/* * Copyright (C) 2009 Apple Inc. All rights reserved. * Copyright (C) 2010 Patrick Gansterer * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "config.h" #if ENABLE(JIT) #if USE(JSVALUE32_64) #include "JIT.h" #include "JITInlineMethods.h" #include "JITStubCall.h" #include "JSArray.h" #include "JSCell.h" #include "JSFunction.h" #include "JSPropertyNameIterator.h" #include "LinkBuffer.h" namespace JSC { void JIT::privateCompileCTIMachineTrampolines(RefPtr* executablePool, JSGlobalData* globalData, TrampolineStructure *trampolines) { #if ENABLE(JIT_USE_SOFT_MODULO) Label softModBegin = align(); softModulo(); #endif #if ENABLE(JIT_OPTIMIZE_PROPERTY_ACCESS) // (1) This function provides fast property access for string length Label stringLengthBegin = align(); // regT0 holds payload, regT1 holds tag Jump string_failureCases1 = branch32(NotEqual, regT1, TrustedImm32(JSValue::CellTag)); Jump string_failureCases2 = branchPtr(NotEqual, Address(regT0), TrustedImmPtr(m_globalData->jsStringVPtr)); // Checks out okay! - get the length from the Ustring. load32(Address(regT0, OBJECT_OFFSETOF(JSString, m_length)), regT2); Jump string_failureCases3 = branch32(Above, regT2, TrustedImm32(INT_MAX)); move(regT2, regT0); move(TrustedImm32(JSValue::Int32Tag), regT1); ret(); #endif JumpList callLinkFailures; // (2) Trampolines for the slow cases of op_call / op_call_eval / op_construct. #if ENABLE(JIT_OPTIMIZE_CALL) // VirtualCallLink Trampoline // regT0 holds callee, regT1 holds argCount. regT2 will hold the FunctionExecutable. Label virtualCallLinkBegin = align(); compileOpCallInitializeCallFrame(); preserveReturnAddressAfterCall(regT3); emitPutToCallFrameHeader(regT3, RegisterFile::ReturnPC); restoreArgumentReference(); Call callLazyLinkCall = call(); callLinkFailures.append(branchTestPtr(Zero, regT0)); restoreReturnAddressBeforeReturn(regT3); emitGetFromCallFrameHeader32(RegisterFile::ArgumentCount, regT1); jump(regT0); // VirtualConstructLink Trampoline // regT0 holds callee, regT1 holds argCount. regT2 will hold the FunctionExecutable. Label virtualConstructLinkBegin = align(); compileOpCallInitializeCallFrame(); preserveReturnAddressAfterCall(regT3); emitPutToCallFrameHeader(regT3, RegisterFile::ReturnPC); restoreArgumentReference(); Call callLazyLinkConstruct = call(); restoreReturnAddressBeforeReturn(regT3); callLinkFailures.append(branchTestPtr(Zero, regT0)); emitGetFromCallFrameHeader32(RegisterFile::ArgumentCount, regT1); jump(regT0); #endif // ENABLE(JIT_OPTIMIZE_CALL) // VirtualCall Trampoline // regT0 holds callee, regT1 holds argCount. regT2 will hold the FunctionExecutable. Label virtualCallBegin = align(); compileOpCallInitializeCallFrame(); loadPtr(Address(regT0, OBJECT_OFFSETOF(JSFunction, m_executable)), regT2); Jump hasCodeBlock3 = branch32(GreaterThanOrEqual, Address(regT2, OBJECT_OFFSETOF(FunctionExecutable, m_numParametersForCall)), TrustedImm32(0)); preserveReturnAddressAfterCall(regT3); restoreArgumentReference(); Call callCompileCall = call(); callLinkFailures.append(branchTestPtr(Zero, regT0)); emitGetFromCallFrameHeader32(RegisterFile::ArgumentCount, regT1); restoreReturnAddressBeforeReturn(regT3); loadPtr(Address(regT0, OBJECT_OFFSETOF(JSFunction, m_executable)), regT2); hasCodeBlock3.link(this); loadPtr(Address(regT2, OBJECT_OFFSETOF(FunctionExecutable, m_jitCodeForCallWithArityCheck)), regT0); jump(regT0); // VirtualConstruct Trampoline // regT0 holds callee, regT1 holds argCount. regT2 will hold the FunctionExecutable. Label virtualConstructBegin = align(); compileOpCallInitializeCallFrame(); loadPtr(Address(regT0, OBJECT_OFFSETOF(JSFunction, m_executable)), regT2); Jump hasCodeBlock4 = branch32(GreaterThanOrEqual, Address(regT2, OBJECT_OFFSETOF(FunctionExecutable, m_numParametersForConstruct)), TrustedImm32(0)); preserveReturnAddressAfterCall(regT3); restoreArgumentReference(); Call callCompileCconstruct = call(); callLinkFailures.append(branchTestPtr(Zero, regT0)); emitGetFromCallFrameHeader32(RegisterFile::ArgumentCount, regT1); restoreReturnAddressBeforeReturn(regT3); loadPtr(Address(regT0, OBJECT_OFFSETOF(JSFunction, m_executable)), regT2); hasCodeBlock4.link(this); loadPtr(Address(regT2, OBJECT_OFFSETOF(FunctionExecutable, m_jitCodeForConstructWithArityCheck)), regT0); jump(regT0); // If the parser fails we want to be able to be able to keep going, // So we handle this as a parse failure. callLinkFailures.link(this); emitGetFromCallFrameHeaderPtr(RegisterFile::ReturnPC, regT1); emitGetFromCallFrameHeaderPtr(RegisterFile::CallerFrame, callFrameRegister); restoreReturnAddressBeforeReturn(regT1); move(TrustedImmPtr(&globalData->exceptionLocation), regT2); storePtr(regT1, regT2); poke(callFrameRegister, 1 + OBJECT_OFFSETOF(struct JITStackFrame, callFrame) / sizeof(void*)); poke(TrustedImmPtr(FunctionPtr(ctiVMThrowTrampoline).value())); ret(); // NativeCall Trampoline Label nativeCallThunk = privateCompileCTINativeCall(globalData); Label nativeConstructThunk = privateCompileCTINativeCall(globalData, true); #if ENABLE(JIT_OPTIMIZE_PROPERTY_ACCESS) Call string_failureCases1Call = makeTailRecursiveCall(string_failureCases1); Call string_failureCases2Call = makeTailRecursiveCall(string_failureCases2); Call string_failureCases3Call = makeTailRecursiveCall(string_failureCases3); #endif // All trampolines constructed! copy the code, link up calls, and set the pointers on the Machine object. LinkBuffer patchBuffer(this, m_globalData->executableAllocator.poolForSize(m_assembler.size()), 0); #if ENABLE(JIT_OPTIMIZE_PROPERTY_ACCESS) patchBuffer.link(string_failureCases1Call, FunctionPtr(cti_op_get_by_id_string_fail)); patchBuffer.link(string_failureCases2Call, FunctionPtr(cti_op_get_by_id_string_fail)); patchBuffer.link(string_failureCases3Call, FunctionPtr(cti_op_get_by_id_string_fail)); #endif #if ENABLE(JIT_OPTIMIZE_CALL) patchBuffer.link(callLazyLinkCall, FunctionPtr(cti_vm_lazyLinkCall)); patchBuffer.link(callLazyLinkConstruct, FunctionPtr(cti_vm_lazyLinkConstruct)); #endif patchBuffer.link(callCompileCall, FunctionPtr(cti_op_call_jitCompile)); patchBuffer.link(callCompileCconstruct, FunctionPtr(cti_op_construct_jitCompile)); CodeRef finalCode = patchBuffer.finalizeCode(); *executablePool = finalCode.m_executablePool; trampolines->ctiVirtualCall = patchBuffer.trampolineAt(virtualCallBegin); trampolines->ctiVirtualConstruct = patchBuffer.trampolineAt(virtualConstructBegin); trampolines->ctiNativeCall = patchBuffer.trampolineAt(nativeCallThunk); trampolines->ctiNativeConstruct = patchBuffer.trampolineAt(nativeConstructThunk); #if ENABLE(JIT_OPTIMIZE_PROPERTY_ACCESS) trampolines->ctiStringLengthTrampoline = patchBuffer.trampolineAt(stringLengthBegin); #endif #if ENABLE(JIT_OPTIMIZE_CALL) trampolines->ctiVirtualCallLink = patchBuffer.trampolineAt(virtualCallLinkBegin); trampolines->ctiVirtualConstructLink = patchBuffer.trampolineAt(virtualConstructLinkBegin); #endif #if ENABLE(JIT_USE_SOFT_MODULO) trampolines->ctiSoftModulo = patchBuffer.trampolineAt(softModBegin); #endif } JIT::Label JIT::privateCompileCTINativeCall(JSGlobalData* globalData, bool isConstruct) { int executableOffsetToFunction = isConstruct ? OBJECT_OFFSETOF(NativeExecutable, m_constructor) : OBJECT_OFFSETOF(NativeExecutable, m_function); Label nativeCallThunk = align(); emitPutImmediateToCallFrameHeader(0, RegisterFile::CodeBlock); #if CPU(X86) // Load caller frame's scope chain into this callframe so that whatever we call can // get to its global data. emitGetFromCallFrameHeaderPtr(RegisterFile::CallerFrame, regT0); emitGetFromCallFrameHeaderPtr(RegisterFile::ScopeChain, regT1, regT0); emitPutCellToCallFrameHeader(regT1, RegisterFile::ScopeChain); peek(regT1); emitPutToCallFrameHeader(regT1, RegisterFile::ReturnPC); // Calling convention: f(ecx, edx, ...); // Host function signature: f(ExecState*); move(callFrameRegister, X86Registers::ecx); subPtr(TrustedImm32(16 - sizeof(void*)), stackPointerRegister); // Align stack after call. // call the function emitGetFromCallFrameHeaderPtr(RegisterFile::Callee, regT1); loadPtr(Address(regT1, OBJECT_OFFSETOF(JSFunction, m_executable)), regT1); move(regT0, callFrameRegister); // Eagerly restore caller frame register to avoid loading from stack. call(Address(regT1, executableOffsetToFunction)); addPtr(TrustedImm32(16 - sizeof(void*)), stackPointerRegister); #elif CPU(ARM) // Load caller frame's scope chain into this callframe so that whatever we call can // get to its global data. emitGetFromCallFrameHeaderPtr(RegisterFile::CallerFrame, regT2); emitGetFromCallFrameHeaderPtr(RegisterFile::ScopeChain, regT1, regT2); emitPutCellToCallFrameHeader(regT1, RegisterFile::ScopeChain); preserveReturnAddressAfterCall(regT3); // Callee preserved emitPutToCallFrameHeader(regT3, RegisterFile::ReturnPC); // Calling convention: f(r0 == regT0, r1 == regT1, ...); // Host function signature: f(ExecState*); move(callFrameRegister, ARMRegisters::r0); // call the function emitGetFromCallFrameHeaderPtr(RegisterFile::Callee, ARMRegisters::r1); move(regT2, callFrameRegister); // Eagerly restore caller frame register to avoid loading from stack. loadPtr(Address(ARMRegisters::r1, OBJECT_OFFSETOF(JSFunction, m_executable)), regT2); call(Address(regT2, executableOffsetToFunction)); restoreReturnAddressBeforeReturn(regT3); #elif CPU(SH4) // Load caller frame's scope chain into this callframe so that whatever we call can // get to its global data. emitGetFromCallFrameHeaderPtr(RegisterFile::CallerFrame, regT2); emitGetFromCallFrameHeaderPtr(RegisterFile::ScopeChain, regT1, regT2); emitPutToCallFrameHeader(regT1, RegisterFile::ScopeChain); preserveReturnAddressAfterCall(regT3); // Callee preserved emitPutToCallFrameHeader(regT3, RegisterFile::ReturnPC); // Calling convention: f(r0 == regT4, r1 == regT5, ...); // Host function signature: f(ExecState*); move(callFrameRegister, regT4); emitGetFromCallFrameHeaderPtr(RegisterFile::Callee, regT5); move(regT2, callFrameRegister); // Eagerly restore caller frame register to avoid loading from stack. loadPtr(Address(regT5, OBJECT_OFFSETOF(JSFunction, m_executable)), regT2); call(Address(regT2, executableOffsetToFunction), regT0); restoreReturnAddressBeforeReturn(regT3); #elif CPU(MIPS) // Load caller frame's scope chain into this callframe so that whatever we call can // get to its global data. emitGetFromCallFrameHeaderPtr(RegisterFile::CallerFrame, regT0); emitGetFromCallFrameHeaderPtr(RegisterFile::ScopeChain, regT1, regT0); emitPutCellToCallFrameHeader(regT1, RegisterFile::ScopeChain); preserveReturnAddressAfterCall(regT3); // Callee preserved emitPutToCallFrameHeader(regT3, RegisterFile::ReturnPC); // Calling convention: f(a0, a1, a2, a3); // Host function signature: f(ExecState*); // Allocate stack space for 16 bytes (8-byte aligned) // 16 bytes (unused) for 4 arguments subPtr(TrustedImm32(16), stackPointerRegister); // Setup arg0 move(callFrameRegister, MIPSRegisters::a0); // Call emitGetFromCallFrameHeaderPtr(RegisterFile::Callee, MIPSRegisters::a2); loadPtr(Address(MIPSRegisters::a2, OBJECT_OFFSETOF(JSFunction, m_executable)), regT2); move(regT0, callFrameRegister); // Eagerly restore caller frame register to avoid loading from stack. call(Address(regT2, executableOffsetToFunction)); // Restore stack space addPtr(TrustedImm32(16), stackPointerRegister); restoreReturnAddressBeforeReturn(regT3); #elif ENABLE(JIT_OPTIMIZE_NATIVE_CALL) #error "JIT_OPTIMIZE_NATIVE_CALL not yet supported on this platform." #else UNUSED_PARAM(executableOffsetToFunction); breakpoint(); #endif // CPU(X86) // Check for an exception Jump sawException = branch32(NotEqual, AbsoluteAddress(reinterpret_cast(&globalData->exception) + OBJECT_OFFSETOF(JSValue, u.asBits.tag)), TrustedImm32(JSValue::EmptyValueTag)); // Return. ret(); // Handle an exception sawException.link(this); // Grab the return address. preserveReturnAddressAfterCall(regT1); move(TrustedImmPtr(&globalData->exceptionLocation), regT2); storePtr(regT1, regT2); poke(callFrameRegister, OBJECT_OFFSETOF(struct JITStackFrame, callFrame) / sizeof(void*)); // Set the return address. move(TrustedImmPtr(FunctionPtr(ctiVMThrowTrampoline).value()), regT1); restoreReturnAddressBeforeReturn(regT1); ret(); return nativeCallThunk; } JIT::CodePtr JIT::privateCompileCTINativeCall(PassRefPtr executablePool, JSGlobalData* globalData, NativeFunction func) { Call nativeCall; Label nativeCallThunk = align(); emitPutImmediateToCallFrameHeader(0, RegisterFile::CodeBlock); #if CPU(X86) // Load caller frame's scope chain into this callframe so that whatever we call can // get to its global data. emitGetFromCallFrameHeaderPtr(RegisterFile::CallerFrame, regT0); emitGetFromCallFrameHeaderPtr(RegisterFile::ScopeChain, regT1, regT0); emitPutCellToCallFrameHeader(regT1, RegisterFile::ScopeChain); peek(regT1); emitPutToCallFrameHeader(regT1, RegisterFile::ReturnPC); // Calling convention: f(ecx, edx, ...); // Host function signature: f(ExecState*); move(callFrameRegister, X86Registers::ecx); subPtr(TrustedImm32(16 - sizeof(void*)), stackPointerRegister); // Align stack after call. move(regT0, callFrameRegister); // Eagerly restore caller frame register to avoid loading from stack. // call the function nativeCall = call(); addPtr(TrustedImm32(16 - sizeof(void*)), stackPointerRegister); #elif CPU(ARM) // Load caller frame's scope chain into this callframe so that whatever we call can // get to its global data. emitGetFromCallFrameHeaderPtr(RegisterFile::CallerFrame, regT2); emitGetFromCallFrameHeaderPtr(RegisterFile::ScopeChain, regT1, regT2); emitPutCellToCallFrameHeader(regT1, RegisterFile::ScopeChain); preserveReturnAddressAfterCall(regT3); // Callee preserved emitPutToCallFrameHeader(regT3, RegisterFile::ReturnPC); // Calling convention: f(r0 == regT0, r1 == regT1, ...); // Host function signature: f(ExecState*); move(callFrameRegister, ARMRegisters::r0); emitGetFromCallFrameHeaderPtr(RegisterFile::Callee, ARMRegisters::r1); move(regT2, callFrameRegister); // Eagerly restore caller frame register to avoid loading from stack. loadPtr(Address(ARMRegisters::r1, OBJECT_OFFSETOF(JSFunction, m_executable)), regT2); // call the function nativeCall = call(); restoreReturnAddressBeforeReturn(regT3); #elif CPU(MIPS) // Load caller frame's scope chain into this callframe so that whatever we call can // get to its global data. emitGetFromCallFrameHeaderPtr(RegisterFile::CallerFrame, regT0); emitGetFromCallFrameHeaderPtr(RegisterFile::ScopeChain, regT1, regT0); emitPutCellToCallFrameHeader(regT1, RegisterFile::ScopeChain); preserveReturnAddressAfterCall(regT3); // Callee preserved emitPutToCallFrameHeader(regT3, RegisterFile::ReturnPC); // Calling convention: f(a0, a1, a2, a3); // Host function signature: f(ExecState*); // Allocate stack space for 16 bytes (8-byte aligned) // 16 bytes (unused) for 4 arguments subPtr(TrustedImm32(16), stackPointerRegister); // Setup arg0 move(callFrameRegister, MIPSRegisters::a0); // Call emitGetFromCallFrameHeaderPtr(RegisterFile::Callee, MIPSRegisters::a2); loadPtr(Address(MIPSRegisters::a2, OBJECT_OFFSETOF(JSFunction, m_executable)), regT2); move(regT0, callFrameRegister); // Eagerly restore caller frame register to avoid loading from stack. // call the function nativeCall = call(); // Restore stack space addPtr(TrustedImm32(16), stackPointerRegister); restoreReturnAddressBeforeReturn(regT3); #elif CPU(SH4) // Load caller frame's scope chain into this callframe so that whatever we call can // get to its global data. emitGetFromCallFrameHeaderPtr(RegisterFile::CallerFrame, regT2); emitGetFromCallFrameHeaderPtr(RegisterFile::ScopeChain, regT1, regT2); emitPutToCallFrameHeader(regT1, RegisterFile::ScopeChain); preserveReturnAddressAfterCall(regT3); // Callee preserved emitPutToCallFrameHeader(regT3, RegisterFile::ReturnPC); // Calling convention: f(r0 == regT4, r1 == regT5, ...); // Host function signature: f(ExecState*); move(callFrameRegister, regT4); emitGetFromCallFrameHeaderPtr(RegisterFile::Callee, regT5); move(regT2, callFrameRegister); // Eagerly restore caller frame register to avoid loading from stack. loadPtr(Address(regT5, OBJECT_OFFSETOF(JSFunction, m_executable)), regT2); // call the function nativeCall = call(); restoreReturnAddressBeforeReturn(regT3); #elif ENABLE(JIT_OPTIMIZE_NATIVE_CALL) #error "JIT_OPTIMIZE_NATIVE_CALL not yet supported on this platform." #else breakpoint(); #endif // CPU(X86) // Check for an exception Jump sawException = branch32(NotEqual, AbsoluteAddress(reinterpret_cast(&globalData->exception) + OBJECT_OFFSETOF(JSValue, u.asBits.tag)), TrustedImm32(JSValue::EmptyValueTag)); // Return. ret(); // Handle an exception sawException.link(this); // Grab the return address. preserveReturnAddressAfterCall(regT1); move(TrustedImmPtr(&globalData->exceptionLocation), regT2); storePtr(regT1, regT2); poke(callFrameRegister, OBJECT_OFFSETOF(struct JITStackFrame, callFrame) / sizeof(void*)); // Set the return address. move(TrustedImmPtr(FunctionPtr(ctiVMThrowTrampoline).value()), regT1); restoreReturnAddressBeforeReturn(regT1); ret(); // All trampolines constructed! copy the code, link up calls, and set the pointers on the Machine object. LinkBuffer patchBuffer(this, executablePool, 0); patchBuffer.link(nativeCall, FunctionPtr(func)); patchBuffer.finalizeCode(); return patchBuffer.trampolineAt(nativeCallThunk); } void JIT::emit_op_mov(Instruction* currentInstruction) { unsigned dst = currentInstruction[1].u.operand; unsigned src = currentInstruction[2].u.operand; if (m_codeBlock->isConstantRegisterIndex(src)) emitStore(dst, getConstantOperand(src)); else { emitLoad(src, regT1, regT0); emitStore(dst, regT1, regT0); map(m_bytecodeOffset + OPCODE_LENGTH(op_mov), dst, regT1, regT0); } } void JIT::emit_op_end(Instruction* currentInstruction) { ASSERT(returnValueRegister != callFrameRegister); emitLoad(currentInstruction[1].u.operand, regT1, regT0); restoreReturnAddressBeforeReturn(Address(callFrameRegister, RegisterFile::ReturnPC * static_cast(sizeof(Register)))); ret(); } void JIT::emit_op_jmp(Instruction* currentInstruction) { unsigned target = currentInstruction[1].u.operand; addJump(jump(), target); } void JIT::emit_op_loop_if_lesseq(Instruction* currentInstruction) { unsigned op1 = currentInstruction[1].u.operand; unsigned op2 = currentInstruction[2].u.operand; unsigned target = currentInstruction[3].u.operand; emitTimeoutCheck(); if (isOperandConstantImmediateInt(op1)) { emitLoad(op2, regT1, regT0); addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag))); addJump(branch32(GreaterThanOrEqual, regT0, Imm32(getConstantOperand(op1).asInt32())), target); return; } if (isOperandConstantImmediateInt(op2)) { emitLoad(op1, regT1, regT0); addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag))); addJump(branch32(LessThanOrEqual, regT0, Imm32(getConstantOperand(op2).asInt32())), target); return; } emitLoad2(op1, regT1, regT0, op2, regT3, regT2); addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag))); addSlowCase(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag))); addJump(branch32(LessThanOrEqual, regT0, regT2), target); } void JIT::emitSlow_op_loop_if_lesseq(Instruction* currentInstruction, Vector::iterator& iter) { unsigned op1 = currentInstruction[1].u.operand; unsigned op2 = currentInstruction[2].u.operand; unsigned target = currentInstruction[3].u.operand; if (!isOperandConstantImmediateInt(op1) && !isOperandConstantImmediateInt(op2)) linkSlowCase(iter); // int32 check linkSlowCase(iter); // int32 check JITStubCall stubCall(this, cti_op_loop_if_lesseq); stubCall.addArgument(op1); stubCall.addArgument(op2); stubCall.call(); emitJumpSlowToHot(branchTest32(NonZero, regT0), target); } void JIT::emit_op_new_object(Instruction* currentInstruction) { JITStubCall(this, cti_op_new_object).call(currentInstruction[1].u.operand); } void JIT::emit_op_check_has_instance(Instruction* currentInstruction) { unsigned baseVal = currentInstruction[1].u.operand; emitLoadPayload(baseVal, regT0); // Check that baseVal is a cell. emitJumpSlowCaseIfNotJSCell(baseVal); // Check that baseVal 'ImplementsHasInstance'. loadPtr(Address(regT0, JSCell::structureOffset()), regT0); addSlowCase(branchTest8(Zero, Address(regT0, Structure::typeInfoFlagsOffset()), TrustedImm32(ImplementsHasInstance))); } void JIT::emit_op_instanceof(Instruction* currentInstruction) { unsigned dst = currentInstruction[1].u.operand; unsigned value = currentInstruction[2].u.operand; unsigned baseVal = currentInstruction[3].u.operand; unsigned proto = currentInstruction[4].u.operand; // Load the operands into registers. // We use regT0 for baseVal since we will be done with this first, and we can then use it for the result. emitLoadPayload(value, regT2); emitLoadPayload(baseVal, regT0); emitLoadPayload(proto, regT1); // Check that proto are cells. baseVal must be a cell - this is checked by op_check_has_instance. emitJumpSlowCaseIfNotJSCell(value); emitJumpSlowCaseIfNotJSCell(proto); // Check that prototype is an object loadPtr(Address(regT1, JSCell::structureOffset()), regT3); addSlowCase(branch8(NotEqual, Address(regT3, Structure::typeInfoTypeOffset()), TrustedImm32(ObjectType))); // Fixme: this check is only needed because the JSC API allows HasInstance to be overridden; we should deprecate this. // Check that baseVal 'ImplementsDefaultHasInstance'. loadPtr(Address(regT0, JSCell::structureOffset()), regT0); addSlowCase(branchTest8(Zero, Address(regT0, Structure::typeInfoFlagsOffset()), TrustedImm32(ImplementsDefaultHasInstance))); // Optimistically load the result true, and start looping. // Initially, regT1 still contains proto and regT2 still contains value. // As we loop regT2 will be updated with its prototype, recursively walking the prototype chain. move(TrustedImm32(1), regT0); Label loop(this); // Load the prototype of the cell in regT2. If this is equal to regT1 - WIN! // Otherwise, check if we've hit null - if we have then drop out of the loop, if not go again. loadPtr(Address(regT2, JSCell::structureOffset()), regT2); load32(Address(regT2, Structure::prototypeOffset() + OBJECT_OFFSETOF(JSValue, u.asBits.payload)), regT2); Jump isInstance = branchPtr(Equal, regT2, regT1); branchTest32(NonZero, regT2).linkTo(loop, this); // We get here either by dropping out of the loop, or if value was not an Object. Result is false. move(TrustedImm32(0), regT0); // isInstance jumps right down to here, to skip setting the result to false (it has already set true). isInstance.link(this); emitStoreBool(dst, regT0); } void JIT::emitSlow_op_check_has_instance(Instruction* currentInstruction, Vector::iterator& iter) { unsigned baseVal = currentInstruction[1].u.operand; linkSlowCaseIfNotJSCell(iter, baseVal); linkSlowCase(iter); JITStubCall stubCall(this, cti_op_check_has_instance); stubCall.addArgument(baseVal); stubCall.call(); } void JIT::emitSlow_op_instanceof(Instruction* currentInstruction, Vector::iterator& iter) { unsigned dst = currentInstruction[1].u.operand; unsigned value = currentInstruction[2].u.operand; unsigned baseVal = currentInstruction[3].u.operand; unsigned proto = currentInstruction[4].u.operand; linkSlowCaseIfNotJSCell(iter, value); linkSlowCaseIfNotJSCell(iter, proto); linkSlowCase(iter); linkSlowCase(iter); JITStubCall stubCall(this, cti_op_instanceof); stubCall.addArgument(value); stubCall.addArgument(baseVal); stubCall.addArgument(proto); stubCall.call(dst); } void JIT::emit_op_get_global_var(Instruction* currentInstruction) { int dst = currentInstruction[1].u.operand; JSGlobalObject* globalObject = m_codeBlock->globalObject(); ASSERT(globalObject->isGlobalObject()); int index = currentInstruction[2].u.operand; loadPtr(&globalObject->m_registers, regT2); emitLoad(index, regT1, regT0, regT2); emitStore(dst, regT1, regT0); map(m_bytecodeOffset + OPCODE_LENGTH(op_get_global_var), dst, regT1, regT0); } void JIT::emit_op_put_global_var(Instruction* currentInstruction) { JSGlobalObject* globalObject = m_codeBlock->globalObject(); ASSERT(globalObject->isGlobalObject()); int index = currentInstruction[1].u.operand; int value = currentInstruction[2].u.operand; emitLoad(value, regT1, regT0); loadPtr(&globalObject->m_registers, regT2); emitStore(index, regT1, regT0, regT2); map(m_bytecodeOffset + OPCODE_LENGTH(op_put_global_var), value, regT1, regT0); } void JIT::emit_op_get_scoped_var(Instruction* currentInstruction) { int dst = currentInstruction[1].u.operand; int index = currentInstruction[2].u.operand; int skip = currentInstruction[3].u.operand; emitGetFromCallFrameHeaderPtr(RegisterFile::ScopeChain, regT2); bool checkTopLevel = m_codeBlock->codeType() == FunctionCode && m_codeBlock->needsFullScopeChain(); ASSERT(skip || !checkTopLevel); if (checkTopLevel && skip--) { Jump activationNotCreated; if (checkTopLevel) activationNotCreated = branch32(Equal, tagFor(m_codeBlock->activationRegister()), TrustedImm32(JSValue::EmptyValueTag)); loadPtr(Address(regT2, OBJECT_OFFSETOF(ScopeChainNode, next)), regT2); activationNotCreated.link(this); } while (skip--) loadPtr(Address(regT2, OBJECT_OFFSETOF(ScopeChainNode, next)), regT2); loadPtr(Address(regT2, OBJECT_OFFSETOF(ScopeChainNode, object)), regT2); loadPtr(Address(regT2, OBJECT_OFFSETOF(JSVariableObject, m_registers)), regT2); emitLoad(index, regT1, regT0, regT2); emitStore(dst, regT1, regT0); map(m_bytecodeOffset + OPCODE_LENGTH(op_get_scoped_var), dst, regT1, regT0); } void JIT::emit_op_put_scoped_var(Instruction* currentInstruction) { int index = currentInstruction[1].u.operand; int skip = currentInstruction[2].u.operand; int value = currentInstruction[3].u.operand; emitLoad(value, regT1, regT0); emitGetFromCallFrameHeaderPtr(RegisterFile::ScopeChain, regT2); bool checkTopLevel = m_codeBlock->codeType() == FunctionCode && m_codeBlock->needsFullScopeChain(); ASSERT(skip || !checkTopLevel); if (checkTopLevel && skip--) { Jump activationNotCreated; if (checkTopLevel) activationNotCreated = branch32(Equal, tagFor(m_codeBlock->activationRegister()), TrustedImm32(JSValue::EmptyValueTag)); loadPtr(Address(regT2, OBJECT_OFFSETOF(ScopeChainNode, next)), regT2); activationNotCreated.link(this); } while (skip--) loadPtr(Address(regT2, OBJECT_OFFSETOF(ScopeChainNode, next)), regT2); loadPtr(Address(regT2, OBJECT_OFFSETOF(ScopeChainNode, object)), regT2); loadPtr(Address(regT2, OBJECT_OFFSETOF(JSVariableObject, m_registers)), regT2); emitStore(index, regT1, regT0, regT2); map(m_bytecodeOffset + OPCODE_LENGTH(op_put_scoped_var), value, regT1, regT0); } void JIT::emit_op_tear_off_activation(Instruction* currentInstruction) { unsigned activation = currentInstruction[1].u.operand; unsigned arguments = currentInstruction[2].u.operand; Jump activationCreated = branch32(NotEqual, tagFor(activation), TrustedImm32(JSValue::EmptyValueTag)); Jump argumentsNotCreated = branch32(Equal, tagFor(arguments), TrustedImm32(JSValue::EmptyValueTag)); activationCreated.link(this); JITStubCall stubCall(this, cti_op_tear_off_activation); stubCall.addArgument(currentInstruction[1].u.operand); stubCall.addArgument(unmodifiedArgumentsRegister(currentInstruction[2].u.operand)); stubCall.call(); argumentsNotCreated.link(this); } void JIT::emit_op_tear_off_arguments(Instruction* currentInstruction) { int dst = currentInstruction[1].u.operand; Jump argsNotCreated = branch32(Equal, tagFor(unmodifiedArgumentsRegister(dst)), TrustedImm32(JSValue::EmptyValueTag)); JITStubCall stubCall(this, cti_op_tear_off_arguments); stubCall.addArgument(unmodifiedArgumentsRegister(dst)); stubCall.call(); argsNotCreated.link(this); } void JIT::emit_op_new_array(Instruction* currentInstruction) { JITStubCall stubCall(this, cti_op_new_array); stubCall.addArgument(Imm32(currentInstruction[2].u.operand)); stubCall.addArgument(Imm32(currentInstruction[3].u.operand)); stubCall.call(currentInstruction[1].u.operand); } void JIT::emit_op_resolve(Instruction* currentInstruction) { JITStubCall stubCall(this, cti_op_resolve); stubCall.addArgument(TrustedImmPtr(&m_codeBlock->identifier(currentInstruction[2].u.operand))); stubCall.call(currentInstruction[1].u.operand); } void JIT::emit_op_to_primitive(Instruction* currentInstruction) { int dst = currentInstruction[1].u.operand; int src = currentInstruction[2].u.operand; emitLoad(src, regT1, regT0); Jump isImm = branch32(NotEqual, regT1, TrustedImm32(JSValue::CellTag)); addSlowCase(branchPtr(NotEqual, Address(regT0), TrustedImmPtr(m_globalData->jsStringVPtr))); isImm.link(this); if (dst != src) emitStore(dst, regT1, regT0); map(m_bytecodeOffset + OPCODE_LENGTH(op_to_primitive), dst, regT1, regT0); } void JIT::emitSlow_op_to_primitive(Instruction* currentInstruction, Vector::iterator& iter) { int dst = currentInstruction[1].u.operand; linkSlowCase(iter); JITStubCall stubCall(this, cti_op_to_primitive); stubCall.addArgument(regT1, regT0); stubCall.call(dst); } void JIT::emit_op_strcat(Instruction* currentInstruction) { JITStubCall stubCall(this, cti_op_strcat); stubCall.addArgument(Imm32(currentInstruction[2].u.operand)); stubCall.addArgument(Imm32(currentInstruction[3].u.operand)); stubCall.call(currentInstruction[1].u.operand); } void JIT::emit_op_resolve_base(Instruction* currentInstruction) { JITStubCall stubCall(this, currentInstruction[3].u.operand ? cti_op_resolve_base_strict_put : cti_op_resolve_base); stubCall.addArgument(TrustedImmPtr(&m_codeBlock->identifier(currentInstruction[2].u.operand))); stubCall.call(currentInstruction[1].u.operand); } void JIT::emit_op_ensure_property_exists(Instruction* currentInstruction) { JITStubCall stubCall(this, cti_op_ensure_property_exists); stubCall.addArgument(Imm32(currentInstruction[1].u.operand)); stubCall.addArgument(TrustedImmPtr(&m_codeBlock->identifier(currentInstruction[2].u.operand))); stubCall.call(currentInstruction[1].u.operand); } void JIT::emit_op_resolve_skip(Instruction* currentInstruction) { JITStubCall stubCall(this, cti_op_resolve_skip); stubCall.addArgument(TrustedImmPtr(&m_codeBlock->identifier(currentInstruction[2].u.operand))); stubCall.addArgument(Imm32(currentInstruction[3].u.operand)); stubCall.call(currentInstruction[1].u.operand); } void JIT::emit_op_resolve_global(Instruction* currentInstruction, bool dynamic) { // FIXME: Optimize to use patching instead of so many memory accesses. unsigned dst = currentInstruction[1].u.operand; void* globalObject = m_codeBlock->globalObject(); unsigned currentIndex = m_globalResolveInfoIndex++; void* structureAddress = &(m_codeBlock->globalResolveInfo(currentIndex).structure); void* offsetAddr = &(m_codeBlock->globalResolveInfo(currentIndex).offset); // Verify structure. move(TrustedImmPtr(globalObject), regT0); loadPtr(structureAddress, regT1); addSlowCase(branchPtr(NotEqual, regT1, Address(regT0, JSCell::structureOffset()))); // Load property. loadPtr(Address(regT0, OBJECT_OFFSETOF(JSGlobalObject, m_propertyStorage)), regT2); load32(offsetAddr, regT3); load32(BaseIndex(regT2, regT3, TimesEight, OBJECT_OFFSETOF(JSValue, u.asBits.payload)), regT0); // payload load32(BaseIndex(regT2, regT3, TimesEight, OBJECT_OFFSETOF(JSValue, u.asBits.tag)), regT1); // tag emitStore(dst, regT1, regT0); map(m_bytecodeOffset + dynamic ? OPCODE_LENGTH(op_resolve_global_dynamic) : OPCODE_LENGTH(op_resolve_global), dst, regT1, regT0); } void JIT::emitSlow_op_resolve_global(Instruction* currentInstruction, Vector::iterator& iter) { unsigned dst = currentInstruction[1].u.operand; Identifier* ident = &m_codeBlock->identifier(currentInstruction[2].u.operand); unsigned currentIndex = m_globalResolveInfoIndex++; linkSlowCase(iter); JITStubCall stubCall(this, cti_op_resolve_global); stubCall.addArgument(TrustedImmPtr(ident)); stubCall.addArgument(Imm32(currentIndex)); stubCall.call(dst); } void JIT::emit_op_not(Instruction* currentInstruction) { unsigned dst = currentInstruction[1].u.operand; unsigned src = currentInstruction[2].u.operand; emitLoadTag(src, regT0); emitLoad(src, regT1, regT0); addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::BooleanTag))); xor32(TrustedImm32(1), regT0); emitStoreBool(dst, regT0, (dst == src)); } void JIT::emitSlow_op_not(Instruction* currentInstruction, Vector::iterator& iter) { unsigned dst = currentInstruction[1].u.operand; unsigned src = currentInstruction[2].u.operand; linkSlowCase(iter); JITStubCall stubCall(this, cti_op_not); stubCall.addArgument(src); stubCall.call(dst); } void JIT::emit_op_jfalse(Instruction* currentInstruction) { unsigned cond = currentInstruction[1].u.operand; unsigned target = currentInstruction[2].u.operand; emitLoad(cond, regT1, regT0); ASSERT((JSValue::BooleanTag + 1 == JSValue::Int32Tag) && !