/* * Copyright (C) 2005, 2008 Apple Inc. All rights reserved. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the NU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public License * along with this library; see the file COPYING.LIB. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, * Boston, MA 02110-1301, USA * */ #include "config.h" #include "JSLock.h" #include "Heap.h" #include "CallFrame.h" #include "JSObject.h" #include "ScopeChain.h" #if USE(PTHREADS) #include #endif namespace JSC { // JSLock is only needed to support an obsolete execution model where JavaScriptCore // automatically protected against concurrent access from multiple threads. // So it's safe to disable it on non-mac platforms where we don't have native pthreads. #if ENABLE(JSC_MULTIPLE_THREADS) && (OS(DARWIN) || USE(PTHREADS)) // Acquire this mutex before accessing lock-related data. static pthread_mutex_t JSMutex = PTHREAD_MUTEX_INITIALIZER; // Thread-specific key that tells whether a thread holds the JSMutex, and how many times it was taken recursively. pthread_key_t JSLockCount; static void createJSLockCount() { pthread_key_create(&JSLockCount, 0); } pthread_once_t createJSLockCountOnce = PTHREAD_ONCE_INIT; // Lock nesting count. intptr_t JSLock::lockCount() { pthread_once(&createJSLockCountOnce, createJSLockCount); return reinterpret_cast(pthread_getspecific(JSLockCount)); } static void setLockCount(intptr_t count) { ASSERT(count >= 0); pthread_setspecific(JSLockCount, reinterpret_cast(count)); } JSLock::JSLock(ExecState* exec) : m_lockBehavior(exec->globalData().isSharedInstance() ? LockForReal : SilenceAssertionsOnly) { lock(m_lockBehavior); } JSLock::JSLock(JSGlobalData* globalData) : m_lockBehavior(globalData->isSharedInstance() ? LockForReal : SilenceAssertionsOnly) { lock(m_lockBehavior); } void JSLock::lock(JSLockBehavior lockBehavior) { #ifdef NDEBUG // Locking "not for real" is a debug-only feature. if (lockBehavior == SilenceAssertionsOnly) return; #endif pthread_once(&createJSLockCountOnce, createJSLockCount); intptr_t currentLockCount = lockCount(); if (!currentLockCount && lockBehavior == LockForReal) { int result; result = pthread_mutex_lock(&JSMutex); ASSERT(!result); } setLockCount(currentLockCount + 1); } void JSLock::unlock(JSLockBehavior lockBehavior) { ASSERT(lockCount()); #ifdef NDEBUG // Locking "not for real" is a debug-only feature. if (lockBehavior == SilenceAssertionsOnly) return; #endif intptr_t newLockCount = lockCount() - 1; setLockCount(newLockCount); if (!newLockCount && lockBehavior == LockForReal) { int result; result = pthread_mutex_unlock(&JSMutex); ASSERT(!result); } } void JSLock::lock(ExecState* exec) { lock(exec->globalData().isSharedInstance() ? LockForReal : SilenceAssertionsOnly); } void JSLock::unlock(ExecState* exec) { unlock(exec->globalData().isSharedInstance() ? LockForReal : SilenceAssertionsOnly); } bool JSLock::currentThreadIsHoldingLock() { pthread_once(&createJSLockCountOnce, createJSLockCount); return !!pthread_getspecific(JSLockCount); } // This is fairly nasty. We allow multiple threads to run on the same // context, and we do not require any locking semantics in doing so - // clients of the API may simply use the context from multiple threads // concurently, and assume this will work. In order to make this work, // We lock the context when a thread enters, and unlock it when it leaves. // However we do not only unlock when the thread returns from its // entry point (evaluate script or call function), we also unlock the // context if the thread leaves JSC by making a call out to an external // function through a callback. // // All threads using the context share the same JS stack (the RegisterFile). // Whenever a thread calls into JSC it starts using the RegisterFile from the // previous 'high water mark' - the maximum point the stack has ever grown to // (returned by RegisterFile::end()). So if a first thread calls out to a // callback, and a second thread enters JSC, then also exits by calling out // to a callback, we can be left with stackframes from both threads in the // RegisterFile. As such, a problem may occur should the first thread's // callback complete first, and attempt to return to JSC. Were we to allow // this to happen, and were its stack to grow further, then it may potentially // write over the second thread's call frames. // // In avoid JS stack corruption we enforce a policy of only ever allowing two // threads to use a JS context concurrently, and only allowing the second of // these threads to execute until it has completed and fully returned from its // outermost call into JSC. We enforce this policy using 'lockDropDepth'. The // first time a thread exits it will call DropAllLocks - which will do as expected // and drop locks allowing another thread to enter. Should another thread, or the // same thread again, enter JSC (through evaluate script or call function), and exit // again through a callback, then the locks will not be dropped when DropAllLocks // is called (since lockDropDepth is non-zero). Since this thread is still holding // the locks, only it will re able to re-enter JSC (either be returning from the // callback, or by re-entering through another call to evaulate script or call // function). // // This policy is slightly more restricive than it needs to be for correctness - // we could validly allow futher entries into JSC from other threads, we only // need ensure that callbacks return in the reverse chronological order of the // order in which they were made - though implementing the less restrictive policy // would likely increase complexity and overhead. // static unsigned lockDropDepth = 0; JSLock::DropAllLocks::DropAllLocks(ExecState* exec) : m_lockBehavior(exec->globalData().isSharedInstance() ? LockForReal : SilenceAssertionsOnly) { pthread_once(&createJSLockCountOnce, createJSLockCount); if (lockDropDepth++) { m_lockCount = 0; return; } m_lockCount = JSLock::lockCount(); for (intptr_t i = 0; i < m_lockCount; i++) JSLock::unlock(m_lockBehavior); } JSLock::DropAllLocks::DropAllLocks(JSLockBehavior JSLockBehavior) : m_lockBehavior(JSLockBehavior) { pthread_once(&createJSLockCountOnce, createJSLockCount); if (lockDropDepth++) { m_lockCount = 0; return; } // It is necessary to drop even "unreal" locks, because having a non-zero lock count // will prevent a real lock from being taken. m_lockCount = JSLock::lockCount(); for (intptr_t i = 0; i < m_lockCount; i++) JSLock::unlock(m_lockBehavior); } JSLock::DropAllLocks::~DropAllLocks() { for (intptr_t i = 0; i < m_lockCount; i++) JSLock::lock(m_lockBehavior); --lockDropDepth; } #else // ENABLE(JSC_MULTIPLE_THREADS) && (OS(DARWIN) || USE(PTHREADS)) JSLock::JSLock(ExecState*) : m_lockBehavior(SilenceAssertionsOnly) { } // If threading support is off, set the lock count to a constant value of 1 so ssertions // that the lock is held don't fail intptr_t JSLock::lockCount() { return 1; } bool JSLock::currentThreadIsHoldingLock() { return true; } void JSLock::lock(JSLockBehavior) { } void JSLock::unlock(JSLockBehavior) { } void JSLock::lock(ExecState*) { } void JSLock::unlock(ExecState*) { } JSLock::DropAllLocks::DropAllLocks(ExecState*) { } JSLock::DropAllLocks::DropAllLocks(JSLockBehavior) { } JSLock::DropAllLocks::~DropAllLocks() { } #endif // ENABLE(JSC_MULTIPLE_THREADS) && (OS(DARWIN) || USE(PTHREADS)) } // namespace JSC