleConditionBitSpecial_should_not_interfere_with_ARMAssembler_Condition_codes); public: typedef ARMRegisters::FPRegisterID FPRegisterID; enum Condition { Equal = ARMAssembler::EQ, NotEqual = ARMAssembler::NE, Above = ARMAssembler::HI, AboveOrEqual = ARMAssembler::CS, Below = ARMAssembler::CC, BelowOrEqual = ARMAssembler::LS, GreaterThan = ARMAssembler::GT, GreaterThanOrEqual = ARMAssembler::GE, LessThan = ARMAssembler::LT, LessThanOrEqual = ARMAssembler::LE, Overflow = ARMAssembler::VS, Signed = ARMAssembler::MI, Zero = ARMAssembler::EQ, NonZero = ARMAssembler::NE }; enum DoubleCondition { // These conditions will only evaluate to true if the comparison is ordered - i.e. neither operand is NaN. DoubleEqual = ARMAssembler::EQ, DoubleNotEqual = ARMAssembler::NE | DoubleConditionBitSpecial, DoubleGreaterThan = ARMAssembler::GT, DoubleGreaterThanOrEqual = ARMAssembler::GE, DoubleLessThan = ARMAssembler::CC, DoubleLessThanOrEqual = ARMAssembler::LS, // If either operand is NaN, these conditions always evaluate to true. DoubleEqualOrUnordered = ARMAssembler::EQ | DoubleConditionBitSpecial, DoubleNotEqualOrUnordered = ARMAssembler::NE, DoubleGreaterThanOrUnordered = ARMAssembler::HI, DoubleGreaterThanOrEqualOrUnordered = ARMAssembler::CS, DoubleLessThanOrUnordered = ARMAssembler::LT, DoubleLessThanOrEqualOrUnordered = ARMAssembler::LE, }; static const RegisterID stackPointerRegister = ARMRegisters::sp; static const RegisterID linkRegister = ARMRegisters::lr; static const Scale ScalePtr = TimesFour; void add32(RegisterID src, RegisterID dest) { m_assembler.adds_r(dest, dest, src); } void add32(TrustedImm32 imm, Address address) { load32(address, ARMRegisters::S1); add32(imm, ARMRegisters::S1); store32(ARMRegisters::S1, address); } void add32(TrustedImm32 imm, RegisterID dest) { m_assembler.adds_r(dest, dest, m_assembler.getImm(imm.m_value, ARMRegisters::S0)); } void add32(Address src, RegisterID dest) { load32(src, ARMRegisters::S1); add32(ARMRegisters::S1, dest); } void and32(RegisterID src, RegisterID dest) { m_assembler.ands_r(dest, dest, src); } void and32(TrustedImm32 imm, RegisterID dest) { ARMWord w = m_assembler.getImm(imm.m_value, ARMRegisters::S0, true); if (w & ARMAssembler::OP2_INV_IMM) m_assembler.bics_r(dest, dest, w & ~ARMAssembler::OP2_INV_IMM); else m_assembler.ands_r(dest, dest, w); } void lshift32(RegisterID shift_amount, RegisterID dest) { ARMWord w = ARMAssembler::getOp2(0x1f); ASSERT(w != ARMAssembler::INVALID_IMM); m_assembler.and_r(ARMRegisters::S0, shift_amount, w); m_assembler.movs_r(dest, m_assembler.lsl_r(dest, ARMRegisters::S0)); } void lshift32(TrustedImm32 imm, RegisterID dest) { m_assembler.movs_r(dest, m_assembler.lsl(dest, imm.m_value & 0x1f)); } void mul32(RegisterID src, RegisterID dest) { if (src == dest) { move(src, ARMRegisters::S0); src = ARMRegisters::S0; } m_assembler.muls_r(dest, dest, src); } void mul32(TrustedImm32 imm, RegisterID src, RegisterID dest) { move(imm, ARMRegisters::S0); m_assembler.muls_r(dest, src, ARMRegisters::S0); } void neg32(RegisterID srcDest) { m_assembler.rsbs_r(srcDest, srcDest, ARMAssembler::getOp2(0)); } void not32(RegisterID dest) { m_assembler.mvns_r(dest, dest); } void or32(RegisterID src, RegisterID dest) { m_assembler.orrs_r(dest, dest, src); } void or32(TrustedImm32 imm, RegisterID