(JSValue::Int32Tag + 1)); addSlowCase(branch32(Below, regT1, TrustedImm32(JSValue::BooleanTag))); addJump(branchTest32(Zero, regT0), target); } void JIT::emitSlow_op_jfalse(Instruction* currentInstruction, Vector::iterator& iter) { unsigned cond = currentInstruction[1].u.operand; unsigned target = currentInstruction[2].u.operand; linkSlowCase(iter); if (supportsFloatingPoint()) { // regT1 contains the tag from the hot path. Jump notNumber = branch32(Above, regT1, Imm32(JSValue::LowestTag)); emitLoadDouble(cond, fpRegT0); emitJumpSlowToHot(branchDoubleZeroOrNaN(fpRegT0, fpRegT1), target); emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jfalse)); notNumber.link(this); } JITStubCall stubCall(this, cti_op_jtrue); stubCall.addArgument(cond); stubCall.call(); emitJumpSlowToHot(branchTest32(Zero, regT0), target); // Inverted. } void JIT::emit_op_jtrue(Instruction* currentInstruction) { unsigned cond = currentInstruction[1].u.operand; unsigned target = currentInstruction[2].u.operand; emitLoad(cond, regT1, regT0); ASSERT((JSValue::BooleanTag + 1 == JSValue::Int32Tag) && !(JSValue::Int32Tag + 1)); addSlowCase(branch32(Below, regT1, TrustedImm32(JSValue::BooleanTag))); addJump(branchTest32(NonZero, regT0), target); } void JIT::emitSlow_op_jtrue(Instruction* currentInstruction, Vector::iterator& iter) { unsigned cond = currentInstruction[1].u.operand; unsigned target = currentInstruction[2].u.operand; linkSlowCase(iter); if (supportsFloatingPoint()) { // regT1 contains the tag from the hot path. Jump notNumber = branch32(Above, regT1, Imm32(JSValue::LowestTag)); emitLoadDouble(cond, fpRegT0); emitJumpSlowToHot(branchDoubleNonZero(fpRegT0, fpRegT1), target); emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jtrue)); notNumber.link(this); } JITStubCall stubCall(this, cti_op_jtrue); stubCall.addArgument(cond); stubCall.call(); emitJumpSlowToHot(branchTest32(NonZero, regT0), target); } void JIT::emit_op_jeq_null(Instruction* currentInstruction) { unsigned src = currentInstruction[1].u.operand; unsigned target = currentInstruction[2].u.operand; emitLoad(src, regT1, regT0); Jump isImmediate = branch32(NotEqual, regT1, TrustedImm32(JSValue::CellTag)); // First, handle JSCell cases - check MasqueradesAsUndefined bit on the structure. loadPtr(Address(regT0, JSCell::structureOffset()), regT2); addJump(branchTest8(NonZero, Address(regT2, Structure::typeInfoFlagsOffset()), TrustedImm32(MasqueradesAsUndefined)), target); Jump wasNotImmediate = jump(); // Now handle the immediate cases - undefined & null isImmediate.link(this); ASSERT((JSValue::UndefinedTag + 1 == JSValue::NullTag) && (JSValue::NullTag & 0x1)); or32(TrustedImm32(1), regT1); addJump(branch32(Equal, regT1, TrustedImm32(JSValue::NullTag)), target); wasNotImmediate.link(this); } void JIT::emit_op_jneq_null(Instruction* currentInstruction) { unsigned src = currentInstruction[1].u.operand; unsigned target = currentInstruction[2].u.operand; emitLoad(src, regT1, regT0); Jump isImmediate = branch32(NotEqual, regT1, TrustedImm32(JSValue::CellTag)); // First, handle JSCell cases - check MasqueradesAsUndefined bit on the structure. loadPtr(Address(regT0, JSCell::structureOffset()), regT2); addJump(branchTest8(Zero, Address(regT2, Structure::typeInfoFlagsOffset()), TrustedImm32(MasqueradesAsUndefined)), target); Jump wasNotImmediate = jump(); // Now handle the immediate cases - undefined & null isImmediate.link(this); ASSERT((JSValue::UndefinedTag + 1 == JSValue::NullTag) && (JSValue::NullTag & 0x1)); or32(TrustedImm32(1), regT1); addJump(branch32(NotEqual, regT1, TrustedImm32(JSValue::NullTag)), target); wasNotImmediate.link(this); } void JIT::emit_op_jneq_ptr(Instruction* currentInstruction) { unsigned src = currentInstruction[1].u.operand; JSCell* ptr = currentInstruction[2].u.jsCell.get(); unsigned target = currentInstruction[3].u.operand; emitLoad(src, regT1, regT0); addJump(branch32(NotEqual, regT1, TrustedImm32(JSValue::CellTag)), target); addJump(branchPtr(NotEqual, regT0, TrustedImmPtr(ptr)), target); } void JIT::emit_op_jsr(Instruction* currentInstruction) { int retAddrDst = currentInstruction[1].u.operand; int target = currentInstruction[2].u.operand; DataLabelPtr storeLocation = storePtrWithPatch(TrustedImmPtr(0), Address(callFrameRegister, sizeof(Register) * retAddrDst)); addJump(jump(), target); m_jsrSites.append(JSRInfo(storeLocation, label())); } void JIT::emit_op_sret(Instruction* currentInstruction) { jump(Address(callFrameRegister, sizeof(Register) * currentInstruction[1].u.operand)); } void JIT::emit_op_eq(Instruction* currentInstruction) { unsigned dst = currentInstruction[1].u.operand; unsigned src1 = currentInstruction[2].u.operand; unsigned src2 = currentInstruction[3].u.operand; emitLoad2(src1, regT1, regT0, src2, regT3, regT2); addSlowCase(branch32(NotEqual, regT1, regT3)); addSlowCase(branch32(Equal, regT1, TrustedImm32(JSValue::CellTag))); addSlowCase(branch32(Below, regT1, TrustedImm32(JSValue::LowestTag))); set32Compare32(Equal, regT0, regT2, regT0); emitStoreBool(dst, regT0); } void JIT::emitSlow_op_eq(Instruction* currentInstruction, Vector::iterator& iter) { unsigned dst = currentInstruction[1].u.operand; unsigned op1 = currentInstruction[2].u.operand; unsigned op2 = currentInstruction[3].u.operand; JumpList storeResult; JumpList genericCase; genericCase.append(getSlowCase(iter)); // tags not equal linkSlowCase(iter); // tags equal and JSCell genericCase.append(branchPtr(NotEqual, Address(regT0), TrustedImmPtr(m_globalData->jsStringVPtr))); genericCase.append(branchPtr(NotEqual, Address(regT2), TrustedImmPtr(m_globalData->jsStringVPtr))); // String case. JITStubCall stubCallEqStrings(this, cti_op_eq_strings); stubCallEqStrings.addArgument(regT0); stubCallEqStrings.addArgument(regT2); stubCallEqStrings.call(); storeResult.append(jump()); // Generic case. genericCase.append(getSlowCase(iter)); // doubles genericCase.link(this); JITStubCall stubCallEq(this, cti_op_eq); stubCallEq.addArgument(op1); stubCallEq.addArgument(op2); stubCallEq.call(regT0); storeResult.link(this); emitStoreBool(dst, regT0); } void JIT::emit_op_neq(Instruction* currentInstruction) { unsigned dst = currentInstruction[1].u.operand; unsigned src1 = currentInstruction[2].u.operand; unsigned src2 = currentInstruction[3].u.operand; emitLoad2(src1, regT1, regT0, src2, regT3, regT2); addSlowCase(branch32(NotEqual, regT1, regT3)); addSlowCase(branch32(Equal, regT1, TrustedImm32(JSValue::CellTag))); addSlowCase(branch32(Below, regT1, TrustedImm32(JSValue::LowestTag))); set32Compare32(NotEqual, regT0, regT2, regT0); emitStoreBool(dst, regT0); } void JIT::emitSlow_op_neq(Instruction* currentInstruction, Vector::iterator& iter) { unsigned dst = currentInstruction[1].u.operand; JumpList storeResult; JumpList genericCase; genericCase.append(getSlowCase(iter)); // tags not equal linkSlowCase(iter); // tags equal and JSCell genericCase.append(branchPtr(NotEqual, Address(regT0), TrustedImmPtr(m_globalData->jsStringVPtr))); genericCase.append(branchPtr(NotEqual, Address(regT2), TrustedImmPtr(m_globalData->jsStringVPtr))); // String