/* * Copyright (C) 2009 Apple Inc. All rights reserved. * Copyright (C) 2010 Patrick Gansterer * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "config.h" #if ENABLE(JIT) #include "JIT.h" #include "Arguments.h" #include "JITInlineMethods.h" #include "JITStubCall.h" #include "JSArray.h" #include "JSCell.h" #include "JSFunction.h" #include "JSPropertyNameIterator.h" #include "LinkBuffer.h" namespace JSC { #if USE(JSVALUE64) #define RECORD_JUMP_TARGET(targetOffset) \ do { m_labels[m_bytecodeOffset + (targetOffset)].used(); } while (false) void JIT::privateCompileCTIMachineTrampolines(RefPtr* executablePool, JSGlobalData* globalData, TrampolineStructure *trampolines) { #if ENABLE(JIT_OPTIMIZE_PROPERTY_ACCESS) // (2) The second function provides fast property access for string length Label stringLengthBegin = align(); // Check eax is a string Jump string_failureCases1 = emitJumpIfNotJSCell(regT0); Jump string_failureCases2 = branchPtr(NotEqual, Address(regT0), TrustedImmPtr(m_globalData->jsStringVPtr)); // Checks out okay! - get the length from the Ustring. load32(Address(regT0, OBJECT_OFFSETOF(JSString, m_length)), regT0); Jump string_failureCases3 = branch32(LessThan, regT0, TrustedImm32(0)); // regT0 contains a 64 bit value (is positive, is zero extended) so we don't need sign extend here. emitFastArithIntToImmNoCheck(regT0, regT0); ret(); #endif // (3) Trampolines for the slow cases of op_call / op_call_eval / op_construct. COMPILE_ASSERT(sizeof(CodeType) == 4, CodeTypeEnumMustBe32Bit); // VirtualCallLink Trampoline // regT0 holds callee, regT1 holds argCount. regT2 will hold the FunctionExecutable. JumpList callLinkFailures; Label virtualCallLinkBegin = align(); compileOpCallInitializeCallFrame(); preserveReturnAddressAfterCall(regT3); emitPutToCallFrameHeader(regT3, RegisterFile::ReturnPC); restoreArgumentReference(); Call callLazyLinkCall = call(); callLinkFailures.append(branchTestPtr(Zero, regT0)); restoreReturnAddressBeforeReturn(regT3); emitGetFromCallFrameHeader32(RegisterFile::ArgumentCount, regT1); jump(regT0); // VirtualConstructLink Trampoline // regT0 holds callee, regT1 holds argCount. regT2 will hold the FunctionExecutable. Label virtualConstructLinkBegin = align(); compileOpCallInitializeCallFrame(); preserveReturnAddressAfterCall(regT3); emitPutToCallFrameHeader(regT3, RegisterFile::ReturnPC); restoreArgumentReference(); Call callLazyLinkConstruct = call(); callLinkFailures.append(branchTestPtr(Zero, regT0)); restoreReturnAddressBeforeReturn(regT3); emitGetFromCallFrameHeader32(RegisterFile::ArgumentCount, regT1); jump(regT0); // VirtualCall Trampoline // regT0 holds callee, regT1 holds argCount. regT2 will hold the FunctionExecutable. Label virtualCallBegin = align(); compileOpCallInitializeCallFrame(); loadPtr(Address(regT0, OBJECT_OFFSETOF(JSFunction, m_executable)), regT2); Jump hasCodeBlock3 = branch32(GreaterThanOrEqual, Address(regT2, OBJECT_OFFSETOF(FunctionExecutable, m_numParametersForCall)), TrustedImm32(0)); preserveReturnAddressAfterCall(regT3); restoreArgumentReference(); Call callCompileCall = call(); callLinkFailures.append(branchTestPtr(Zero, regT0)); emitGetFromCallFrameHeader32(RegisterFile::ArgumentCount, regT1); restoreReturnAddressBeforeReturn(regT3); loadPtr(Address(regT0, OBJECT_OFFSETOF(JSFunction, m_executable)), regT2); hasCodeBlock3.link(this); loadPtr(Address(regT2, OBJECT_OFFSETOF(FunctionExecutable, m_jitCodeForCallWithArityCheck)), regT0); jump(regT0); // VirtualConstruct Trampoline // regT0 holds callee, regT1 holds argCount. regT2 will hold the FunctionExecutable. Label virtualConstructBegin = align(); compileOpCallInitializeCallFrame(); loadPtr(Address(regT0, OBJECT_OFFSETOF(JSFunction, m_executable)), regT2); Jump hasCodeBlock4 = branch32(GreaterThanOrEqual, Address(regT2, OBJECT_OFFSETOF(FunctionExecutable, m_numParametersForConstruct)), TrustedImm32(0)); preserveReturnAddressAfterCall(regT3); restoreArgumentReference(); Call callCompileConstruct = call(); callLinkFailures.append(branchTestPtr(Zero, regT0)); emitGetFromCallFrameHeader32(RegisterFile::ArgumentCount, regT1); restoreReturnAddressBeforeReturn(regT3); loadPtr(Address(regT0, OBJECT_OFFSETOF(JSFunction, m_executable)), regT2); hasCodeBlock4.link(this); loadPtr(Address(regT2, OBJECT_OFFSETOF(FunctionExecutable, m_jitCodeForConstructWithArityCheck)), regT0); jump(regT0); // If the parser fails we want to be able to be able to keep going, // So we handle this as a parse failure. callLinkFailures.link(this); emitGetFromCallFrameHeaderPtr(RegisterFile::ReturnPC, regT1); emitGetFromCallFrameHeaderPtr(RegisterFile::CallerFrame, callFrameRegister); restoreReturnAddressBeforeReturn(regT1); move(TrustedImmPtr(&globalData->exceptionLocation), regT2); storePtr(regT1, regT2); poke(callFrameRegister, 1 + OBJECT_OFFSETOF(struct JITStackFrame, callFrame) / sizeof(void*)); poke(TrustedImmPtr(FunctionPtr(ctiVMThrowTrampoline).value())); ret(); // NativeCall Trampoline Label nativeCallThunk = privateCompileCTINativeCall(globalData); Label nativeConstructThunk = privateCompileCTINativeCall(globalData, true); #if ENABLE(JIT_OPTIMIZE_PROPERTY_ACCESS) Call string_failureCases1Call = makeTailRecursiveCall(string_failureCases1); Call string_failureCases2Call = makeTailRecursiveCall(string_failureCases2); Call string_failureCases3Call = makeTailRecursiveCall(string_failureCases3); #endif // All trampolines constructed! copy the code, link up calls, and set the pointers on the Machine object. LinkBuffer patchBuffer(this, m_globalData->executableAllocator.poolForSize(m_assembler.size()), 0); #if ENABLE(JIT_OPTIMIZE_PROPERTY_ACCESS) patchBuffer.link(string_failureCases1Call, FunctionPtr(cti_op_get_by_id_string_fail)); patchBuffer.link(string_failureCases2Call, FunctionPtr(cti_op_get_by_id_string_fail)); patchBuffer.link(string_failureCases3Call, FunctionPtr(cti_op_get_by_id_string_fail)); #endif #if ENABLE(JIT_OPTIMIZE_CALL) patchBuffer.link(callLazyLinkCall, FunctionPtr(cti_vm_lazyLinkCall)); patchBuffer.link(callLazyLinkConstruct, FunctionPtr(cti_vm_lazyLinkConstruct)); #endif patchBuffer.link(callCompileCall, FunctionPtr(cti_op_call_jitCompile)); patchBuffer.link(callCompileConstruct, FunctionPtr(cti_op_construct_jitCompile)); CodeRef finalCode = patchBuffer.finalizeCode(); *executablePool = finalCode.m_executablePool; trampolines->ctiVirtualCallLink = patchBuffer.trampolineAt(virtualCallLinkBegin); trampolines->ctiVirtualConstructLink = patchBuffer.trampolineAt(virtualConstructLinkBegin); trampolines->ctiVirtualCall = patchBuffer.trampolineAt(virtualCallBegin); trampolines->ctiVirtualConstruct = patchBuffer.trampolineAt(virtualConstructBegin); trampolines->ctiNativeCall = patchBuffer.trampolineAt(nativeCallThunk); trampolines->ctiNativeConstruct = patchBuffer.trampolineAt(nativeConstructThunk); #if ENABLE(JIT_OPTIMIZE_PROPERTY_ACCESS) trampolines->ctiStringLengthTrampoline = patchBuffer.trampolineAt(stringLengthBegin); #endif } JIT::Label JIT::privateCompileCTINativeCall(JSGlobalData* globalData, bool isConstruct) { int executableOffsetToFunction = isConstruct ? OBJECT_OFFSETOF(NativeExecutable, m_constructor) : OBJECT_OFFSETOF(NativeExecutable, m_function); Label nativeCallThunk = align(); emitPutImmediateToCallFrameHeader(0, RegisterFile::CodeBlock); #if CPU(X86_64) // Load caller frame's scope chain into this callframe so that whatever we call can // get to its global data. emitGetFromCallFrameHeaderPtr(RegisterFile::CallerFrame, regT0); emitGetFromCallFrameHeaderPtr(RegisterFile::ScopeChain, regT1, regT0); emitPutCellToCallFrameHeader(regT1, RegisterFile::ScopeChain); peek(regT1); emitPutToCallFrameHeader(regT1, RegisterFile::ReturnPC); // Calling convention: f(edi, esi, edx, ecx, ...); // Host function signature: f(ExecState*); move(callFrameRegister, X86Registers::edi); subPtr(TrustedImm32(16 - sizeof(void*)), stackPointerRegister); // Align stack after call. emitGetFromCallFrameHeaderPtr(RegisterFile::Callee, X86Registers::esi); loadPtr(Address(X86Registers::esi, OBJECT_OFFSETOF(JSFunction, m_executable)), X86Registers::r9); move(regT0, callFrameRegister); // Eagerly restore caller frame register to avoid loading from stack. call(Address(X86Registers::r9, executableOffsetToFunction)); addPtr(TrustedImm32(16 - sizeof(void*)), stackPointerRegister); #elif CPU(ARM) // Load caller frame's scope chain into this callframe so that whatever we call can // get to its global data. emitGetFromCallFrameHeaderPtr(RegisterFile::CallerFrame, regT2); emitGetFromCallFrameHeaderPtr(RegisterFile::ScopeChain, regT1, regT2); emitPutCellToCallFrameHeader(regT1, RegisterFile::ScopeChain); preserveReturnAddressAfterCall(regT3); // Callee preserved emitPutToCallFrameHeader(regT3, RegisterFile::ReturnPC); // Calling convention: f(r0 == regT0, r1 == regT1, ...); // Host function signature: f(ExecState*); move(callFrameRegister, ARMRegisters::r0); emitGetFromCallFrameHeaderPtr(RegisterFile::Callee, ARMRegisters::r1); move(regT2, callFrameRegister); // Eagerly restore caller frame register to avoid loading from stack. loadPtr(Address(ARMRegisters::r1, OBJECT_OFFSETOF(JSFunction, m_executable)), regT2); call(Address(regT2, executableOffsetToFunction)); restoreReturnAddressBeforeReturn(regT3); #elif CPU(MIPS) // Load caller frame's scope chain into this callframe so that whatever we call can // get to its global data. emitGetFromCallFrameHeaderPtr(RegisterFile::CallerFrame, regT0); emitGetFromCallFrameHeaderPtr(RegisterFile::ScopeChain, regT1, regT0); emitPutCellToCallFrameHeader(regT1, RegisterFile::ScopeChain); preserveReturnAddressAfterCall(regT3); // Callee preserved emitPutToCallFrameHeader(regT3, RegisterFile::ReturnPC); // Calling convention: f(a0, a1, a2, a3); // Host function signature: f(ExecState*); // Allocate stack space for 16 bytes (8-byte aligned) // 16 bytes (unused) for 4 arguments subPtr(TrustedImm32(16), stackPointerRegister); // Setup arg0 move(callFrameRegister, MIPSRegisters::a0); // Call emitGetFromCallFrameHeaderPtr(RegisterFile::Callee, MIPSRegisters::a2); loadPtr(Address(MIPSRegisters::a2, OBJECT_OFFSETOF(JSFunction, m_executable)), regT2); move(regT0, callFrameRegister); // Eagerly restore caller frame register to avoid loading from stack. call(Address(regT2, executableOffsetToFunction)); // Restore stack space addPtr(TrustedImm32(16), stackPointerRegister); restoreReturnAddressBeforeReturn(regT3); #elif ENABLE(JIT_OPTIMIZE_NATIVE_CALL) #error "JIT_OPTIMIZE_NATIVE_CALL not yet supported on this platform." #else UNUSED_PARAM(executableOffsetToFunction); breakpoint(); #endif // Check for an exception loadPtr(&(globalData->exception), regT2); Jump exceptionHandler = branchTestPtr(NonZero, regT2); // Return. ret(); // Handle an exception exceptionHandler.link(this); // Grab the return address. preserveReturnAddressAfterCall(regT1); move(TrustedImmPtr(&globalData->exceptionLocation), regT2); storePtr(regT1, regT2); poke(callFrameRegister, OBJECT_OFFSETOF(struct JITStackFrame, callFrame) / sizeof(void*)); // Set the return address. move(TrustedImmPtr(FunctionPtr(ctiVMThrowTrampoline).value()), regT1); restoreReturnAddressBeforeReturn(regT1); ret(); return nativeCallThunk; } JIT::CodePtr JIT::privateCompileCTINativeCall(PassRefPtr, JSGlobalData* globalData, NativeFunction) { return globalData->jitStubs->ctiNativeCall(); } void JIT::emit_op_mov(Instruction* currentInstruction) { int dst = currentInstruction[1].u.operand; int src = currentInstruction[2].u.operand; if (m_codeBlock->isConstantRegisterIndex(src)) { storePtr(ImmPtr(JSValue::encode(getConstantOperand(src))), Address(callFrameRegister, dst * sizeof(Register))); if (dst == m_lastResultBytecodeRegister) killLastResultRegister(); } else if ((src == m_lastResultBytecodeRegister) || (dst == m_lastResultBytecodeRegister)) { // If either the src or dst is the cached register go though // get/put registers to make sure we track this correctly. emitGetVirtualRegister(src, regT0); emitPutVirtualRegister(dst); } else { // Perform the copy via regT1; do not disturb any mapping in regT0. loadPtr(Address(callFrameRegister, src * sizeof(Register)), regT1); storePtr(regT1, Address(callFrameRegister, dst * sizeof(Register))); } } void JIT::emit_op_end(Instruction* currentInstruction) { ASSERT(returnValueRegister != callFrameRegister); emitGetVirtualRegister(currentInstruction[1].u.operand, returnValueRegister); restoreReturnAddressBeforeReturn(Address(callFrameRegister, RegisterFile::ReturnPC * static_cast(sizeof(Register)))); ret(); } void JIT::emit_op_jmp(Instruction* currentInstruction) { unsigned target = currentInstruction[1].u.operand; addJump(jump(), target); RECORD_JUMP_TARGET(target); } void JIT::emit_op_loop_if_lesseq(Instruction* currentInstruction) { emitTimeoutCheck(); unsigned op1 = currentInstruction[1].u.operand; unsigned op2 = currentInstruction[2].u.operand; unsigned target = currentInstruction[3].u.operand; if (isOperandConstantImmediateInt(op2)) { emitGetVirtualRegister(op1, regT0); emitJumpSlowCaseIfNotImmediateInteger(regT0); int32_t op2imm = getConstantOperandImmediateInt(op2); addJump(branch32(LessThanOrEqual, regT0, Imm32(op2imm)), target); } else { emitGetVirtualRegisters(op1, regT0, op2, regT1); emitJumpSlowCaseIfNotImmediateInteger(regT0); emitJumpSlowCaseIfNotImmediateInteger(regT1); addJump(branch32(LessThanOrEqual, regT0, regT1), target); } } void JIT::emit_op_new_object(Instruction* currentInstruction) { JITStubCall(this, cti_op_new_object).call(currentInstruction[1].u.operand); } void JIT::emit_op_check_has_instance(Instruction* currentInstruction) { unsigned baseVal = currentInstruction[1].u.operand; emitGetVirtualRegister(baseVal, regT0); // Check that baseVal is a cell. emitJumpSlowCaseIfNotJSCell(regT0, baseVal); // Check that baseVal 'ImplementsHasInstance'. loadPtr(Address(regT0, JSCell::structureOffset()), regT0); addSlowCase(branchTest8(Zero, Address(regT0, Structure::typeInfoFlagsOffset()), TrustedImm32(ImplementsHasInstance))); } void JIT::emit_op_instanceof(Instruction* currentInstruction) { unsigned dst = currentInstruction[1].u.operand; unsigned value = currentInstruction[2].u.operand; unsigned baseVal = currentInstruction[3].u.operand; unsigned proto = currentInstruction[4].u.operand; // Load the operands (baseVal, proto, and value respectively) into registers. // We use regT0 for baseVal since we will be done with this first, and we can then use it for the result. emitGetVirtualRegister(value, regT2); emitGetVirtualRegister(baseVal, regT0); emitGetVirtualRegister(proto, regT1); // Check that proto are cells. baseVal must be a cell - this is checked by op_check_has_instance. emitJumpSlowCaseIfNotJSCell(regT2, value); emitJumpSlowCaseIfNotJSCell(regT1, proto); // Check that prototype is an object loadPtr(Address(regT1, JSCell::structureOffset()), regT3); addSlowCase(branch8(NotEqual, Address(regT3, Structure::typeInfoTypeOffset()), TrustedImm32(ObjectType))); // Fixme: this check is only needed because the JSC API allows HasInstance to be overridden; we should deprecate this. // Check that baseVal 'ImplementsDefaultHasInstance'. loadPtr(Address(regT0, JSCell::structureOffset()), regT0); addSlowCase(branchTest8(Zero, Address(regT0, Structure::typeInfoFlagsOffset()), TrustedImm32(ImplementsDefaultHasInstance))); // Optimistically load the result true, and start looping. // Initially, regT1 still contains proto and regT2 still contains value. // As we loop regT2 will be updated with its prototype, recursively walking the prototype chain. move(TrustedImmPtr(JSValue::encode(jsBoolean(true))), regT0); Label