dest) { m_assembler.orrs_r(dest, dest, m_assembler.getImm(imm.m_value, ARMRegisters::S0)); } void rshift32(RegisterID shift_amount, RegisterID dest) { ARMWord w = ARMAssembler::getOp2(0x1f); ASSERT(w != ARMAssembler::INVALID_IMM); m_assembler.and_r(ARMRegisters::S0, shift_amount, w); m_assembler.movs_r(dest, m_assembler.asr_r(dest, ARMRegisters::S0)); } void rshift32(TrustedImm32 imm, RegisterID dest) { m_assembler.movs_r(dest, m_assembler.asr(dest, imm.m_value & 0x1f)); } void urshift32(RegisterID shift_amount, RegisterID dest) { ARMWord w = ARMAssembler::getOp2(0x1f); ASSERT(w != ARMAssembler::INVALID_IMM); m_assembler.and_r(ARMRegisters::S0, shift_amount, w); m_assembler.movs_r(dest, m_assembler.lsr_r(dest, ARMRegisters::S0)); } void urshift32(TrustedImm32 imm, RegisterID dest) { m_assembler.movs_r(dest, m_assembler.lsr(dest, imm.m_value & 0x1f)); } void sub32(RegisterID src, RegisterID dest) { m_assembler.subs_r(dest, dest, src); } void sub32(TrustedImm32 imm, RegisterID dest) { m_assembler.subs_r(dest, dest, m_assembler.getImm(imm.m_value, ARMRegisters::S0)); } void sub32(TrustedImm32 imm, Address address) { load32(address, ARMRegisters::S1); sub32(imm, ARMRegisters::S1); store32(ARMRegisters::S1, address); } void sub32(Address src, RegisterID dest) { load32(src, ARMRegisters::S1); sub32(ARMRegisters::S1, dest); } void xor32(RegisterID src, RegisterID dest) { m_assembler.eors_r(dest, dest, src); } void xor32(TrustedImm32 imm, RegisterID dest) { m_assembler.eors_r(dest, dest, m_assembler.getImm(imm.m_value, ARMRegisters::S0)); } void countLeadingZeros32(RegisterID src, RegisterID dest) { #if WTF_ARM_ARCH_AT_LEAST(5) m_assembler.clz_r(dest, src); #else UNUSED_PARAM(src); UNUSED_PARAM(dest); ASSERT_NOT_REACHED(); #endif } void load8(ImplicitAddress address, RegisterID dest) { m_assembler.dataTransfer32(true, dest, address.base, address.offset, true); } void load32(ImplicitAddress address, RegisterID dest) { m_assembler.dataTransfer32(true, dest, address.base, address.offset); } void load32(BaseIndex address, RegisterID dest) { m_assembler.baseIndexTransfer32(true, dest, address.base, address.index, static_cast(address.scale), address.offset); } #if CPU(ARMV5_OR_LOWER) void load32WithUnalignedHalfWords(BaseIndex address, RegisterID dest); #else void load32WithUnalignedHalfWords(BaseIndex address, RegisterID dest) { load32(address, dest); } #endif DataLabel32 load32WithAddressOffsetPatch(Address address, RegisterID dest) { DataLabel32 dataLabel(this); m_assembler.ldr_un_imm(ARMRegisters::S0, 0); m_assembler.dtr_ur(true, dest, address.base, ARMRegisters::S0); return dataLabel; } void load16(BaseIndex address, RegisterID dest) { m_assembler.add_r(ARMRegisters::S1, address.base, m_assembler.lsl(address.index, address.scale)); load16(Address(ARMRegisters::S1, address.offset), dest); } void load16(ImplicitAddress address, RegisterID dest) { if (address.offset >= 0) m_assembler.ldrh_u(dest, address.base, m_assembler.getOffsetForHalfwordDataTransfer(address.offset, ARMRegisters::S0)); else m_assembler.ldrh_d(dest, address.base, m_assembler.getOffsetForHalfwordDataTransfer(-address.offset, ARMRegisters::S0)); } DataLabel32 store32WithAddressOffsetPatch(RegisterID src, Address address) { DataLabel32 dataLabel(this); m_assembler.ldr_un_imm(ARMRegisters::S0, 0); m_assembler.dtr_ur(false, src, address.base, ARMRegisters::S0); return dataLabel; } void