case. JITStubCall stubCallEqStrings(this, cti_op_eq_strings); stubCallEqStrings.addArgument(regT0); stubCallEqStrings.addArgument(regT2); stubCallEqStrings.call(regT0); storeResult.append(jump()); // Generic case. genericCase.append(getSlowCase(iter)); // doubles genericCase.link(this); JITStubCall stubCallEq(this, cti_op_eq); stubCallEq.addArgument(regT1, regT0); stubCallEq.addArgument(regT3, regT2); stubCallEq.call(regT0); storeResult.link(this); xor32(TrustedImm32(0x1), regT0); emitStoreBool(dst, regT0); } void JIT::compileOpStrictEq(Instruction* currentInstruction, CompileOpStrictEqType type) { unsigned dst = currentInstruction[1].u.operand; unsigned src1 = currentInstruction[2].u.operand; unsigned src2 = currentInstruction[3].u.operand; emitLoadTag(src1, regT0); emitLoadTag(src2, regT1); // Jump to a slow case if either operand is double, or if both operands are // cells and/or Int32s. move(regT0, regT2); and32(regT1, regT2); addSlowCase(branch32(Below, regT2, TrustedImm32(JSValue::LowestTag))); addSlowCase(branch32(AboveOrEqual, regT2, TrustedImm32(JSValue::CellTag))); if (type == OpStrictEq) set32Compare32(Equal, regT0, regT1, regT0); else set32Compare32(NotEqual, regT0, regT1, regT0); emitStoreBool(dst, regT0); } void JIT::emit_op_stricteq(Instruction* currentInstruction) { compileOpStrictEq(currentInstruction, OpStrictEq); } void JIT::emitSlow_op_stricteq(Instruction* currentInstruction, Vector::iterator& iter) { unsigned dst = currentInstruction[1].u.operand; unsigned src1 = currentInstruction[2].u.operand; unsigned src2 = currentInstruction[3].u.operand; linkSlowCase(iter); linkSlowCase(iter); JITStubCall stubCall(this, cti_op_stricteq); stubCall.addArgument(src1); stubCall.addArgument(src2); stubCall.call(dst); } void JIT::emit_op_nstricteq(Instruction* currentInstruction) { compileOpStrictEq(currentInstruction, OpNStrictEq); } void JIT::emitSlow_op_nstricteq(Instruction* currentInstruction, Vector::iterator& iter) { unsigned dst = currentInstruction[1].u.operand; unsigned src1 = currentInstruction[2].u.operand; unsigned src2 = currentInstruction[3].u.operand; linkSlowCase(iter); linkSlowCase(iter); JITStubCall stubCall(this, cti_op_nstricteq); stubCall.addArgument(src1); stubCall.addArgument(src2); stubCall.call(dst); } void JIT::emit_op_eq_null(Instruction* currentInstruction) { unsigned dst = currentInstruction[1].u.operand; unsigned src = currentInstruction[2].u.operand; emitLoad(src, regT1, regT0); Jump isImmediate = branch32(NotEqual, regT1, TrustedImm32(JSValue::CellTag)); loadPtr(Address(regT0, JSCell::structureOffset()), regT1); set32Test8(NonZero, Address(regT1, Structure::typeInfoFlagsOffset()), TrustedImm32(MasqueradesAsUndefined), regT1); Jump wasNotImmediate = jump(); isImmediate.link(this); set32Compare32(Equal, regT1, TrustedImm32(JSValue::NullTag), regT2); set32Compare32(Equal, regT1, TrustedImm32(JSValue::UndefinedTag), regT1); or32(regT2, regT1); wasNotImmediate.link(this); emitStoreBool(dst, regT1); } void JIT::emit_op_neq_null(Instruction* currentInstruction) { unsigned dst = currentInstruction[1].u.operand; unsigned src = currentInstruction[2].u.operand; emitLoad(src, regT1, regT0); Jump isImmediate = branch32(NotEqual, regT1, TrustedImm32(JSValue::CellTag)); loadPtr(Address(regT0, JSCell::structureOffset()), regT1); set32Test8(Zero, Address(regT1, Structure::typeInfoFlagsOffset()), TrustedImm32(MasqueradesAsUndefined), regT1); Jump wasNotImmediate = jump(); isImmediate.link(this); set32Compare32(NotEqual, regT1, TrustedImm32(JSValue::NullTag), regT2); set32Compare32(NotEqual, regT1, TrustedImm32(JSValue::UndefinedTag), regT1); and32(regT2, regT1); wasNotImmediate.link(this); emitStoreBool(dst, regT1); } void JIT::emit_op_resolve_with_base(Instruction* currentInstruction) { JITStubCall stubCall(this, cti_op_resolve_with_base); stubCall.addArgument(TrustedImmPtr(&m_codeBlock->identifier(currentInstruction[3].u.operand))); stubCall.addArgument(Imm32(currentInstruction[1].u.operand)); stubCall.call(currentInstruction[2].u.operand); } void JIT::emit_op_new_func_exp(Instruction* currentInstruction) { JITStubCall stubCall(this, cti_op_new_func_exp); stubCall.addArgument(TrustedImmPtr(m_codeBlock->functionExpr(currentInstruction[2].u.operand))); stubCall.call(currentInstruction[1].u.operand); } void JIT::emit_op_throw(Instruction* currentInstruction) { unsigned exception = currentInstruction[1].u.operand; JITStubCall stubCall(this, cti_op_throw); stubCall.addArgument(exception); stubCall.call(); #ifndef NDEBUG // cti_op_throw always changes it's return address, // this point in the code should never be reached. breakpoint(); #endif } void JIT::emit_op_get_pnames(Instruction* currentInstruction) { int dst = currentInstruction[1].u.operand; int base = currentInstruction[2].u.operand; int i = currentInstruction[3].u.operand; int size = currentInstruction[4].u.operand; int breakTarget = currentInstruction[5].u.operand; JumpList isNotObject; emitLoad(base, regT1, regT0); if (!m_codeBlock->isKnownNotImmediate(base)) isNotObject.append(branch32(NotEqual, regT1, TrustedImm32(JSValue::CellTag))); if (base != m_codeBlock->thisRegister() || m_codeBlock->isStrictMode()) { loadPtr(Address(regT0, JSCell::structureOffset()), regT2); isNotObject.append(branch8(NotEqual, Address(regT2, Structure::typeInfoTypeOffset()), TrustedImm32(ObjectType))); } // We could inline the case where you have a valid cache, but // this call doesn't seem to be hot. Label isObject(this); JITStubCall getPnamesStubCall(this, cti_op_get_pnames); getPnamesStubCall.addArgument(regT0); getPnamesStubCall.call(dst); load32(Address(regT0, OBJECT_OFFSETOF(JSPropertyNameIterator, m_jsStringsSize)), regT3); store32(TrustedImm32(Int32Tag), intTagFor(i)); store32(TrustedImm32(0), intPayloadFor(i)); store32(TrustedImm32(Int32Tag), intTagFor(size)); store32(regT3, payloadFor(size)); Jump end = jump(); isNotObject.link(this); addJump(branch32(Equal, regT1, TrustedImm32(JSValue::NullTag)), breakTarget); addJump(branch32(Equal, regT1, TrustedImm32(JSValue::UndefinedTag)), breakTarget); JITStubCall toObjectStubCall(this, cti_to_object); toObjectStubCall.addArgument(regT1, regT0); toObjectStubCall.call(base); jump().linkTo(isObject, this); end.link(this); } void JIT::emit_op_next_pname(Instruction* currentInstruction) { int dst = currentInstruction[1].u.operand; int base = currentInstruction[2].u.operand; int i = currentInstruction[3].u.operand; int size = currentInstruction[4].u.operand; int it = currentInstruction[5].u.operand; int target = currentInstruction[6].u.operand; JumpList callHasProperty; Label begin(this); load32(intPayloadFor(i), regT0); Jump end = branch32(Equal, regT0, intPayloadFor(size)); // Grab key @ i loadPtr(payloadFor(it), regT1); loadPtr(Address(regT1, OBJECT_OFFSETOF(JSPropertyNameIterator, m_jsStrings)), regT2); load32(BaseIndex(regT2, regT0, TimesEight), regT2); store32(TrustedImm32(JSValue::CellTag), tagFor(dst)); store32(regT2, payloadFor(dst)); // Increment i add32(TrustedImm32(1), regT0); store32(regT0, intPayloadFor(i)); // Verify that i is valid: loadPtr(payloadFor(base), regT0); // Test base's structure loadPtr(Address(regT0, JSCell::structureOffset()), regT2); callHasProperty.append(branchPtr(NotEqual, regT2, Address(Address(regT1, OBJECT_OFFSETOF(JSPropertyNameIterator, m_cachedStructure))))); // Test base's prototype chain loadPtr(Address(Address(regT1, OBJECT_OFFSETOF(JSPropertyNameIterator, m_cachedPrototypeChain))), regT3); loadPtr(Address(regT3, OBJECT_OFFSETOF(StructureChain, m_vector)), regT3); addJump(branchTestPtr(Zero, Address(regT3)), target); Label