loop(this); // Load the prototype of the object in regT2. If this is equal to regT1 - WIN! // Otherwise, check if we've hit null - if we have then drop out of the loop, if not go again. loadPtr(Address(regT2, JSCell::structureOffset()), regT2); loadPtr(Address(regT2, Structure::prototypeOffset()), regT2); Jump isInstance = branchPtr(Equal, regT2, regT1); emitJumpIfJSCell(regT2).linkTo(loop, this); // We get here either by dropping out of the loop, or if value was not an Object. Result is false. move(TrustedImmPtr(JSValue::encode(jsBoolean(false))), regT0); // isInstance jumps right down to here, to skip setting the result to false (it has already set true). isInstance.link(this); emitPutVirtualRegister(dst); } void JIT::emit_op_call(Instruction* currentInstruction) { compileOpCall(op_call, currentInstruction, m_callLinkInfoIndex++); } void JIT::emit_op_call_eval(Instruction* currentInstruction) { compileOpCall(op_call_eval, currentInstruction, m_callLinkInfoIndex++); } void JIT::emit_op_call_varargs(Instruction* currentInstruction) { compileOpCallVarargs(currentInstruction); } void JIT::emit_op_construct(Instruction* currentInstruction) { compileOpCall(op_construct, currentInstruction, m_callLinkInfoIndex++); } void JIT::emit_op_get_global_var(Instruction* currentInstruction) { JSVariableObject* globalObject = m_codeBlock->globalObject(); loadPtr(&globalObject->m_registers, regT0); loadPtr(Address(regT0, currentInstruction[2].u.operand * sizeof(Register)), regT0); emitPutVirtualRegister(currentInstruction[1].u.operand); } void JIT::emit_op_put_global_var(Instruction* currentInstruction) { emitGetVirtualRegister(currentInstruction[2].u.operand, regT1); JSVariableObject* globalObject = m_codeBlock->globalObject(); loadPtr(&globalObject->m_registers, regT0); storePtr(regT1, Address(regT0, currentInstruction[1].u.operand * sizeof(Register))); } void JIT::emit_op_get_scoped_var(Instruction* currentInstruction) { int skip = currentInstruction[3].u.operand; emitGetFromCallFrameHeaderPtr(RegisterFile::ScopeChain, regT0); bool checkTopLevel = m_codeBlock->codeType() == FunctionCode && m_codeBlock->needsFullScopeChain(); ASSERT(skip || !checkTopLevel); if (checkTopLevel && skip--) { Jump activationNotCreated; if (checkTopLevel) activationNotCreated = branchTestPtr(Zero, addressFor(m_codeBlock->activationRegister())); loadPtr(Address(regT0, OBJECT_OFFSETOF(ScopeChainNode, next)), regT0); activationNotCreated.link(this); } while (skip--) loadPtr(Address(regT0, OBJECT_OFFSETOF(ScopeChainNode, next)), regT0); loadPtr(Address(regT0, OBJECT_OFFSETOF(ScopeChainNode, object)), regT0); loadPtr(Address(regT0, OBJECT_OFFSETOF(JSVariableObject, m_registers)), regT0); loadPtr(Address(regT0, currentInstruction[2].u.operand * sizeof(Register)), regT0); emitPutVirtualRegister(currentInstruction[1].u.operand); } void JIT::emit_op_put_scoped_var(Instruction* currentInstruction) { int skip = currentInstruction[2].u.operand; emitGetFromCallFrameHeaderPtr(RegisterFile::ScopeChain, regT1); emitGetVirtualRegister(currentInstruction[3].u.operand, regT0); bool checkTopLevel = m_codeBlock->codeType() == FunctionCode && m_codeBlock->needsFullScopeChain(); ASSERT(skip || !checkTopLevel); if (checkTopLevel && skip--) { Jump activationNotCreated; if (checkTopLevel) activationNotCreated = branchTestPtr(Zero, addressFor(m_codeBlock->activationRegister())); loadPtr(Address(regT1, OBJECT_OFFSETOF(ScopeChainNode, next)), regT1); activationNotCreated.link(this); } while (skip--) loadPtr(Address(regT1, OBJECT_OFFSETOF(ScopeChainNode, next)), regT1); loadPtr(Address(regT1, OBJECT_OFFSETOF(ScopeChainNode, object)), regT1); loadPtr(Address(regT1, OBJECT_OFFSETOF(JSVariableObject, m_registers)), regT1); storePtr(regT0, Address(regT1, currentInstruction[1].u.operand * sizeof(Register))); } void JIT::emit_op_tear_off_activation(Instruction* currentInstruction) { unsigned activation = currentInstruction[1].u.operand; unsigned arguments = currentInstruction[2].u.operand; Jump activationCreated = branchTestPtr(NonZero, addressFor(activation)); Jump argumentsNotCreated = branchTestPtr(Zero, addressFor(arguments)); activationCreated.link(this); JITStubCall stubCall(this, cti_op_tear_off_activation); stubCall.addArgument(activation, regT2); stubCall.addArgument(unmodifiedArgumentsRegister(arguments), regT2); stubCall.call(); argumentsNotCreated.link(this); } void JIT::emit_op_tear_off_arguments(Instruction* currentInstruction) { unsigned dst = currentInstruction[1].u.operand; Jump argsNotCreated = branchTestPtr(Zero, Address(callFrameRegister, sizeof(Register) * (unmodifiedArgumentsRegister(dst)))); JITStubCall stubCall(this, cti_op_tear_off_arguments); stubCall.addArgument(unmodifiedArgumentsRegister(dst), regT2); stubCall.call(); argsNotCreated.link(this); } void JIT::emit_op_ret(Instruction* currentInstruction) { ASSERT(callFrameRegister != regT1); ASSERT(regT1 != returnValueRegister); ASSERT(returnValueRegister != callFrameRegister); // Return the result in %eax. emitGetVirtualRegister(currentInstruction[1].u.operand, returnValueRegister); // Grab the return address. emitGetFromCallFrameHeaderPtr(RegisterFile::ReturnPC, regT1); // Restore our caller's "r". emitGetFromCallFrameHeaderPtr(RegisterFile::CallerFrame, callFrameRegister); // Return. restoreReturnAddressBeforeReturn(regT1); ret(); } void JIT::emit_op_ret_object_or_this(Instruction* currentInstruction) { ASSERT(callFrameRegister != regT1); ASSERT(regT1 != returnValueRegister); ASSERT(returnValueRegister != callFrameRegister); // Return the result in %eax. emitGetVirtualRegister(currentInstruction[1].u.operand, returnValueRegister); Jump notJSCell = emitJumpIfNotJSCell(returnValueRegister); loadPtr(Address(returnValueRegister, JSCell::structureOffset()), regT2); Jump notObject = branch8(NotEqual, Address(regT2, Structure::typeInfoTypeOffset()), TrustedImm32(ObjectType)); // Grab the return address. emitGetFromCallFrameHeaderPtr(RegisterFile::ReturnPC, regT1); // Restore our caller's "r". emitGetFromCallFrameHeaderPtr(RegisterFile::CallerFrame, callFrameRegister); // Return. restoreReturnAddressBeforeReturn(regT1); ret(); // Return 'this' in %eax. notJSCell.link(this); notObject.link(this); emitGetVirtualRegister(currentInstruction[2].u.operand, returnValueRegister); // Grab the return address. emitGetFromCallFrameHeaderPtr(RegisterFile::ReturnPC, regT1); // Restore our caller's "r". emitGetFromCallFrameHeaderPtr(RegisterFile::CallerFrame, callFrameRegister); // Return. restoreReturnAddressBeforeReturn(regT1); ret(); } void JIT::emit_op_new_array(Instruction* currentInstruction) { JITStubCall stubCall(this, cti_op_new_array); stubCall.addArgument(Imm32(currentInstruction[2].u.operand)); stubCall.addArgument(Imm32(currentInstruction[3].u.operand)); stubCall.call(currentInstruction[1].u.operand); } void JIT::emit_op_resolve(Instruction* currentInstruction) { JITStubCall stubCall(this, cti_op_resolve); stubCall.addArgument(TrustedImmPtr(&m_codeBlock->identifier(currentInstruction[2].u.operand))); stubCall.call(currentInstruction[1].u.operand); } void JIT::emit_op_to_primitive(Instruction* currentInstruction) { int dst = currentInstruction[1].u.operand; int src = currentInstruction[2].u.operand; emitGetVirtualRegister(src, regT0); Jump isImm = emitJumpIfNotJSCell(regT0); addSlowCase(branchPtr(NotEqual, Address(regT0), TrustedImmPtr(m_globalData->jsStringVPtr))); isImm.link(this); if (dst != src) emitPutVirtualRegister(dst); } void JIT::emit_op_strcat(Instruction* currentInstruction) { JITStubCall stubCall(this, cti_op_strcat); stubCall.addArgument(Imm32(currentInstruction[2].u.operand)); stubCall.addArgument(Imm32(currentInstruction[3].u.operand)); stubCall.call(currentInstruction[1].u.operand); } void