/* * Copyright (C) 1999-2001 Harri Porten (porten@kde.org) * Copyright (C) 2001 Peter Kelly (pmk@post.com) * Copyright (C) 2003, 2004, 2005, 2007, 2008, 2009 Apple Inc. All rights reserved. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public License * along with this library; see the file COPYING.LIB. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, * Boston, MA 02110-1301, USA. * */ #ifndef JSValue_h #define JSValue_h #include #include // for size_t #include #include #include #include #include #include namespace JSC { extern const double NaN; extern const double Inf; class ExecState; class Identifier; class JSCell; class JSGlobalData; class JSGlobalObject; class JSObject; class JSString; class PropertySlot; class PutPropertySlot; class UString; struct ClassInfo; struct Instruction; template class WriteBarrierBase; enum PreferredPrimitiveType { NoPreference, PreferNumber, PreferString }; #if USE(JSVALUE32_64) typedef int64_t EncodedJSValue; #else typedef void* EncodedJSValue; #endif union EncodedValueDescriptor { int64_t asInt64; #if USE(JSVALUE32_64) double asDouble; #elif USE(JSVALUE64) JSCell* ptr; #endif #if CPU(BIG_ENDIAN) struct { int32_t tag; int32_t payload; } asBits; #else struct { int32_t payload; int32_t tag; } asBits; #endif }; double nonInlineNaN(); // This implements ToInt32, defined in ECMA-262 9.5. int32_t toInt32(double); // This implements ToUInt32, defined in ECMA-262 9.6. inline uint32_t toUInt32(double number) { // As commented in the spec, the operation of ToInt32 and ToUint32 only differ // in how the result is interpreted; see NOTEs in sections 9.5 and 9.6. return toInt32(number); } class JSValue { friend struct EncodedJSValueHashTraits; friend class JIT; friend class JITStubs; friend class JITStubCall; friend class JSInterfaceJIT; friend class SpecializedThunkJIT; public: static EncodedJSValue encode(JSValue); static JSValue decode(EncodedJSValue); enum JSNullTag { JSNull }; enum JSUndefinedTag { JSUndefined }; enum JSTrueTag { JSTrue }; enum JSFalseTag { JSFalse }; enum EncodeAsDoubleTag { EncodeAsDouble }; JSValue(); JSValue(JSNullTag); JSValue(JSUndefinedTag); JSValue(JSTrueTag); JSValue(JSFalseTag); JSValue(JSCell* ptr); JSValue(const JSCell* ptr); // Numbers JSValue(EncodeAsDoubleTag, double); explicit JSValue(double); explicit JSValue(char); explicit JSValue(unsigned char); explicit JSValue(short); explicit JSValue(unsigned short); explicit JSValue(int); explicit JSValue(unsigned); explicit JSValue(long); explicit JSValue(unsigned long); explicit JSValue(long long); explicit JSValue(unsigned long long); operator bool() const; bool operator==(const JSValue& other) const; bool operator!=(const JSValue& other) const; bool isInt32() const; bool isUInt32() const; bool isDouble() const; bool isTrue() const; bool isFalse() const; int32_t asInt32() const; uint32_t asUInt32() const; double asDouble() const; // Querying the type. bool isUndefined() const; bool isNull() const; bool isUndefinedOrNull() const; bool isBoolean() const; bool isNumber() const; bool isString() const; bool isGetterSetter() const; bool isObject() const; bool inherits(const ClassInfo*) const; // Extracting the value. bool getBoolean(bool&) const; bool getBoolean() const; // false if not a boolean bool getNumber(double&) const; double uncheckedGetNumber() const; bool getString(ExecState* exec, UString&) const; UString getString(ExecState* exec) const; // null string if not a string JSObject* getObject() const; // 0 if not an object // Extracting integer values. bool getUInt32(uint32_t&) const; // Basic conversions. JSValue toPrimitive(ExecState*, PreferredPrimitiveType = NoPreference) const; bool getPrimitiveNumber(ExecState*, double& number, JSValue&); bool toBoolean(ExecState*) const; // toNumber conversion is expected to be side effect free if an exception has // been set in the ExecState already. double toNumber(ExecState*) const; JSValue toJSNumber(ExecState*) const; // Fast path for when you expect that the value is an immediate number. UString toString(ExecState*) const; UString toPrimitiveString(ExecState*) const; JSObject* toObject(ExecState*) const; JSObject* toObject(ExecState*, JSGlobalObject*) const; // Integer conversions. double toInteger(ExecState*) const; double toIntegerPreserveNaN(ExecState*) const; int32_t toInt32(ExecState*) const; uint32_t toUInt32(ExecState*) const; #if ENABLE(JSC_ZOMBIES) bool isZombie() const; #endif // Floating point conversions (this is a convenience method for webcore; // signle precision float is not a representation used in JS or JSC). float