store32(RegisterID src, ImplicitAddress address) { m_assembler.dataTransfer32(false, src, address.base, address.offset); } void store32(RegisterID src, BaseIndex address) { m_assembler.baseIndexTransfer32(false, src, address.base, address.index, static_cast(address.scale), address.offset); } void store32(TrustedImm32 imm, ImplicitAddress address) { if (imm.m_isPointer) m_assembler.ldr_un_imm(ARMRegisters::S1, imm.m_value); else move(imm, ARMRegisters::S1); store32(ARMRegisters::S1, address); } void store32(RegisterID src, void* address) { m_assembler.ldr_un_imm(ARMRegisters::S0, reinterpret_cast(address)); m_assembler.dtr_u(false, src, ARMRegisters::S0, 0); } void store32(TrustedImm32 imm, void* address) { m_assembler.ldr_un_imm(ARMRegisters::S0, reinterpret_cast(address)); if (imm.m_isPointer) m_assembler.ldr_un_imm(ARMRegisters::S1, imm.m_value); else m_assembler.moveImm(imm.m_value, ARMRegisters::S1); m_assembler.dtr_u(false, ARMRegisters::S1, ARMRegisters::S0, 0); } void pop(RegisterID dest) { m_assembler.pop_r(dest); } void push(RegisterID src) { m_assembler.push_r(src); } void push(Address address) { load32(address, ARMRegisters::S1); push(ARMRegisters::S1); } void push(TrustedImm32 imm) { move(imm, ARMRegisters::S0); push(ARMRegisters::S0); } void move(TrustedImm32 imm, RegisterID dest) { if (imm.m_isPointer) m_assembler.ldr_un_imm(dest, imm.m_value); else m_assembler.moveImm(imm.m_value, dest); } void move(RegisterID src, RegisterID dest) { m_assembler.mov_r(dest, src); } void move(TrustedImmPtr imm, RegisterID dest) { move(TrustedImm32(imm), dest); } void swap(RegisterID reg1, RegisterID reg2) { m_assembler.mov_r(ARMRegisters::S0, reg1); m_assembler.mov_r(reg1, reg2); m_assembler.mov_r(reg2, ARMRegisters::S0); } void signExtend32ToPtr(RegisterID src, RegisterID dest) { if (src != dest) move(src, dest); } void zeroExtend32ToPtr(RegisterID src, RegisterID dest) { if (src != dest) move(src, dest); } Jump branch8(Condition cond, Address left, TrustedImm32 right) { load8(left, ARMRegisters::S1); return branch32(cond, ARMRegisters::S1, right); } Jump branch32(Condition cond, RegisterID left, RegisterID right, int useConstantPool = 0) { m_assembler.cmp_r(left, right); return Jump(m_assembler.jmp(ARMCondition(cond), useConstantPool)); } Jump branch32(Condition cond, RegisterID left, TrustedImm32 right, int useConstantPool = 0) { if (right.m_isPointer) { m_assembler.ldr_un_imm(ARMRegisters::S0, right.m_value); m_assembler.cmp_r(left, ARMRegisters::S0); } else { ARMWord tmp = m_assembler.getOp2(-right.m_value); if (tmp != ARMAssembler::INVALID_IMM) m_assembler.cmn_r(left, tmp); else m_assembler.cmp_r(left, m_assembler.getImm(right.m_value, ARMRegisters::S0)); } return Jump(m_assembler.jmp(ARMCondition(cond), useConstantPool)); } Jump branch32(Condition cond, RegisterID left, Address right) { load32(right, ARMRegisters::S1); return branch32(cond, left, ARMRegisters::S1); } Jump branch32(Condition cond, Address left, RegisterID right) { load32(left, ARMRegisters::S1); return branch32(cond, ARMRegisters::S1, right); } Jump branch32(Condition cond, Address left, TrustedImm32 right) { load32(left, ARMRegisters::S1); return branch32(cond, ARMRegisters::S1, right); } Jump branch32(Condition cond, BaseIndex left, TrustedImm32 right) { load32(left, ARMRegisters::S1); return