JIT::emit_op_resolve_base(Instruction* currentInstruction) { JITStubCall stubCall(this, currentInstruction[3].u.operand ? cti_op_resolve_base_strict_put : cti_op_resolve_base); stubCall.addArgument(TrustedImmPtr(&m_codeBlock->identifier(currentInstruction[2].u.operand))); stubCall.call(currentInstruction[1].u.operand); } void JIT::emit_op_ensure_property_exists(Instruction* currentInstruction) { JITStubCall stubCall(this, cti_op_ensure_property_exists); stubCall.addArgument(Imm32(currentInstruction[1].u.operand)); stubCall.addArgument(TrustedImmPtr(&m_codeBlock->identifier(currentInstruction[2].u.operand))); stubCall.call(currentInstruction[1].u.operand); } void JIT::emit_op_resolve_skip(Instruction* currentInstruction) { JITStubCall stubCall(this, cti_op_resolve_skip); stubCall.addArgument(TrustedImmPtr(&m_codeBlock->identifier(currentInstruction[2].u.operand))); stubCall.addArgument(Imm32(currentInstruction[3].u.operand)); stubCall.call(currentInstruction[1].u.operand); } void JIT::emit_op_resolve_global(Instruction* currentInstruction, bool) { // Fast case void* globalObject = m_codeBlock->globalObject(); unsigned currentIndex = m_globalResolveInfoIndex++; void* structureAddress = &(m_codeBlock->globalResolveInfo(currentIndex).structure); void* offsetAddr = &(m_codeBlock->globalResolveInfo(currentIndex).offset); // Check Structure of global object move(TrustedImmPtr(globalObject), regT0); loadPtr(structureAddress, regT1); addSlowCase(branchPtr(NotEqual, regT1, Address(regT0, JSCell::structureOffset()))); // Structures don't match // Load cached property // Assume that the global object always uses external storage. loadPtr(Address(regT0, OBJECT_OFFSETOF(JSGlobalObject, m_propertyStorage)), regT0); load32(offsetAddr, regT1); loadPtr(BaseIndex(regT0, regT1, ScalePtr), regT0); emitPutVirtualRegister(currentInstruction[1].u.operand); } void JIT::emitSlow_op_resolve_global(Instruction* currentInstruction, Vector::iterator& iter) { unsigned dst = currentInstruction[1].u.operand; Identifier* ident = &m_codeBlock->identifier(currentInstruction[2].u.operand); unsigned currentIndex = m_globalResolveInfoIndex++; linkSlowCase(iter); JITStubCall stubCall(this, cti_op_resolve_global); stubCall.addArgument(TrustedImmPtr(ident)); stubCall.addArgument(Imm32(currentIndex)); stubCall.addArgument(regT0); stubCall.call(dst); } void JIT::emit_op_not(Instruction* currentInstruction) { emitGetVirtualRegister(currentInstruction[2].u.operand, regT0); // Invert against JSValue(false); if the value was tagged as a boolean, then all bits will be // clear other than the low bit (which will be 0 or 1 for false or true inputs respectively). // Then invert against JSValue(true), which will add the tag back in, and flip the low bit. xorPtr(TrustedImm32(static_cast(ValueFalse)), regT0); addSlowCase(branchTestPtr(NonZero, regT0, TrustedImm32(static_cast(~1)))); xorPtr(TrustedImm32(static_cast(ValueTrue)), regT0); emitPutVirtualRegister(currentInstruction[1].u.operand); } void JIT::emit_op_jfalse(Instruction* currentInstruction) { unsigned target = currentInstruction[2].u.operand; emitGetVirtualRegister(currentInstruction[1].u.operand, regT0); addJump(branchPtr(Equal, regT0, TrustedImmPtr(JSValue::encode(jsNumber(0)))), target); Jump isNonZero = emitJumpIfImmediateInteger(regT0); addJump(branchPtr(Equal, regT0, TrustedImmPtr(JSValue::encode(jsBoolean(false)))), target); addSlowCase(branchPtr(NotEqual, regT0, TrustedImmPtr(JSValue::encode(jsBoolean(true))))); isNonZero.link(this); RECORD_JUMP_TARGET(target); } void JIT::emit_op_jeq_null(Instruction* currentInstruction) { unsigned src = currentInstruction[1].u.operand; unsigned target = currentInstruction[2].u.operand; emitGetVirtualRegister(src, regT0); Jump isImmediate = emitJumpIfNotJSCell(regT0); // First, handle JSCell cases - check MasqueradesAsUndefined bit on the structure. loadPtr(Address(regT0, JSCell::structureOffset()), regT2); addJump(branchTest8(NonZero, Address(regT2, Structure::typeInfoFlagsOffset()), TrustedImm32(MasqueradesAsUndefined)), target); Jump wasNotImmediate = jump(); // Now handle the immediate cases - undefined & null isImmediate.link(this); andPtr(TrustedImm32(~TagBitUndefined), regT0); addJump(branchPtr(Equal, regT0, TrustedImmPtr(JSValue::encode(jsNull()))), target); wasNotImmediate.link(this); RECORD_JUMP_TARGET(target); }; void JIT::emit_op_jneq_null(Instruction* currentInstruction) { unsigned src = currentInstruction[1].u.operand; unsigned target = currentInstruction[2].u.operand; emitGetVirtualRegister(src, regT0); Jump isImmediate = emitJumpIfNotJSCell(regT0); // First, handle JSCell cases - check MasqueradesAsUndefined bit on the structure. loadPtr(Address(regT0, JSCell::structureOffset()), regT2); addJump(branchTest8(Zero, Address(regT2, Structure::typeInfoFlagsOffset()), TrustedImm32(MasqueradesAsUndefined)), target); Jump wasNotImmediate = jump(); // Now handle the immediate cases - undefined & null isImmediate.link(this); andPtr(TrustedImm32(~TagBitUndefined), regT0); addJump(branchPtr(NotEqual, regT0, TrustedImmPtr(JSValue::encode(jsNull()))), target); wasNotImmediate.link(this); RECORD_JUMP_TARGET(target); } void JIT::emit_op_jneq_ptr(Instruction* currentInstruction) { unsigned src = currentInstruction[1].u.operand; JSCell* ptr = currentInstruction[2].u.jsCell.get(); unsigned target = currentInstruction[3].u.operand; emitGetVirtualRegister(src, regT0); addJump(branchPtr(NotEqual, regT0, TrustedImmPtr(JSValue::encode(JSValue(ptr)))), target); RECORD_JUMP_TARGET(target); } void JIT::emit_op_jsr(Instruction* currentInstruction) { int retAddrDst = currentInstruction[1].u.operand; int target = currentInstruction[2].u.operand; DataLabelPtr storeLocation = storePtrWithPatch(TrustedImmPtr(0), Address(callFrameRegister, sizeof(Register) * retAddrDst)); addJump(jump(), target); m_jsrSites.append(JSRInfo(storeLocation, label())); killLastResultRegister(); RECORD_JUMP_TARGET(target); } void JIT::emit_op_sret(Instruction* currentInstruction) { jump(Address(callFrameRegister, sizeof(Register) * currentInstruction[1].u.operand)); killLastResultRegister(); } void JIT::emit_op_eq(Instruction* currentInstruction) { emitGetVirtualRegisters(currentInstruction[2].u.operand, regT0, currentInstruction[3].u.operand, regT1); emitJumpSlowCaseIfNotImmediateIntegers(regT0, regT1, regT2); set32Compare32(Equal, regT1, regT0, regT0); emitTagAsBoolImmediate(regT0); emitPutVirtualRegister(currentInstruction[1].u.operand); } void JIT::emit_op_bitnot(Instruction* currentInstruction) { emitGetVirtualRegister(currentInstruction[2].u.operand, regT0); emitJumpSlowCaseIfNotImmediateInteger(regT0); not32(regT0); emitFastArithIntToImmNoCheck(regT0, regT0); emitPutVirtualRegister(currentInstruction[1].u.operand); } void JIT::emit_op_resolve_with_base(Instruction* currentInstruction) { JITStubCall stubCall(this, cti_op_resolve_with_base); stubCall.addArgument(TrustedImmPtr(&m_codeBlock->identifier(currentInstruction[3].u.operand))); stubCall.addArgument(Imm32(currentInstruction[1].u.operand)); stubCall.call(currentInstruction[2].u.operand); } void JIT::emit_op_new_func_exp(Instruction* currentInstruction) { JITStubCall stubCall(this, cti_op_new_func_exp); stubCall.addArgument(TrustedImmPtr(m_codeBlock->functionExpr(currentInstruction[2].u.operand))); stubCall.call(currentInstruction[1].u.operand); } void JIT::emit_op_jtrue(Instruction* currentInstruction) { unsigned target = currentInstruction[2].u.operand; emitGetVirtualRegister(currentInstruction[1].u.operand, regT0); Jump isZero = branchPtr(Equal, regT0, TrustedImmPtr(JSValue::encode(jsNumber(0)))); addJump(emitJumpIfImmediateInteger(regT0), target); addJump(branchPtr(Equal, regT0, TrustedImmPtr(JSValue::encode(jsBoolean(true)))), target); addSlowCase(branchPtr(NotEqual, regT0, TrustedImmPtr(JSValue::encode(jsBoolean(false))))); isZero.link(this); RECORD_JUMP_TARGET(target); } void