checkPrototype(this); callHasProperty.append(branch32(Equal, Address(regT2, Structure::prototypeOffset() + OBJECT_OFFSETOF(JSValue, u.asBits.tag)), TrustedImm32(JSValue::NullTag))); loadPtr(Address(regT2, Structure::prototypeOffset() + OBJECT_OFFSETOF(JSValue, u.asBits.payload)), regT2); loadPtr(Address(regT2, JSCell::structureOffset()), regT2); callHasProperty.append(branchPtr(NotEqual, regT2, Address(regT3))); addPtr(TrustedImm32(sizeof(Structure*)), regT3); branchTestPtr(NonZero, Address(regT3)).linkTo(checkPrototype, this); // Continue loop. addJump(jump(), target); // Slow case: Ask the object if i is valid. callHasProperty.link(this); loadPtr(addressFor(dst), regT1); JITStubCall stubCall(this, cti_has_property); stubCall.addArgument(regT0); stubCall.addArgument(regT1); stubCall.call(); // Test for valid key. addJump(branchTest32(NonZero, regT0), target); jump().linkTo(begin, this); // End of loop. end.link(this); } void JIT::emit_op_push_scope(Instruction* currentInstruction) { JITStubCall stubCall(this, cti_op_push_scope); stubCall.addArgument(currentInstruction[1].u.operand); stubCall.call(currentInstruction[1].u.operand); } void JIT::emit_op_pop_scope(Instruction*) { JITStubCall(this, cti_op_pop_scope).call(); } void JIT::emit_op_to_jsnumber(Instruction* currentInstruction) { int dst = currentInstruction[1].u.operand; int src = currentInstruction[2].u.operand; emitLoad(src, regT1, regT0); Jump isInt32 = branch32(Equal, regT1, TrustedImm32(JSValue::Int32Tag)); addSlowCase(branch32(AboveOrEqual, regT1, TrustedImm32(JSValue::EmptyValueTag))); isInt32.link(this); if (src != dst) emitStore(dst, regT1, regT0); map(m_bytecodeOffset + OPCODE_LENGTH(op_to_jsnumber), dst, regT1, regT0); } void JIT::emitSlow_op_to_jsnumber(Instruction* currentInstruction, Vector::iterator& iter) { int dst = currentInstruction[1].u.operand; linkSlowCase(iter); JITStubCall stubCall(this, cti_op_to_jsnumber); stubCall.addArgument(regT1, regT0); stubCall.call(dst); } void JIT::emit_op_push_new_scope(Instruction* currentInstruction) { JITStubCall stubCall(this, cti_op_push_new_scope); stubCall.addArgument(TrustedImmPtr(&m_codeBlock->identifier(currentInstruction[2].u.operand))); stubCall.addArgument(currentInstruction[3].u.operand); stubCall.call(currentInstruction[1].u.operand); } void JIT::emit_op_catch(Instruction* currentInstruction) { // cti_op_throw returns the callFrame for the handler. move(regT0, callFrameRegister); // Now store the exception returned by cti_op_throw. loadPtr(Address(stackPointerRegister, OBJECT_OFFSETOF(struct JITStackFrame, globalData)), regT3); load32(Address(regT3, OBJECT_OFFSETOF(JSGlobalData, exception) + OBJECT_OFFSETOF(JSValue, u.asBits.payload)), regT0); load32(Address(regT3, OBJECT_OFFSETOF(JSGlobalData, exception) + OBJECT_OFFSETOF(JSValue, u.asBits.tag)), regT1); store32(TrustedImm32(JSValue().payload()), Address(regT3, OBJECT_OFFSETOF(JSGlobalData, exception) + OBJECT_OFFSETOF(JSValue, u.asBits.payload))); store32(TrustedImm32(JSValue().tag()), Address(regT3, OBJECT_OFFSETOF(JSGlobalData, exception) + OBJECT_OFFSETOF(JSValue, u.asBits.tag))); unsigned exception = currentInstruction[1].u.operand; emitStore(exception, regT1, regT0); map(m_bytecodeOffset + OPCODE_LENGTH(op_catch), exception, regT1, regT0); } void JIT::emit_op_jmp_scopes(Instruction* currentInstruction) { JITStubCall stubCall(this, cti_op_jmp_scopes); stubCall.addArgument(Imm32(currentInstruction[1].u.operand)); stubCall.call(); addJump(jump(), currentInstruction[2].u.operand); } void JIT::emit_op_switch_imm(Instruction* currentInstruction) { unsigned tableIndex = currentInstruction[1].u.operand; unsigned defaultOffset = currentInstruction[2].u.operand; unsigned scrutinee = currentInstruction[3].u.operand; // create jump table for switch destinations, track this switch statement. SimpleJumpTable* jumpTable = &m_codeBlock->immediateSwitchJumpTable(tableIndex); m_switches.append(SwitchRecord(jumpTable, m_bytecodeOffset, defaultOffset, SwitchRecord::Immediate)); jumpTable->ctiOffsets.grow(jumpTable->branchOffsets.size()); JITStubCall stubCall(this, cti_op_switch_imm); stubCall.addArgument(scrutinee); stubCall.addArgument(Imm32(tableIndex)); stubCall.call(); jump(regT0); } void JIT::emit_op_switch_char(Instruction* currentInstruction) { unsigned tableIndex = currentInstruction[1].u.operand; unsigned defaultOffset = currentInstruction[2].u.operand; unsigned scrutinee = currentInstruction[3].u.operand; // create jump table for switch destinations, track this switch statement. SimpleJumpTable* jumpTable = &m_codeBlock->characterSwitchJumpTable(tableIndex); m_switches.append(SwitchRecord(jumpTable, m_bytecodeOffset, defaultOffset, SwitchRecord::Character)); jumpTable->ctiOffsets.grow(jumpTable->branchOffsets.size()); JITStubCall stubCall(this, cti_op_switch_char); stubCall.addArgument(scrutinee); stubCall.addArgument(Imm32(tableIndex)); stubCall.call(); jump(regT0); } void JIT::emit_op_switch_string(Instruction* currentInstruction) { unsigned tableIndex = currentInstruction[1].u.operand; unsigned defaultOffset = currentInstruction[2].u.operand; unsigned scrutinee = currentInstruction[3].u.operand; // create jump table for switch destinations, track this switch statement. StringJumpTable* jumpTable = &m_codeBlock->stringSwitchJumpTable(tableIndex); m_switches.append(SwitchRecord(jumpTable, m_bytecodeOffset, defaultOffset)); JITStubCall stubCall(this, cti_op_switch_string); stubCall.addArgument(scrutinee); stubCall.addArgument(Imm32(tableIndex)); stubCall.call(); jump(regT0); } void JIT::emit_op_throw_reference_error(Instruction* currentInstruction) { unsigned message = currentInstruction[1].u.operand; JITStubCall stubCall(this, cti_op_throw_reference_error); stubCall.addArgument(m_codeBlock->getConstant(message)); stubCall.call(); } void JIT::emit_op_debug(Instruction* currentInstruction) { #if ENABLE(DEBUG_WITH_BREAKPOINT) UNUSED_PARAM(currentInstruction); breakpoint(); #else JITStubCall stubCall(this, cti_op_debug); stubCall.addArgument(Imm32(currentInstruction[1].u.operand)); stubCall.addArgument(Imm32(currentInstruction[2].u.operand)); stubCall.addArgument(Imm32(currentInstruction[3].u.operand)); stubCall.call(); #endif } void JIT::emit_op_enter(Instruction*) { // Even though JIT code doesn't use them, we initialize our constant // registers to zap stale pointers, to avoid unnecessarily prolonging // object lifetime and increasing GC pressure. for (int i = 0; i < m_codeBlock->m_numVars; ++i) emitStore(i, jsUndefined()); } void JIT::emit_op_create_activation(Instruction* currentInstruction) { unsigned activation = currentInstruction[1].u.operand; Jump activationCreated = branch32(NotEqual, tagFor(activation), TrustedImm32(JSValue::EmptyValueTag)); JITStubCall(this, cti_op_push_activation).call(activation); activationCreated.link(this); } void JIT::emit_op_create_arguments(Instruction* currentInstruction) { unsigned dst = currentInstruction[1].u.operand; Jump argsCreated = branch32(NotEqual, tagFor(dst), TrustedImm32(JSValue::EmptyValueTag)); if (m_codeBlock->m_numParameters == 1) JITStubCall(this, cti_op_create_arguments_no_params).call(); else JITStubCall(this, cti_op_create_arguments).call(); emitStore(dst, regT1, regT0); emitStore(unmodifiedArgumentsRegister(dst), regT1, regT0); argsCreated.link(this); } void JIT::emit_op_init_lazy_reg(Instruction* currentInstruction) { unsigned dst = currentInstruction[1].u.operand; emitStore(dst, JSValue()); } void JIT::emit_op_get_callee(Instruction* currentInstruction) { int dst = currentInstruction[1].u.operand; emitGetFromCallFrameHeaderPtr(RegisterFile::Callee, regT0); emitStoreCell(dst, regT0); } void JIT::emit_op_create_this(Instruction* currentInstruction) { unsigned protoRegister = currentInstruction[2].u.operand; emitLoad(protoRegister, regT1, regT0); JITStubCall stubCall(this, cti_op_create_this); stubCall.addArgument(regT1, regT0); stubCall.call(currentInstruction[1].u.operand); } void JIT::emit_op_convert_this(Instruction* currentInstruction) { unsigned thisRegister = currentInstruction[1].u.operand; emitLoad(thisRegister, regT1, regT0); addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::CellTag))); loadPtr(Address(regT0, JSCell::structureOffset()), regT2); addSlowCase(branchTest8(NonZero, Address(regT2, Structure::typeInfoFlagsOffset()), TrustedImm32(NeedsThisConversion))); map(m_bytecodeOffset + OPCODE_LENGTH(op_convert_this), thisRegister, regT1, regT0); } void JIT::emit_op_convert_this_strict(Instruction* currentInstruction) { unsigned thisRegister = currentInstruction[1].u.operand; emitLoad(thisRegister, regT1, regT0); Jump notNull = branch32(NotEqual, regT1, TrustedImm32(JSValue::EmptyValueTag)); emitStore(thisRegister, jsNull()); Jump setThis = jump(); notNull.link(this); Jump isImmediate = branch32(NotEqual, regT1, TrustedImm32(JSValue::CellTag)); loadPtr(Address(regT0, JSCell::structureOffset()), regT2); Jump notAnObject = branch8(NotEqual, Address(regT2, Structure::typeInfoTypeOffset()), TrustedImm32(ObjectType)); addSlowCase(branchTest8(NonZero, Address(regT2, Structure::typeInfoFlagsOffset()), TrustedImm32(NeedsThisConversion))); isImmediate.link(this); notAnObject.link(this); setThis.link(this); map(m_bytecodeOffset + OPCODE_LENGTH(op_convert_this_strict), thisRegister, regT1, regT0); } void JIT::emitSlow_op_convert_this(Instruction* currentInstruction, Vector::iterator& iter) { unsigned thisRegister = currentInstruction[1].u.operand; linkSlowCase(iter); linkSlowCase(iter); JITStubCall stubCall(this, cti_op_convert_this); stubCall.addArgument(regT1, regT0); stubCall.call(thisRegister); } void JIT::emitSlow_op_convert_this_strict(Instruction* currentInstruction, Vector::iterator& iter) { unsigned thisRegister = currentInstruction[1].u.operand; linkSlowCase(iter); JITStubCall stubCall(this, cti_op_convert_this_strict); stubCall.addArgument(regT1, regT0); stubCall.call(thisRegister); } void JIT::emit_op_profile_will_call(Instruction* currentInstruction) { peek(regT2, OBJECT_OFFSETOF(JITStackFrame, enabledProfilerReference) / sizeof(void*)); Jump noProfiler = branchTestPtr(Zero, Address(regT2)); JITStubCall stubCall(this, cti_op_profile_will_call); stubCall.addArgument(currentInstruction[1].u.operand); stubCall.call(); noProfiler.link(this); } void JIT::emit_op_profile_did_call(Instruction* currentInstruction) { peek(regT2, OBJECT_OFFSETOF(JITStackFrame, enabledProfilerReference) / sizeof(void*)); Jump noProfiler = branchTestPtr(Zero, Address(regT2)); JITStubCall stubCall(this, cti_op_profile_did_call); stubCall.addArgument(currentInstruction[1].u.operand); stubCall.call(); noProfiler.link(this); } void JIT::emit_op_get_arguments_length(Instruction* currentInstruction) { int dst = currentInstruction[1].u.operand; int argumentsRegister = currentInstruction[2].u.operand; addSlowCase(branch32(NotEqual, tagFor(argumentsRegister), TrustedImm32(JSValue::EmptyValueTag))); emitGetFromCallFrameHeader32(RegisterFile::ArgumentCount, regT0); sub32(TrustedImm32(1), regT0); emitStoreInt32(dst, regT0); } void JIT::emitSlow_op_get_arguments_length(Instruction* currentInstruction, Vector::iterator& iter) { linkSlowCase(iter); int dst = currentInstruction[1].u.operand; int base = currentInstruction[2].u.operand; int ident = currentInstruction[3].u.operand; JITStubCall stubCall(this, cti_op_get_by_id_generic); stubCall.addArgument(base); stubCall.addArgument(TrustedImmPtr(&(m_codeBlock->identifier(ident)))); stubCall.call(dst); } void JIT::emit_op_get_argument_by_val(Instruction* currentInstruction) { int dst = currentInstruction[1].u.operand; int argumentsRegister = currentInstruction[2].u.operand; int property = currentInstruction[3].u.operand; addSlowCase(branch32(NotEqual, tagFor(argumentsRegister), TrustedImm32(JSValue::EmptyValueTag))); emitLoad(property, regT1, regT2); addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag))); add32(TrustedImm32(1), regT2); // regT2 now contains the integer index of the argument we want, including this emitGetFromCallFrameHeader32(RegisterFile::ArgumentCount, regT3); addSlowCase(branch32(AboveOrEqual, regT2, regT3)); Jump skipOutofLineParams; int numArgs = m_codeBlock->m_numParameters; if (numArgs) { Jump notInInPlaceArgs = branch32(AboveOrEqual, regT2, Imm32(numArgs)); addPtr(Imm32(static_cast(-(RegisterFile::CallFrameHeaderSize + numArgs) * sizeof(Register))), callFrameRegister, regT1); loadPtr(BaseIndex(regT1, regT2, TimesEight, OBJECT_OFFSETOF(JSValue, u.asBits.payload)), regT0); loadPtr(BaseIndex(regT1, regT2, TimesEight, OBJECT_OFFSETOF(JSValue, u.asBits.tag)), regT1); skipOutofLineParams = jump(); notInInPlaceArgs.link(this); } addPtr(Imm32(static_cast(-(RegisterFile::CallFrameHeaderSize + numArgs) * sizeof(Register))), callFrameRegister, regT1); mul32(TrustedImm32(sizeof(Register)), regT3, regT3); subPtr(regT3, regT1); loadPtr(BaseIndex(regT1, regT2, TimesEight, OBJECT_OFFSETOF(JSValue, u.asBits.payload)), regT0); loadPtr(BaseIndex(regT1, regT2, TimesEight, OBJECT_OFFSETOF(JSValue, u.asBits.tag)), regT1); if (numArgs) skipOutofLineParams.link(this); emitStore(dst, regT1, regT0); } void JIT::emitSlow_op_get_argument_by_val(Instruction* currentInstruction, Vector::iterator& iter) { unsigned dst = currentInstruction[1].u.operand; unsigned arguments = currentInstruction[2].u.operand; unsigned property = currentInstruction[3].u.operand; linkSlowCase(iter); Jump skipArgumentsCreation = jump(); linkSlowCase(iter); linkSlowCase(iter); if (m_codeBlock->m_numParameters == 1) JITStubCall(this, cti_op_create_arguments_no_params).call(); else JITStubCall(this, cti_op_create_arguments).call(); emitStore(arguments, regT1, regT0); emitStore(unmodifiedArgumentsRegister(arguments), regT1, regT0); skipArgumentsCreation.link(this); JITStubCall stubCall(this, cti_op_get_by_val); stubCall.addArgument(arguments); stubCall.addArgument(property); stubCall.call(dst); } #if ENABLE(JIT_USE_SOFT_MODULO) void JIT::softModulo() { push(regT1); push(regT3); move(regT2, regT3); move(regT0, regT2); move(TrustedImm32(0), regT1); // Check for negative result reminder Jump positiveRegT3 = branch32(GreaterThanOrEqual, regT3, TrustedImm32(0)); neg32(regT3); xor32(TrustedImm32(1), regT1); positiveRegT3.link(this); Jump positiveRegT2 = branch32(GreaterThanOrEqual, regT2, TrustedImm32(0)); neg32(regT2); xor32(TrustedImm32(2), regT1); positiveRegT2.link(this); // Save the condition for negative reminder push(regT1); Jump exitBranch = branch32(LessThan, regT2, regT3); // Power of two fast case move(regT3, regT0); sub32(TrustedImm32(1), regT0); Jump powerOfTwo = branchTest32(NotEqual, regT0, regT3); and32(regT0, regT2); powerOfTwo.link(this); and32(regT3, regT0); Jump exitBranch2 = branchTest32(Zero, regT0); countLeadingZeros32(regT2, regT0); countLeadingZeros32(regT3, regT1); sub32(regT0, regT1); Jump useFullTable = branch32(Equal, regT1, TrustedImm32(31)); neg32(regT1); add32(TrustedImm32(31), regT1); int elementSizeByShift = -1; #if CPU(ARM) elementSizeByShift = 3; #else #error "JIT_OPTIMIZE_MOD not yet supported on this platform." #endif relativeTableJump(regT1, elementSizeByShift); useFullTable.link(this); // Modulo table for (int i = 31; i > 0; --i) { #if CPU(ARM_TRADITIONAL) m_assembler.cmp_r(regT2, m_assembler.lsl(regT3, i)); m_assembler.sub_r(regT2, regT2, m_assembler.lsl(regT3, i), ARMAssembler::CS); #elif CPU(ARM_THUMB2) ShiftTypeAndAmount shift(SRType_LSL, i); m_assembler.sub_S(regT1, regT2, regT3, shift); m_assembler.it(ARMv7Assembler::ConditionCS); m_assembler.mov(regT2, regT1); #else #error "JIT_OPTIMIZE_MOD not yet supported on this platform." #endif } Jump lower = branch32(Below, regT2, regT3); sub32(regT3, regT2); lower.link(this); exitBranch.link(this); exitBranch2.link(this); // Check for negative reminder pop(regT1); Jump positiveResult = branch32(Equal, regT1, TrustedImm32(0)); neg32(regT2); positiveResult.link(this); move(regT2, regT0); pop(regT3); pop(regT1); ret(); } #endif // ENABLE(JIT_USE_SOFT_MODULO) } // namespace JSC #endif // USE(JSVALUE32_64) #endif // ENABLE(JIT)