branch32(cond, ARMRegisters::S1, right); } Jump branch32WithUnalignedHalfWords(Condition cond, BaseIndex left, TrustedImm32 right) { load32WithUnalignedHalfWords(left, ARMRegisters::S1); return branch32(cond, ARMRegisters::S1, right); } Jump branch16(Condition cond, BaseIndex left, RegisterID right) { UNUSED_PARAM(cond); UNUSED_PARAM(left); UNUSED_PARAM(right); ASSERT_NOT_REACHED(); return jump(); } Jump branch16(Condition cond, BaseIndex left, TrustedImm32 right) { load16(left, ARMRegisters::S0); move(right, ARMRegisters::S1); m_assembler.cmp_r(ARMRegisters::S0, ARMRegisters::S1); return m_assembler.jmp(ARMCondition(cond)); } Jump branchTest8(Condition cond, Address address, TrustedImm32 mask = TrustedImm32(-1)) { load8(address, ARMRegisters::S1); return branchTest32(cond, ARMRegisters::S1, mask); } Jump branchTest32(Condition cond, RegisterID reg, RegisterID mask) { ASSERT((cond == Zero) || (cond == NonZero)); m_assembler.tst_r(reg, mask); return Jump(m_assembler.jmp(ARMCondition(cond))); } Jump branchTest32(Condition cond, RegisterID reg, TrustedImm32 mask = TrustedImm32(-1)) { ASSERT((cond == Zero) || (cond == NonZero)); ARMWord w = m_assembler.getImm(mask.m_value, ARMRegisters::S0, true); if (w & ARMAssembler::OP2_INV_IMM) m_assembler.bics_r(ARMRegisters::S0, reg, w & ~ARMAssembler::OP2_INV_IMM); else m_assembler.tst_r(reg, w); return Jump(m_assembler.jmp(ARMCondition(cond))); } Jump branchTest32(Condition cond, Address address, TrustedImm32 mask = TrustedImm32(-1)) { load32(address, ARMRegisters::S1); return branchTest32(cond, ARMRegisters::S1, mask); } Jump branchTest32(Condition cond, BaseIndex address, TrustedImm32 mask = TrustedImm32(-1)) { load32(address, ARMRegisters::S1); return branchTest32(cond, ARMRegisters::S1, mask); } Jump jump() { return Jump(m_assembler.jmp()); } void jump(RegisterID target) { m_assembler.bx(target); } void jump(Address address) { load32(address, ARMRegisters::pc); } Jump branchAdd32(Condition cond, RegisterID src, RegisterID dest) { ASSERT((cond == Overflow) || (cond == Signed) || (cond == Zero) || (cond == NonZero)); add32(src, dest); return Jump(m_assembler.jmp(ARMCondition(cond))); } Jump branchAdd32(Condition cond, TrustedImm32 imm, RegisterID dest) { ASSERT((cond == Overflow) || (cond == Signed) || (cond == Zero) || (cond == NonZero)); add32(imm, dest); return Jump(m_assembler.jmp(ARMCondition(cond))); } void mull32(RegisterID src1, RegisterID src2, RegisterID dest) { if (src1 == dest) { move(src1, ARMRegisters::S0); src1 = ARMRegisters::S0; } m_assembler.mull_r(ARMRegisters::S1, dest, src2, src1); m_assembler.cmp_r(ARMRegisters::S1, m_assembler.asr(dest, 31)); } Jump branchMul32(Condition cond, RegisterID src, RegisterID dest) { ASSERT((cond == Overflow) || (cond == Signed) || (cond == Zero) || (cond == NonZero)); if (cond == Overflow) { mull32(src, dest, dest); cond = NonZero; } else mul32(src, dest); return Jump(m_assembler.jmp(ARMCondition(cond))); } Jump branchMul32(Condition cond, TrustedImm32 imm, RegisterID src, RegisterID dest) { ASSERT((cond == Overflow) || (cond == Signed) || (cond == Zero) || (cond == NonZero)); if (cond == Overflow) { move(imm, ARMRegisters::S0); mull32(ARMRegisters::S0, src, dest); cond = NonZero; } else mul32(imm, src, dest); return Jump(m_assembler.jmp(ARMCondition(cond))); } Jump branchSub32(Condition cond, RegisterID src, RegisterID