JIT::emit_op_neq(Instruction* currentInstruction) { emitGetVirtualRegisters(currentInstruction[2].u.operand, regT0, currentInstruction[3].u.operand, regT1); emitJumpSlowCaseIfNotImmediateIntegers(regT0, regT1, regT2); set32Compare32(NotEqual, regT1, regT0, regT0); emitTagAsBoolImmediate(regT0); emitPutVirtualRegister(currentInstruction[1].u.operand); } void JIT::emit_op_bitxor(Instruction* currentInstruction) { emitGetVirtualRegisters(currentInstruction[2].u.operand, regT0, currentInstruction[3].u.operand, regT1); emitJumpSlowCaseIfNotImmediateIntegers(regT0, regT1, regT2); xorPtr(regT1, regT0); emitFastArithReTagImmediate(regT0, regT0); emitPutVirtualRegister(currentInstruction[1].u.operand); } void JIT::emit_op_bitor(Instruction* currentInstruction) { emitGetVirtualRegisters(currentInstruction[2].u.operand, regT0, currentInstruction[3].u.operand, regT1); emitJumpSlowCaseIfNotImmediateIntegers(regT0, regT1, regT2); orPtr(regT1, regT0); emitPutVirtualRegister(currentInstruction[1].u.operand); } void JIT::emit_op_throw(Instruction* currentInstruction) { JITStubCall stubCall(this, cti_op_throw); stubCall.addArgument(currentInstruction[1].u.operand, regT2); stubCall.call(); ASSERT(regT0 == returnValueRegister); #ifndef NDEBUG // cti_op_throw always changes it's return address, // this point in the code should never be reached. breakpoint(); #endif } void JIT::emit_op_get_pnames(Instruction* currentInstruction) { int dst = currentInstruction[1].u.operand; int base = currentInstruction[2].u.operand; int i = currentInstruction[3].u.operand; int size = currentInstruction[4].u.operand; int breakTarget = currentInstruction[5].u.operand; JumpList isNotObject; emitGetVirtualRegister(base, regT0); if (!m_codeBlock->isKnownNotImmediate(base)) isNotObject.append(emitJumpIfNotJSCell(regT0)); if (base != m_codeBlock->thisRegister() || m_codeBlock->isStrictMode()) { loadPtr(Address(regT0, JSCell::structureOffset()), regT2); isNotObject.append(branch8(NotEqual, Address(regT2, Structure::typeInfoTypeOffset()), TrustedImm32(ObjectType))); } // We could inline the case where you have a valid cache, but // this call doesn't seem to be hot. Label isObject(this); JITStubCall getPnamesStubCall(this, cti_op_get_pnames); getPnamesStubCall.addArgument(regT0); getPnamesStubCall.call(dst); load32(Address(regT0, OBJECT_OFFSETOF(JSPropertyNameIterator, m_jsStringsSize)), regT3); storePtr(tagTypeNumberRegister, payloadFor(i)); store32(TrustedImm32(Int32Tag), intTagFor(size)); store32(regT3, intPayloadFor(size)); Jump end = jump(); isNotObject.link(this); move(regT0, regT1); and32(TrustedImm32(~TagBitUndefined), regT1); addJump(branch32(Equal, regT1, TrustedImm32(ValueNull)), breakTarget); JITStubCall toObjectStubCall(this, cti_to_object); toObjectStubCall.addArgument(regT0); toObjectStubCall.call(base); jump().linkTo(isObject, this); end.link(this); } void JIT::emit_op_next_pname(Instruction* currentInstruction) { int dst = currentInstruction[1].u.operand; int base = currentInstruction[2].u.operand; int i = currentInstruction[3].u.operand; int size = currentInstruction[4].u.operand; int it = currentInstruction[5].u.operand; int target = currentInstruction[6].u.operand; JumpList callHasProperty; Label begin(this); load32(intPayloadFor(i), regT0); Jump end = branch32(Equal, regT0, intPayloadFor(size)); // Grab key @ i loadPtr(addressFor(it), regT1); loadPtr(Address(regT1, OBJECT_OFFSETOF(JSPropertyNameIterator, m_jsStrings)), regT2); loadPtr(BaseIndex(regT2, regT0, TimesEight), regT2); emitPutVirtualRegister(dst, regT2); // Increment i add32(TrustedImm32(1), regT0); store32(regT0, intPayloadFor(i)); // Verify that i is valid: emitGetVirtualRegister(base, regT0); // Test base's structure loadPtr(Address(regT0, JSCell::structureOffset()), regT2); callHasProperty.append(branchPtr(NotEqual, regT2, Address(Address(regT1, OBJECT_OFFSETOF(JSPropertyNameIterator, m_cachedStructure))))); // Test base's prototype chain loadPtr(Address(Address(regT1, OBJECT_OFFSETOF(JSPropertyNameIterator, m_cachedPrototypeChain))), regT3); loadPtr(Address(regT3, OBJECT_OFFSETOF(StructureChain, m_vector)), regT3); addJump(branchTestPtr(Zero, Address(regT3)), target); Label checkPrototype(this); loadPtr(Address(regT2, Structure::prototypeOffset()), regT2); callHasProperty.append(emitJumpIfNotJSCell(regT2)); loadPtr(Address(regT2, JSCell::structureOffset()), regT2); callHasProperty.append(branchPtr(NotEqual, regT2, Address(regT3))); addPtr(TrustedImm32(sizeof(Structure*)), regT3); branchTestPtr(NonZero, Address(regT3)).linkTo(checkPrototype, this); // Continue loop. addJump(jump(), target); // Slow case: Ask the object if i is valid. callHasProperty.link(this); emitGetVirtualRegister(dst, regT1); JITStubCall stubCall(this, cti_has_property); stubCall.addArgument(regT0); stubCall.addArgument(regT1); stubCall.call(); // Test for valid key. addJump(branchTest32(NonZero, regT0), target); jump().linkTo(begin, this); // End of loop. end.link(this); } void JIT::emit_op_push_scope(Instruction* currentInstruction) { JITStubCall stubCall(this, cti_op_push_scope); stubCall.addArgument(currentInstruction[1].u.operand, regT2); stubCall.call(currentInstruction[1].u.operand); } void JIT::emit_op_pop_scope(Instruction*) { JITStubCall(this, cti_op_pop_scope).call(); } void JIT::compileOpStrictEq(Instruction* currentInstruction, CompileOpStrictEqType type) { unsigned dst = currentInstruction[1].u.operand; unsigned src1 = currentInstruction[2].u.operand; unsigned src2 = currentInstruction[3].u.operand; emitGetVirtualRegisters(src1, regT0, src2, regT1); // Jump to a slow case if either operand is a number, or if both are JSCell*s. move(regT0, regT2); orPtr(regT1, regT2); addSlowCase(emitJumpIfJSCell(regT2)); addSlowCase(emitJumpIfImmediateNumber(regT2)); if (type == OpStrictEq) set32Compare32(Equal, regT1, regT0, regT0); else set32Compare32(NotEqual, regT1, regT0, regT0); emitTagAsBoolImmediate(regT0); emitPutVirtualRegister(dst); } void JIT::emit_op_stricteq(Instruction* currentInstruction) { compileOpStrictEq(currentInstruction, OpStrictEq); } void JIT::emit_op_nstricteq(Instruction* currentInstruction) { compileOpStrictEq(currentInstruction, OpNStrictEq); } void JIT::emit_op_to_jsnumber(Instruction* currentInstruction) { int srcVReg = currentInstruction[2].u.operand; emitGetVirtualRegister(srcVReg, regT0); Jump wasImmediate = emitJumpIfImmediateInteger(regT0); emitJumpSlowCaseIfNotJSCell(regT0, srcVReg); loadPtr(Address(regT0, JSCell::structureOffset()), regT2); addSlowCase(branch8(NotEqual, Address(regT2, Structure::typeInfoTypeOffset()), TrustedImm32(NumberType))); wasImmediate.link(this); emitPutVirtualRegister(currentInstruction[1].u.operand); } void JIT::emit_op_push_new_scope(Instruction* currentInstruction) { JITStubCall stubCall(this, cti_op_push_new_scope); stubCall.addArgument(TrustedImmPtr(&m_codeBlock->identifier(currentInstruction[2].u.operand))); stubCall.addArgument(currentInstruction[3].u.operand, regT2); stubCall.call(currentInstruction[1].u.operand); } void JIT::emit_op_catch(Instruction* currentInstruction) { killLastResultRegister(); // FIXME: Implicitly treat op_catch as a labeled statement, and remove this line of code. move(regT0, callFrameRegister); peek(regT3, OBJECT_OFFSETOF(struct JITStackFrame, globalData) / sizeof(void*)); loadPtr(Address(regT3, OBJECT_OFFSETOF(JSGlobalData, exception)), regT0); storePtr(TrustedImmPtr(JSValue::encode(JSValue())), Address(regT3, OBJECT_OFFSETOF(JSGlobalData, exception))); emitPutVirtualRegister(currentInstruction[1].u.operand); } void JIT::emit_op_jmp_scopes(Instruction* currentInstruction) { JITStubCall