toFloat(ExecState* exec) const { return static_cast(toNumber(exec)); } // Object operations, with the toObject operation included. JSValue get(ExecState*, const Identifier& propertyName) const; JSValue get(ExecState*, const Identifier& propertyName, PropertySlot&) const; JSValue get(ExecState*, unsigned propertyName) const; JSValue get(ExecState*, unsigned propertyName, PropertySlot&) const; void put(ExecState*, const Identifier& propertyName, JSValue, PutPropertySlot&); void putDirect(ExecState*, const Identifier& propertyName, JSValue, PutPropertySlot&); void put(ExecState*, unsigned propertyName, JSValue); bool needsThisConversion() const; JSObject* toThisObject(ExecState*) const; JSValue toStrictThisObject(ExecState*) const; UString toThisString(ExecState*) const; JSString* toThisJSString(ExecState*) const; static bool equal(ExecState* exec, JSValue v1, JSValue v2); static bool equalSlowCase(ExecState* exec, JSValue v1, JSValue v2); static bool equalSlowCaseInline(ExecState* exec, JSValue v1, JSValue v2); static bool strictEqual(ExecState* exec, JSValue v1, JSValue v2); static bool strictEqualSlowCase(ExecState* exec, JSValue v1, JSValue v2); static bool strictEqualSlowCaseInline(ExecState* exec, JSValue v1, JSValue v2); JSValue getJSNumber(); // JSValue() if this is not a JSNumber or number object bool isCell() const; JSCell* asCell() const; bool isValidCallee(); #ifndef NDEBUG char* description(); #endif private: template JSValue(WriteBarrierBase); enum HashTableDeletedValueTag { HashTableDeletedValue }; JSValue(HashTableDeletedValueTag); inline const JSValue asValue() const { return *this; } JSObject* toObjectSlowCase(ExecState*, JSGlobalObject*) const; JSObject* toThisObjectSlowCase(ExecState*) const; JSObject* synthesizePrototype(ExecState*) const; JSObject* synthesizeObject(ExecState*) const; #if USE(JSVALUE32_64) /* * On 32-bit platforms USE(JSVALUE32_64) should be defined, and we use a NaN-encoded * form for immediates. * * The encoding makes use of unused NaN space in the IEEE754 representation. Any value * with the top 13 bits set represents a QNaN (with the sign bit set). QNaN values * can encode a 51-bit payload. Hardware produced and C-library payloads typically * have a payload of zero. We assume that non-zero payloads are available to encode * pointer and integer values. Since any 64-bit bit pattern where the top 15 bits are * all set represents a NaN with a non-zero payload, we can use this space in the NaN * ranges to encode other values (however there are also other ranges of NaN space that * could have been selected). * * For JSValues that do not contain a double value, the high 32 bits contain the tag * values listed in the enums below, which all correspond to NaN-space. In the case of * cell, integer and bool values the lower 32 bits (the 'payload') contain the pointer * integer or boolean value; in the case of all other tags the payload is 0. */ enum { Int32Tag = 0xffffffff }; enum { BooleanTag = 0xfffffffe }; enum { NullTag = 0xfffffffd }; enum { UndefinedTag = 0xfffffffc }; enum { CellTag = 0xfffffffb }; enum { EmptyValueTag = 0xfffffffa }; enum { DeletedValueTag = 0xfffffff9 }; enum { LowestTag = DeletedValueTag }; uint32_t tag() const; int32_t payload() const; #elif USE(JSVALUE64) /* * On 64-bit platforms USE(JSVALUE64) should be defined, and we use a NaN-encoded * form for immediates. * * The encoding makes use of unused NaN space in the IEEE754 representation. Any value * with the top 13 bits set represents a QNaN (with the sign bit set). QNaN values * can encode a 51-bit payload. Hardware produced and C-library payloads typically * have a payload of zero. We assume that non-zero payloads are available to encode * pointer and integer values. Since any 64-bit bit pattern where the top 15 bits are * all set represents a NaN with a non-zero payload, we can use this space in the NaN * ranges to encode other values (however there are also other ranges of NaN space that * could have been selected). * * This range of NaN space is represented by 64-bit numbers begining with the 16-bit * hex patterns 0xFFFE and 0xFFFF - we rely on the fact that no valid double-precision * numbers will begin fall in these ranges. * * The top 16-bits denote the type of the encoded JSValue: * * Pointer { 0000:PPPP:PPPP:PPPP * / 0001:****:****:**** * Double { ... * \ FFFE:****:****:**** * Integer { FFFF:0000:IIII:IIII * * The scheme we have implemented encodes double precision values by performing a * 64-bit integer addition of the value 2^48 to the number. After this manipulation * no encoded