dest) { ASSERT((cond == Overflow) || (cond == Signed) || (cond == Zero) || (cond == NonZero)); sub32(src, dest); return Jump(m_assembler.jmp(ARMCondition(cond))); } Jump branchSub32(Condition cond, TrustedImm32 imm, RegisterID dest) { ASSERT((cond == Overflow) || (cond == Signed) || (cond == Zero) || (cond == NonZero)); sub32(imm, dest); return Jump(m_assembler.jmp(ARMCondition(cond))); } Jump branchNeg32(Condition cond, RegisterID srcDest) { ASSERT((cond == Overflow) || (cond == Signed) || (cond == Zero) || (cond == NonZero)); neg32(srcDest); return Jump(m_assembler.jmp(ARMCondition(cond))); } Jump branchOr32(Condition cond, RegisterID src, RegisterID dest) { ASSERT((cond == Signed) || (cond == Zero) || (cond == NonZero)); or32(src, dest); return Jump(m_assembler.jmp(ARMCondition(cond))); } void breakpoint() { m_assembler.bkpt(0); } Call nearCall() { #if WTF_ARM_ARCH_AT_LEAST(5) ensureSpace(2 * sizeof(ARMWord), sizeof(ARMWord)); m_assembler.loadBranchTarget(ARMRegisters::S1, ARMAssembler::AL, true); return Call(m_assembler.blx(ARMRegisters::S1), Call::LinkableNear); #else prepareCall(); return Call(m_assembler.jmp(ARMAssembler::AL, true), Call::LinkableNear); #endif } Call call(RegisterID target) { return Call(m_assembler.blx(target), Call::None); } void call(Address address) { call32(address.base, address.offset); } void ret() { m_assembler.bx(linkRegister); } void set32Compare32(Condition cond, RegisterID left, RegisterID right, RegisterID dest) { m_assembler.cmp_r(left, right); m_assembler.mov_r(dest, ARMAssembler::getOp2(0)); m_assembler.mov_r(dest, ARMAssembler::getOp2(1), ARMCondition(cond)); } void set32Compare32(Condition cond, RegisterID left, TrustedImm32 right, RegisterID dest) { m_assembler.cmp_r(left, m_assembler.getImm(right.m_value, ARMRegisters::S0)); m_assembler.mov_r(dest, ARMAssembler::getOp2(0)); m_assembler.mov_r(dest, ARMAssembler::getOp2(1), ARMCondition(cond)); } void set8Compare32(Condition cond, RegisterID left, RegisterID right, RegisterID dest) { // ARM doesn't have byte registers set32Compare32(cond, left, right, dest); } void set8Compare32(Condition cond, Address left, RegisterID right, RegisterID dest) { // ARM doesn't have byte registers load32(left, ARMRegisters::S1); set32Compare32(cond, ARMRegisters::S1, right, dest); } void set8Compare32(Condition cond, RegisterID left, TrustedImm32 right, RegisterID dest) { // ARM doesn't have byte registers set32Compare32(cond, left, right, dest); } void set32Test32(Condition cond, RegisterID reg, TrustedImm32 mask, RegisterID dest) { if (mask.m_value == -1) m_assembler.cmp_r(0, reg); else m_assembler.tst_r(reg, m_assembler.getImm(mask.m_value, ARMRegisters::S0)); m_assembler.mov_r(dest, ARMAssembler::getOp2(0)); m_assembler.mov_r(dest, ARMAssembler::getOp2(1), ARMCondition(cond)); } void set32Test32(Condition cond, Address address, TrustedImm32 mask, RegisterID dest) { load32(address, ARMRegisters::S1); set32Test32(cond, ARMRegisters::S1, mask, dest); } void set32Test8(Condition cond, Address address, TrustedImm32 mask, RegisterID dest) { load8(address, ARMRegisters::S1); set32Test32(cond, ARMRegisters::S1, mask, dest); } void add32(TrustedImm32 imm, RegisterID src, RegisterID dest) { m_assembler.add_r(dest, src, m_assembler.getImm(imm.m_value, ARMRegisters::S0)); } void add32(TrustedImm32 imm, AbsoluteAddress