stubCall(this, cti_op_jmp_scopes); stubCall.addArgument(Imm32(currentInstruction[1].u.operand)); stubCall.call(); addJump(jump(), currentInstruction[2].u.operand); RECORD_JUMP_TARGET(currentInstruction[2].u.operand); } void JIT::emit_op_switch_imm(Instruction* currentInstruction) { unsigned tableIndex = currentInstruction[1].u.operand; unsigned defaultOffset = currentInstruction[2].u.operand; unsigned scrutinee = currentInstruction[3].u.operand; // create jump table for switch destinations, track this switch statement. SimpleJumpTable* jumpTable = &m_codeBlock->immediateSwitchJumpTable(tableIndex); m_switches.append(SwitchRecord(jumpTable, m_bytecodeOffset, defaultOffset, SwitchRecord::Immediate)); jumpTable->ctiOffsets.grow(jumpTable->branchOffsets.size()); JITStubCall stubCall(this, cti_op_switch_imm); stubCall.addArgument(scrutinee, regT2); stubCall.addArgument(Imm32(tableIndex)); stubCall.call(); jump(regT0); } void JIT::emit_op_switch_char(Instruction* currentInstruction) { unsigned tableIndex = currentInstruction[1].u.operand; unsigned defaultOffset = currentInstruction[2].u.operand; unsigned scrutinee = currentInstruction[3].u.operand; // create jump table for switch destinations, track this switch statement. SimpleJumpTable* jumpTable = &m_codeBlock->characterSwitchJumpTable(tableIndex); m_switches.append(SwitchRecord(jumpTable, m_bytecodeOffset, defaultOffset, SwitchRecord::Character)); jumpTable->ctiOffsets.grow(jumpTable->branchOffsets.size()); JITStubCall stubCall(this, cti_op_switch_char); stubCall.addArgument(scrutinee, regT2); stubCall.addArgument(Imm32(tableIndex)); stubCall.call(); jump(regT0); } void JIT::emit_op_switch_string(Instruction* currentInstruction) { unsigned tableIndex = currentInstruction[1].u.operand; unsigned defaultOffset = currentInstruction[2].u.operand; unsigned scrutinee = currentInstruction[3].u.operand; // create jump table for switch destinations, track this switch statement. StringJumpTable* jumpTable = &m_codeBlock->stringSwitchJumpTable(tableIndex); m_switches.append(SwitchRecord(jumpTable, m_bytecodeOffset, defaultOffset)); JITStubCall stubCall(this, cti_op_switch_string); stubCall.addArgument(scrutinee, regT2); stubCall.addArgument(Imm32(tableIndex)); stubCall.call(); jump(regT0); } void JIT::emit_op_throw_reference_error(Instruction* currentInstruction) { JITStubCall stubCall(this, cti_op_throw_reference_error); stubCall.addArgument(ImmPtr(JSValue::encode(m_codeBlock->getConstant(currentInstruction[1].u.operand)))); stubCall.call(); } void JIT::emit_op_debug(Instruction* currentInstruction) { #if ENABLE(DEBUG_WITH_BREAKPOINT) UNUSED_PARAM(currentInstruction); breakpoint(); #else JITStubCall stubCall(this, cti_op_debug); stubCall.addArgument(Imm32(currentInstruction[1].u.operand)); stubCall.addArgument(Imm32(currentInstruction[2].u.operand)); stubCall.addArgument(Imm32(currentInstruction[3].u.operand)); stubCall.call(); #endif } void JIT::emit_op_eq_null(Instruction* currentInstruction) { unsigned dst = currentInstruction[1].u.operand; unsigned src1 = currentInstruction[2].u.operand; emitGetVirtualRegister(src1, regT0); Jump isImmediate = emitJumpIfNotJSCell(regT0); loadPtr(Address(regT0, JSCell::structureOffset()), regT2); set32Test8(NonZero, Address(regT2, Structure::typeInfoFlagsOffset()), TrustedImm32(MasqueradesAsUndefined), regT0); Jump wasNotImmediate = jump(); isImmediate.link(this); andPtr(TrustedImm32(~TagBitUndefined), regT0); setPtr(Equal, regT0, TrustedImm32(ValueNull), regT0); wasNotImmediate.link(this); emitTagAsBoolImmediate(regT0); emitPutVirtualRegister(dst); } void JIT::emit_op_neq_null(Instruction* currentInstruction) { unsigned dst = currentInstruction[1].u.operand; unsigned src1 = currentInstruction[2].u.operand; emitGetVirtualRegister(src1, regT0); Jump isImmediate = emitJumpIfNotJSCell(regT0); loadPtr(Address(regT0, JSCell::structureOffset()), regT2); set32Test8(Zero, Address(regT2, Structure::typeInfoFlagsOffset()), TrustedImm32(MasqueradesAsUndefined), regT0); Jump wasNotImmediate = jump(); isImmediate.link(this); andPtr(TrustedImm32(~TagBitUndefined), regT0); setPtr(NotEqual, regT0, TrustedImm32(ValueNull), regT0); wasNotImmediate.link(this); emitTagAsBoolImmediate(regT0); emitPutVirtualRegister(dst); } void JIT::emit_op_enter(Instruction*) { // Even though CTI doesn't use them, we initialize our constant // registers to zap stale pointers, to avoid unnecessarily prolonging // object lifetime and increasing GC pressure. size_t count = m_codeBlock->m_numVars; for (size_t j = 0; j < count; ++j) emitInitRegister(j); } void JIT::emit_op_create_activation(Instruction* currentInstruction) { unsigned dst = currentInstruction[1].u.operand; Jump activationCreated = branchTestPtr(NonZero, Address(callFrameRegister, sizeof(Register) * dst)); JITStubCall(this, cti_op_push_activation).call(currentInstruction[1].u.operand); emitPutVirtualRegister(dst); activationCreated.link(this); } void JIT::emit_op_create_arguments(Instruction* currentInstruction) { unsigned dst = currentInstruction[1].u.operand; Jump argsCreated = branchTestPtr(NonZero, Address(callFrameRegister, sizeof(Register) * dst)); if (m_codeBlock->m_numParameters == 1) JITStubCall(this, cti_op_create_arguments_no_params).call(); else JITStubCall(this, cti_op_create_arguments).call(); emitPutVirtualRegister(dst); emitPutVirtualRegister(unmodifiedArgumentsRegister(dst)); argsCreated.link(this); } void JIT::emit_op_init_lazy_reg(Instruction* currentInstruction) { unsigned dst = currentInstruction[1].u.operand; storePtr(TrustedImmPtr(0), Address(callFrameRegister, sizeof(Register) * dst)); } void JIT::emit_op_convert_this(Instruction* currentInstruction) { emitGetVirtualRegister(currentInstruction[1].u.operand, regT0); emitJumpSlowCaseIfNotJSCell(regT0); loadPtr(Address(regT0, JSCell::structureOffset()), regT1); addSlowCase(branchTest8(NonZero, Address(regT1, Structure::typeInfoFlagsOffset()), TrustedImm32(NeedsThisConversion))); } void JIT::emit_op_convert_this_strict(Instruction* currentInstruction) { emitGetVirtualRegister(currentInstruction[1].u.operand, regT0); Jump notNull = branchTestPtr(NonZero, regT0); move(TrustedImmPtr(JSValue::encode(jsNull())), regT0); emitPutVirtualRegister(currentInstruction[1].u.operand, regT0); Jump setThis = jump(); notNull.link(this); Jump isImmediate = emitJumpIfNotJSCell(regT0); loadPtr(Address(regT0, JSCell::structureOffset()), regT1); Jump notAnObject = branch8(NotEqual, Address(regT1, Structure::typeInfoTypeOffset()), TrustedImm32(ObjectType)); addSlowCase(branchTest8(NonZero, Address(regT1, Structure::typeInfoFlagsOffset()), TrustedImm32(NeedsThisConversion))); isImmediate.link(this); notAnObject.link(this); setThis.link(this); } void JIT::emit_op_get_callee(Instruction* currentInstruction) { unsigned result = currentInstruction[1].u.operand; emitGetFromCallFrameHeaderPtr(RegisterFile::Callee, regT0); emitPutVirtualRegister(result); } void JIT::emit_op_create_this(Instruction* currentInstruction) { JITStubCall stubCall(this, cti_op_create_this); stubCall.addArgument(currentInstruction[2].u.operand, regT1); stubCall.call(currentInstruction[1].u.operand); } void JIT::emit_op_profile_will_call(Instruction* currentInstruction) { peek(regT1, OBJECT_OFFSETOF(JITStackFrame, enabledProfilerReference) / sizeof(void*)); Jump noProfiler = branchTestPtr(Zero, Address(regT1)); JITStubCall stubCall(this, cti_op_profile_will_call); stubCall.addArgument(currentInstruction[1].u.operand, regT1); stubCall.call(); noProfiler.link(this); } void JIT::emit_op_profile_did_call(Instruction* currentInstruction) { peek(regT1, OBJECT_OFFSETOF(JITStackFrame, enabledProfilerReference) / sizeof(void*)); Jump noProfiler = branchTestPtr(Zero, Address(regT1)); JITStubCall