address) { m_assembler.ldr_un_imm(ARMRegisters::S1, reinterpret_cast(address.m_ptr)); m_assembler.dtr_u(true, ARMRegisters::S1, ARMRegisters::S1, 0); add32(imm, ARMRegisters::S1); m_assembler.ldr_un_imm(ARMRegisters::S0, reinterpret_cast(address.m_ptr)); m_assembler.dtr_u(false, ARMRegisters::S1, ARMRegisters::S0, 0); } void sub32(TrustedImm32 imm, AbsoluteAddress address) { m_assembler.ldr_un_imm(ARMRegisters::S1, reinterpret_cast(address.m_ptr)); m_assembler.dtr_u(true, ARMRegisters::S1, ARMRegisters::S1, 0); sub32(imm, ARMRegisters::S1); m_assembler.ldr_un_imm(ARMRegisters::S0, reinterpret_cast(address.m_ptr)); m_assembler.dtr_u(false, ARMRegisters::S1, ARMRegisters::S0, 0); } void load32(const void* address, RegisterID dest) { m_assembler.ldr_un_imm(ARMRegisters::S0, reinterpret_cast(address)); m_assembler.dtr_u(true, dest, ARMRegisters::S0, 0); } Jump branch32(Condition cond, AbsoluteAddress left, RegisterID right) { load32(left.m_ptr, ARMRegisters::S1); return branch32(cond, ARMRegisters::S1, right); } Jump branch32(Condition cond, AbsoluteAddress left, TrustedImm32 right) { load32(left.m_ptr, ARMRegisters::S1); return branch32(cond, ARMRegisters::S1, right); } void relativeTableJump(RegisterID index, int scale) { ASSERT(scale >= 0 && scale <= 31); m_assembler.add_r(ARMRegisters::pc, ARMRegisters::pc, m_assembler.lsl(index, scale)); // NOP the default prefetching m_assembler.mov_r(ARMRegisters::r0, ARMRegisters::r0); } Call call() { #if WTF_ARM_ARCH_AT_LEAST(5) ensureSpace(2 * sizeof(ARMWord), sizeof(ARMWord)); m_assembler.loadBranchTarget(ARMRegisters::S1, ARMAssembler::AL, true); return Call(m_assembler.blx(ARMRegisters::S1), Call::Linkable); #else prepareCall(); return Call(m_assembler.jmp(ARMAssembler::AL, true), Call::Linkable); #endif } Call tailRecursiveCall() { return Call::fromTailJump(jump()); } Call makeTailRecursiveCall(Jump oldJump) { return Call::fromTailJump(oldJump); } DataLabelPtr moveWithPatch(TrustedImmPtr initialValue, RegisterID dest) { DataLabelPtr dataLabel(this); m_assembler.ldr_un_imm(dest, reinterpret_cast(initialValue.m_value)); return dataLabel; } Jump branchPtrWithPatch(Condition cond, RegisterID left, DataLabelPtr& dataLabel, TrustedImmPtr initialRightValue = TrustedImmPtr(0)) { dataLabel = moveWithPatch(initialRightValue, ARMRegisters::S1); Jump jump = branch32(cond, left, ARMRegisters::S1, true); return jump; } Jump branchPtrWithPatch(Condition cond, Address left, DataLabelPtr& dataLabel, TrustedImmPtr initialRightValue = TrustedImmPtr(0)) { load32(left, ARMRegisters::S1); dataLabel = moveWithPatch(initialRightValue, ARMRegisters::S0); Jump jump = branch32(cond, ARMRegisters::S0, ARMRegisters::S1, true); return jump; } DataLabelPtr storePtrWithPatch(TrustedImmPtr initialValue, ImplicitAddress address) { DataLabelPtr dataLabel = moveWithPatch(initialValue, ARMRegisters::S1); store32(ARMRegisters::S1, address); return dataLabel; } DataLabelPtr storePtrWithPatch(ImplicitAddress address) { return storePtrWithPatch(TrustedImmPtr(0), address); } // Floating point operators bool supportsFloatingPoint() const { return s_isVFPPresent; } bool supportsFloatingPointTruncate() const { return s_isVFPPresent; } bool supportsFloatingPointSqrt() const { return s_isVFPPresent; } void loadDouble(ImplicitAddress address, FPRegisterID dest) { m_assembler.doubleTransfer(true, dest, address.base, address.offset); } void loadDouble(const void* address, FPRegisterID dest) { m_assembler.ldr_un_imm(ARMRegisters::S0, (ARMWord)address); m_assembler.fdtr_u(true, dest, ARMRegisters::S0, 0); } void storeDouble(FPRegisterID src, ImplicitAddress address) { m_assembler.doubleTransfer(false, src, address.base, address.offset); } void addDouble(FPRegisterID src, FPRegisterID dest) { m_assembler.vadd_f64_r(dest, dest, src); } void addDouble(Address src, FPRegisterID dest) { loadDouble(src, ARMRegisters::SD0); addDouble(ARMRegisters::SD0, dest); } void divDouble(FPRegisterID src, FPRegisterID dest) { m_assembler.vdiv_f64_r(dest, dest, src); } void divDouble(Address src, FPRegisterID dest) { ASSERT_NOT_REACHED(); // Untested loadDouble(src, ARMRegisters::SD0); divDouble(ARMRegisters::SD0, dest); } void subDouble(FPRegisterID src, FPRegisterID dest) { m_assembler.vsub_f64_r(dest, dest, src); } void subDouble(Address src, FPRegisterID dest) { loadDouble(src, ARMRegisters::SD0); subDouble(ARMRegisters::SD0, dest); } void mulDouble(FPRegisterID src, FPRegisterID dest) { m_assembler.vmul_f64_r(dest, dest, src); } void mulDouble(Address src, FPRegisterID dest) { loadDouble(src, ARMRegisters::SD0); mulDouble(ARMRegisters::SD0, dest); } void sqrtDouble(FPRegisterID src, FPRegisterID dest) { m_assembler.vsqrt_f64_r(dest, src); } void convertInt32ToDouble(RegisterID src, FPRegisterID dest) { m_assembler.vmov_vfp_r(dest << 1, src); m_assembler.vcvt_f64_s32_r(dest, dest << 1); } void convertInt32ToDouble(Address src, FPRegisterID dest) { ASSERT_NOT_REACHED(); // Untested // flds does not worth the effort here load32(src, ARMRegisters::S1); convertInt32ToDouble(ARMRegisters::S1, dest); } void convertInt32ToDouble(AbsoluteAddress src, FPRegisterID dest) { ASSERT_NOT_REACHED(); // Untested // flds does not worth the effort here m_assembler.ldr_un_imm(ARMRegisters::S1, (ARMWord)src.m_ptr); m_assembler.dtr_u(true, ARMRegisters::S1, ARMRegisters::S1, 0); convertInt32ToDouble(ARMRegisters::S1, dest); } Jump branchDouble(DoubleCondition cond, FPRegisterID left, FPRegisterID right) { m_assembler.vcmp_f64_r(left, right); m_assembler.vmrs_apsr(); if (cond & DoubleConditionBitSpecial) m_assembler.cmp_r(ARMRegisters::S0, ARMRegisters::S0, ARMAssembler::VS); return Jump(m_assembler.jmp(static_cast(cond & ~DoubleConditionMask))); } // Truncates 'src' to an integer, and places the resulting 'dest'. // If the result is not representable as a 32 bit value, branch. // May also branch for some values that are representable in 32 bits // (specifically, in this case, INT_MIN and INT_MAX). Jump branchTruncateDoubleToInt32(FPRegisterID src, RegisterID dest) { m_assembler.vcvtr_s32_f64_r(ARMRegisters::SD0 << 1, src); // If VCVTR.S32.F64 can't fit the result into a 32-bit // integer, it saturates at INT_MAX or INT_MIN. Testing this is // probably quicker than testing FPSCR for exception. m_assembler.vmov_arm_r(dest, ARMRegisters::SD0 << 1); m_assembler.sub_r(ARMRegisters::S0, dest, ARMAssembler::getOp2(0x80000000)); m_assembler.cmn_r(ARMRegisters::S0, ARMAssembler::getOp2(1), ARMCondition(NotEqual)); return Jump(m_assembler.jmp(ARMCondition(Equal))); } // Convert 'src' to an integer, and places the resulting 'dest'. // If the result is not representable as a 32 bit value, branch. // May also branch for some values that