stubCall(this, cti_op_profile_did_call); stubCall.addArgument(currentInstruction[1].u.operand, regT1); stubCall.call(); noProfiler.link(this); } // Slow cases void JIT::emitSlow_op_convert_this(Instruction* currentInstruction, Vector::iterator& iter) { linkSlowCase(iter); linkSlowCase(iter); JITStubCall stubCall(this, cti_op_convert_this); stubCall.addArgument(regT0); stubCall.call(currentInstruction[1].u.operand); } void JIT::emitSlow_op_convert_this_strict(Instruction* currentInstruction, Vector::iterator& iter) { linkSlowCase(iter); JITStubCall stubCall(this, cti_op_convert_this_strict); stubCall.addArgument(regT0); stubCall.call(currentInstruction[1].u.operand); } void JIT::emitSlow_op_to_primitive(Instruction* currentInstruction, Vector::iterator& iter) { linkSlowCase(iter); JITStubCall stubCall(this, cti_op_to_primitive); stubCall.addArgument(regT0); stubCall.call(currentInstruction[1].u.operand); } void JIT::emitSlow_op_loop_if_lesseq(Instruction* currentInstruction, Vector::iterator& iter) { unsigned op2 = currentInstruction[2].u.operand; unsigned target = currentInstruction[3].u.operand; if (isOperandConstantImmediateInt(op2)) { linkSlowCase(iter); JITStubCall stubCall(this, cti_op_loop_if_lesseq); stubCall.addArgument(regT0); stubCall.addArgument(currentInstruction[2].u.operand, regT2); stubCall.call(); emitJumpSlowToHot(branchTest32(NonZero, regT0), target); } else { linkSlowCase(iter); linkSlowCase(iter); JITStubCall stubCall(this, cti_op_loop_if_lesseq); stubCall.addArgument(regT0); stubCall.addArgument(regT1); stubCall.call(); emitJumpSlowToHot(branchTest32(NonZero, regT0), target); } } void JIT::emitSlow_op_put_by_val(Instruction* currentInstruction, Vector::iterator& iter) { unsigned base = currentInstruction[1].u.operand; unsigned property = currentInstruction[2].u.operand; unsigned value = currentInstruction[3].u.operand; linkSlowCase(iter); // property int32 check linkSlowCaseIfNotJSCell(iter, base); // base cell check linkSlowCase(iter); // base not array check linkSlowCase(iter); // in vector check JITStubCall stubPutByValCall(this, cti_op_put_by_val); stubPutByValCall.addArgument(regT0); stubPutByValCall.addArgument(property, regT2); stubPutByValCall.addArgument(value, regT2); stubPutByValCall.call(); } void JIT::emitSlow_op_not(Instruction* currentInstruction, Vector::iterator& iter) { linkSlowCase(iter); xorPtr(TrustedImm32(static_cast(ValueFalse)), regT0); JITStubCall stubCall(this, cti_op_not); stubCall.addArgument(regT0); stubCall.call(currentInstruction[1].u.operand); } void JIT::emitSlow_op_jfalse(Instruction* currentInstruction, Vector::iterator& iter) { linkSlowCase(iter); JITStubCall stubCall(this, cti_op_jtrue); stubCall.addArgument(regT0); stubCall.call(); emitJumpSlowToHot(branchTest32(Zero, regT0), currentInstruction[2].u.operand); // inverted! } void JIT::emitSlow_op_bitnot(Instruction* currentInstruction, Vector::iterator& iter) { linkSlowCase(iter); JITStubCall stubCall(this, cti_op_bitnot); stubCall.addArgument(regT0); stubCall.call(currentInstruction[1].u.operand); } void JIT::emitSlow_op_jtrue(Instruction* currentInstruction, Vector::iterator& iter) { linkSlowCase(iter); JITStubCall stubCall(this, cti_op_jtrue); stubCall.addArgument(regT0); stubCall.call(); emitJumpSlowToHot(branchTest32(NonZero, regT0), currentInstruction[2].u.operand); } void JIT::emitSlow_op_bitxor(Instruction* currentInstruction, Vector::iterator& iter) { linkSlowCase(iter); JITStubCall stubCall(this, cti_op_bitxor); stubCall.addArgument(regT0); stubCall.addArgument(regT1); stubCall.call(currentInstruction[1].u.operand); } void JIT::emitSlow_op_bitor(Instruction* currentInstruction, Vector::iterator& iter) { linkSlowCase(iter); JITStubCall stubCall(this, cti_op_bitor); stubCall.addArgument(regT0); stubCall.addArgument(regT1); stubCall.call(currentInstruction[1].u.operand); } void JIT::emitSlow_op_eq(Instruction* currentInstruction, Vector::iterator& iter) { linkSlowCase(iter); JITStubCall stubCall(this, cti_op_eq); stubCall.addArgument(regT0); stubCall.addArgument(regT1); stubCall.call(); emitTagAsBoolImmediate(regT0); emitPutVirtualRegister(currentInstruction[1].u.operand); } void JIT::emitSlow_op_neq(Instruction* currentInstruction, Vector::iterator& iter) { linkSlowCase(iter); JITStubCall stubCall(this, cti_op_eq); stubCall.addArgument(regT0); stubCall.addArgument(regT1); stubCall.call(); xor32(TrustedImm32(0x1), regT0); emitTagAsBoolImmediate(regT0); emitPutVirtualRegister(currentInstruction[1].u.operand); } void JIT::emitSlow_op_stricteq(Instruction* currentInstruction, Vector::iterator& iter) { linkSlowCase(iter); linkSlowCase(iter); JITStubCall stubCall(this, cti_op_stricteq); stubCall.addArgument(regT0); stubCall.addArgument(regT1); stubCall.call(currentInstruction[1].u.operand); } void JIT::emitSlow_op_nstricteq(Instruction* currentInstruction, Vector::iterator& iter) { linkSlowCase(iter); linkSlowCase(iter); JITStubCall stubCall(this, cti_op_nstricteq); stubCall.addArgument(regT0); stubCall.addArgument(regT1); stubCall.call(currentInstruction[1].u.operand); } void JIT::emitSlow_op_check_has_instance(Instruction* currentInstruction, Vector::iterator& iter) { unsigned baseVal = currentInstruction[1].u.operand; linkSlowCaseIfNotJSCell(iter, baseVal); linkSlowCase(iter); JITStubCall stubCall(this, cti_op_check_has_instance); stubCall.addArgument(baseVal, regT2); stubCall.call(); } void JIT::emitSlow_op_instanceof(Instruction* currentInstruction, Vector::iterator& iter) { unsigned dst = currentInstruction[1].u.operand; unsigned value = currentInstruction[2].u.operand; unsigned baseVal = currentInstruction[3].u.operand; unsigned proto = currentInstruction[4].u.operand; linkSlowCaseIfNotJSCell(iter, value); linkSlowCaseIfNotJSCell(iter, proto); linkSlowCase(iter); linkSlowCase(iter); JITStubCall stubCall(this, cti_op_instanceof); stubCall.addArgument(value, regT2); stubCall.addArgument(baseVal, regT2); stubCall.addArgument(proto, regT2); stubCall.call(dst); } void JIT::emitSlow_op_call(Instruction* currentInstruction, Vector::iterator& iter) { compileOpCallSlowCase(currentInstruction, iter, m_callLinkInfoIndex++, op_call); } void JIT::emitSlow_op_call_eval(Instruction* currentInstruction, Vector::iterator& iter) { compileOpCallSlowCase(currentInstruction, iter, m_callLinkInfoIndex++, op_call_eval); } void JIT::emitSlow_op_call_varargs(Instruction* currentInstruction, Vector::iterator& iter) { compileOpCallVarargsSlowCase(currentInstruction, iter); } void JIT::emitSlow_op_construct(Instruction* currentInstruction, Vector::iterator& iter) { compileOpCallSlowCase(currentInstruction, iter, m_callLinkInfoIndex++, op_construct); } void JIT::emitSlow_op_to_jsnumber(Instruction* currentInstruction, Vector::iterator& iter) { linkSlowCaseIfNotJSCell(iter, currentInstruction[2].u.operand); linkSlowCase(iter); JITStubCall stubCall(this, cti_op_to_jsnumber); stubCall.addArgument(regT0); stubCall.call(currentInstruction[1].u.operand); } void JIT::emit_op_get_arguments_length(Instruction* currentInstruction) { int dst = currentInstruction[1].u.operand; int argumentsRegister = currentInstruction[2].u.operand; addSlowCase(branchTestPtr(NonZero, addressFor(argumentsRegister))); emitGetFromCallFrameHeader32(RegisterFile::ArgumentCount, regT0); sub32(TrustedImm32(1), regT0); emitFastArithReTagImmediate(regT0, regT0); emitPutVirtualRegister(dst, regT0); } void JIT::emitSlow_op_get_arguments_length(Instruction* currentInstruction, Vector::iterator& iter) { linkSlowCase(iter); unsigned dst = currentInstruction[1].u.operand; unsigned base = currentInstruction[2].u.operand; Identifier* ident = &(m_codeBlock->identifier(currentInstruction[3].u.operand)); emitGetVirtualRegister(base, regT0); JITStubCall stubCall(this, cti_op_get_by_id_generic); stubCall.addArgument(regT0); stubCall.addArgument(TrustedImmPtr(ident)); stubCall.call(dst); } void JIT::emit_op_get_argument_by_val(Instruction* currentInstruction) { int dst = currentInstruction[1].u.operand; int argumentsRegister = currentInstruction[2].u.operand; int property = currentInstruction[3].u.operand; addSlowCase(branchTestPtr(NonZero, addressFor(argumentsRegister))); emitGetVirtualRegister(property, regT1); addSlowCase(emitJumpIfNotImmediateInteger(regT1)); add32(TrustedImm32(1), regT1); // regT1 now contains the integer index of the argument we want, including this emitGetFromCallFrameHeader32(RegisterFile::ArgumentCount, regT2); addSlowCase(branch32(AboveOrEqual, regT1, regT2)); Jump skipOutofLineParams; int numArgs = m_codeBlock->m_numParameters; if (numArgs) { Jump notInInPlaceArgs = branch32(AboveOrEqual, regT1, Imm32(numArgs)); addPtr(Imm32(static_cast(-(RegisterFile::CallFrameHeaderSize + numArgs) * sizeof(Register))), callFrameRegister, regT0); loadPtr(BaseIndex(regT0, regT1, TimesEight, 0), regT0); skipOutofLineParams = jump(); notInInPlaceArgs.link(this); } addPtr(Imm32(static_cast(-(RegisterFile::CallFrameHeaderSize + numArgs) * sizeof(Register))), callFrameRegister, regT0); mul32(TrustedImm32(sizeof(Register)), regT2, regT2); subPtr(regT2, regT0); loadPtr(BaseIndex(regT0, regT1, TimesEight, 0), regT0); if (numArgs) skipOutofLineParams.link(this); emitPutVirtualRegister(dst, regT0); } void JIT::emitSlow_op_get_argument_by_val(Instruction* currentInstruction, Vector::iterator& iter) { unsigned dst = currentInstruction[1].u.operand; unsigned arguments = currentInstruction[2].u.operand; unsigned property = currentInstruction[3].u.operand; linkSlowCase(iter); Jump skipArgumentsCreation = jump(); linkSlowCase(iter); linkSlowCase(iter); if (m_codeBlock->m_numParameters == 1) JITStubCall(this, cti_op_create_arguments_no_params).call(); else JITStubCall(this, cti_op_create_arguments).call(); emitPutVirtualRegister(arguments); emitPutVirtualRegister(unmodifiedArgumentsRegister(arguments)); skipArgumentsCreation.link(this); JITStubCall stubCall(this, cti_op_get_by_val); stubCall.addArgument(arguments, regT2); stubCall.addArgument(property, regT2); stubCall.call(dst); } #endif // USE(JSVALUE64) void JIT::emit_op_resolve_global_dynamic(Instruction* currentInstruction) { int skip = currentInstruction[5].u.operand; emitGetFromCallFrameHeaderPtr(RegisterFile::ScopeChain, regT0); bool checkTopLevel = m_codeBlock->codeType() == FunctionCode && m_codeBlock->needsFullScopeChain(); ASSERT(skip || !checkTopLevel); if (checkTopLevel && skip--) { Jump activationNotCreated; if (checkTopLevel) activationNotCreated = branchTestPtr(Zero, addressFor(m_codeBlock->activationRegister())); loadPtr(Address(regT0, OBJECT_OFFSETOF(ScopeChainNode, object)), regT1); addSlowCase(checkStructure(regT1, m_globalData->activationStructure.get())); loadPtr(Address(regT0, OBJECT_OFFSETOF(ScopeChainNode, next)), regT0); activationNotCreated.link(this); } while (skip--) { loadPtr(Address(regT0, OBJECT_OFFSETOF(ScopeChainNode, object)), regT1); addSlowCase(checkStructure(regT1, m_globalData->activationStructure.get())); loadPtr(Address(regT0, OBJECT_OFFSETOF(ScopeChainNode, next)), regT0); } emit_op_resolve_global(currentInstruction, true); } void JIT::emitSlow_op_resolve_global_dynamic(Instruction* currentInstruction, Vector::iterator& iter) { unsigned dst = currentInstruction[1].u.operand; Identifier* ident = &m_codeBlock->identifier(currentInstruction[2].u.operand); int skip = currentInstruction[5].u.operand; while (skip--) linkSlowCase(iter); JITStubCall resolveStubCall(this, cti_op_resolve); resolveStubCall.addArgument(TrustedImmPtr(ident)); resolveStubCall.call(dst); emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_resolve_global_dynamic)); unsigned currentIndex = m_globalResolveInfoIndex++; linkSlowCase(iter); // We managed to skip all the nodes in the scope chain, but the cache missed. JITStubCall stubCall(this, cti_op_resolve_global); stubCall.addArgument(TrustedImmPtr(ident)); stubCall.addArgument(Imm32(currentIndex)); stubCall.addArgument(regT0); stubCall.call(dst); } void JIT::emit_op_new_regexp(Instruction* currentInstruction) { JITStubCall stubCall(this, cti_op_new_regexp); stubCall.addArgument(TrustedImmPtr(m_codeBlock->regexp(currentInstruction[2].u.operand))); stubCall.call(currentInstruction[1].u.operand); } void JIT::emit_op_load_varargs(Instruction* currentInstruction) { int argCountDst = currentInstruction[1].u.operand; int argsOffset = currentInstruction[2].u.operand; int registerOffset = currentInstruction[3].u.operand; ASSERT(argsOffset <= registerOffset); int expectedParams = m_codeBlock->m_numParameters - 1; // Don't do inline copying if we aren't guaranteed to have a single stream // of arguments if (expectedParams) { JITStubCall stubCall(this, cti_op_load_varargs); stubCall.addArgument(Imm32(argsOffset)); stubCall.call(); // Stores a naked int32 in the register file. store32(returnValueRegister, Address(callFrameRegister, argCountDst * sizeof(Register))); return; } #if USE(JSVALUE32_64) addSlowCase(branch32(NotEqual, tagFor(argsOffset), TrustedImm32(JSValue::EmptyValueTag))); #else addSlowCase(branchTestPtr(NonZero, addressFor(argsOffset))); #endif // Load arg count into regT0 emitGetFromCallFrameHeader32(RegisterFile::ArgumentCount, regT0); store32(TrustedImm32(Int32Tag), intTagFor(argCountDst)); store32(regT0, intPayloadFor(argCountDst)); Jump endBranch = branch32(Equal, regT0, TrustedImm32(1)); mul32(TrustedImm32(sizeof(Register)), regT0, regT3); addPtr(TrustedImm32(static_cast(sizeof(Register) - RegisterFile::CallFrameHeaderSize * sizeof(Register))), callFrameRegister, regT1); subPtr(regT3, regT1); // regT1 is now the start of the out of line arguments addPtr(Imm32(argsOffset * sizeof(Register)), callFrameRegister, regT2); // regT2 is the target buffer // Bounds check the registerfile addPtr(regT2, regT3); addPtr(Imm32((registerOffset - argsOffset) * sizeof(Register)), regT3); addSlowCase(branchPtr(Below, AbsoluteAddress(m_globalData->interpreter->registerFile().addressOfEnd()), regT3)); sub32(TrustedImm32(1), regT0); Label loopStart = label(); loadPtr(BaseIndex(regT1, regT0, TimesEight, static_cast(0 - 2 * sizeof(Register))), regT3); storePtr(regT3, BaseIndex(regT2, regT0, TimesEight, static_cast(0 - sizeof(Register)))); #if USE(JSVALUE32_64) loadPtr(BaseIndex(regT1, regT0, TimesEight, static_cast(sizeof(void*) - 2 * sizeof(Register))), regT3); storePtr(regT3, BaseIndex(regT2, regT0, TimesEight, static_cast(sizeof(void*) - sizeof(Register)))); #endif branchSubPtr(NonZero, TrustedImm32(1), regT0).linkTo(loopStart, this); endBranch.link(this); } void JIT::emitSlow_op_load_varargs(Instruction* currentInstruction, Vector::iterator& iter) { int argCountDst = currentInstruction[1].u.operand; int argsOffset = currentInstruction[2].u.operand; int expectedParams = m_codeBlock->m_numParameters - 1; if (expectedParams) return; linkSlowCase(iter); linkSlowCase(iter); JITStubCall stubCall(this, cti_op_load_varargs); stubCall.addArgument(Imm32(argsOffset)); stubCall.call(); store32(TrustedImm32(Int32Tag), intTagFor(argCountDst)); store32(returnValueRegister, intPayloadFor(argCountDst)); } void JIT::emit_op_new_func(Instruction* currentInstruction) { Jump lazyJump; int dst = currentInstruction[1].u.operand; if (currentInstruction[3].u.operand) { #if USE(JSVALUE32_64) lazyJump = branch32(NotEqual, tagFor(dst), TrustedImm32(JSValue::EmptyValueTag)); #else lazyJump = branchTestPtr(NonZero, addressFor(dst)); #endif } JITStubCall stubCall(this, cti_op_new_func); stubCall.addArgument(TrustedImmPtr(m_codeBlock->functionDecl(currentInstruction[2].u.operand))); stubCall.call(currentInstruction[1].u.operand); if (currentInstruction[3].u.operand) lazyJump.link(this); } } // namespace JSC #endif // ENABLE(JIT)