are representable in 32 bits // (specifically, in this case, 0). void branchConvertDoubleToInt32(FPRegisterID src, RegisterID dest, JumpList& failureCases, FPRegisterID fpTemp) { m_assembler.vcvt_s32_f64_r(ARMRegisters::SD0 << 1, src); m_assembler.vmov_arm_r(dest, ARMRegisters::SD0 << 1); // Convert the integer result back to float & compare to the original value - if not equal or unordered (NaN) then jump. m_assembler.vcvt_f64_s32_r(ARMRegisters::SD0, ARMRegisters::SD0 << 1); failureCases.append(branchDouble(DoubleNotEqualOrUnordered, src, ARMRegisters::SD0)); // If the result is zero, it might have been -0.0, and 0.0 equals to -0.0 failureCases.append(branchTest32(Zero, dest)); } Jump branchDoubleNonZero(FPRegisterID reg, FPRegisterID scratch) { m_assembler.mov_r(ARMRegisters::S0, ARMAssembler::getOp2(0)); convertInt32ToDouble(ARMRegisters::S0, scratch); return branchDouble(DoubleNotEqual, reg, scratch); } Jump branchDoubleZeroOrNaN(FPRegisterID reg, FPRegisterID scratch) { m_assembler.mov_r(ARMRegisters::S0, ARMAssembler::getOp2(0)); convertInt32ToDouble(ARMRegisters::S0, scratch); return branchDouble(DoubleEqualOrUnordered, reg, scratch); } protected: ARMAssembler::Condition ARMCondition(Condition cond) { return static_cast(cond); } void ensureSpace(int insnSpace, int constSpace) { m_assembler.ensureSpace(insnSpace, constSpace); } int sizeOfConstantPool() { return m_assembler.sizeOfConstantPool(); } void prepareCall() { #if WTF_ARM_ARCH_VERSION < 5 ensureSpace(2 * sizeof(ARMWord), sizeof(ARMWord)); m_assembler.mov_r(linkRegister, ARMRegisters::pc); #endif } void call32(RegisterID base, int32_t offset) { #if WTF_ARM_ARCH_AT_LEAST(5) int targetReg = ARMRegisters::S1; #else int targetReg = ARMRegisters::pc; #endif int tmpReg = ARMRegisters::S1; if (base == ARMRegisters::sp) offset += 4; if (offset >= 0) { if (offset <= 0xfff) { prepareCall(); m_assembler.dtr_u(true, targetReg, base, offset); } else if (offset <= 0xfffff) { m_assembler.add_r(tmpReg, base, ARMAssembler::OP2_IMM | (offset >> 12) | (10 << 8)); prepareCall(); m_assembler.dtr_u(true, targetReg, tmpReg, offset & 0xfff); } else { m_assembler.moveImm(offset, tmpReg); prepareCall(); m_assembler.dtr_ur(true, targetReg, base, tmpReg); } } else { offset = -offset; if (offset <= 0xfff) { prepareCall(); m_assembler.dtr_d(true, targetReg, base, offset); } else if (offset <= 0xfffff) { m_assembler.sub_r(tmpReg, base, ARMAssembler::OP2_IMM | (offset >> 12) | (10 << 8)); prepareCall(); m_assembler.dtr_d(true, targetReg, tmpReg, offset & 0xfff); } else { m_assembler.moveImm(offset, tmpReg); prepareCall(); m_assembler.dtr_dr(true, targetReg, base, tmpReg); } } #if WTF_ARM_ARCH_AT_LEAST(5) m_assembler.blx(targetReg); #endif } private: friend class LinkBuffer; friend class RepatchBuffer; static void linkCall(void* code, Call call, FunctionPtr function) { ARMAssembler::linkCall(code, call.m_jmp, function.value()); } static void repatchCall(CodeLocationCall call, CodeLocationLabel destination) { ARMAssembler::relinkCall(call.dataLocation(), destination.executableAddress()); } static void repatchCall(CodeLocationCall call, FunctionPtr destination) { ARMAssembler::relinkCall(call.dataLocation(), destination.executableAddress()); } static const bool s_isVFPPresent; }; } #endif // ENABLE(ASSEMBLER) && CPU(ARM_TRADITIONAL) #endif // MacroAssemblerARM_h