double-precision value will begin with the pattern 0x0000 or 0xFFFF. * Values must be decoded by reversing this operation before subsequent floating point * operations my be peformed. * * 32-bit signed integers are marked with the 16-bit tag 0xFFFF. * * The tag 0x0000 denotes a pointer, or another form of tagged immediate. Boolean, * null and undefined values are represented by specific, invalid pointer values: * * False: 0x06 * True: 0x07 * Undefined: 0x0a * Null: 0x02 * * These values have the following properties: * - Bit 1 (TagBitTypeOther) is set for all four values, allowing real pointers to be * quickly distinguished from all immediate values, including these invalid pointers. * - With bit 3 is masked out (TagBitUndefined) Undefined and Null share the * same value, allowing null & undefined to be quickly detected. * * No valid JSValue will have the bit pattern 0x0, this is used to represent array * holes, and as a C++ 'no value' result (e.g. JSValue() has an internal value of 0). */ // These values are #defines since using static const integers here is a ~1% regression! // This value is 2^48, used to encode doubles such that the encoded value will begin // with a 16-bit pattern within the range 0x0001..0xFFFE. #define DoubleEncodeOffset 0x1000000000000ll // If all bits in the mask are set, this indicates an integer number, // if any but not all are set this value is a double precision number. #define TagTypeNumber 0xffff000000000000ll // All non-numeric (bool, null, undefined) immediates have bit 2 set. #define TagBitTypeOther 0x2ll #define TagBitBool 0x4ll #define TagBitUndefined 0x8ll // Combined integer value for non-numeric immediates. #define ValueFalse (TagBitTypeOther | TagBitBool | false) #define ValueTrue (TagBitTypeOther | TagBitBool | true) #define ValueUndefined (TagBitTypeOther | TagBitUndefined) #define ValueNull (TagBitTypeOther) // TagMask is used to check for all types of immediate values (either number or 'other'). #define TagMask (TagTypeNumber | TagBitTypeOther) // These special values are never visible to JavaScript code; Empty is used to represent // Array holes, and for uninitialized JSValues. Deleted is used in hash table code. // These values would map to cell types in the JSValue encoding, but not valid GC cell // pointer should have either of these values (Empty is null, deleted is at an invalid // alignment for a GC cell, and in the zero page). #define ValueEmpty 0x0ll #define ValueDeleted 0x4ll #endif EncodedValueDescriptor u; }; #if USE(JSVALUE32_64) typedef IntHash EncodedJSValueHash; struct EncodedJSValueHashTraits : HashTraits { static const bool emptyValueIsZero = false; static EncodedJSValue emptyValue() { return JSValue::encode(JSValue()); } static void constructDeletedValue(EncodedJSValue& slot) { slot = JSValue::encode(JSValue(JSValue::HashTableDeletedValue)); } static bool isDeletedValue(EncodedJSValue value) { return value == JSValue::encode(JSValue(JSValue::HashTableDeletedValue)); } }; #else typedef PtrHash EncodedJSValueHash; struct EncodedJSValueHashTraits : HashTraits { static void constructDeletedValue(EncodedJSValue& slot) { slot = JSValue::encode(JSValue(JSValue::HashTableDeletedValue)); } static bool isDeletedValue(EncodedJSValue value) { return value == JSValue::encode(JSValue(JSValue::HashTableDeletedValue)); } }; #endif // Stand-alone helper functions. inline JSValue jsNull() { return JSValue(JSValue::JSNull); } inline JSValue jsUndefined() { return JSValue(JSValue::JSUndefined); } inline JSValue jsBoolean(bool b) { return b ? JSValue(JSValue::JSTrue) : JSValue(JSValue::JSFalse); } ALWAYS_INLINE JSValue jsDoubleNumber(double d) { return JSValue(JSValue::EncodeAsDouble, d); } ALWAYS_INLINE JSValue jsNumber(double d) { return JSValue(d); } ALWAYS_INLINE JSValue jsNumber(char i) { return JSValue(i); } ALWAYS_INLINE JSValue jsNumber(unsigned char i) { return JSValue(i); } ALWAYS_INLINE JSValue jsNumber(short i) { return JSValue(i); } ALWAYS_INLINE JSValue jsNumber(unsigned short i) { return JSValue(i); } ALWAYS_INLINE JSValue jsNumber(int i) { return JSValue(i); } ALWAYS_INLINE JSValue jsNumber(unsigned i) { return JSValue(i); } ALWAYS_INLINE JSValue jsNumber(long i) { return JSValue(i); } ALWAYS_INLINE JSValue jsNumber(unsigned long i) { return JSValue(i); } ALWAYS_INLINE JSValue jsNumber(long long i) { return JSValue(i); } ALWAYS_INLINE JSValue jsNumber(unsigned long long i) { return JSValue(i); } inline bool operator==(const JSValue a, const JSCell* b) { return a == JSValue(b); } inline bool operator==(const JSCell* a, const JSValue b) { return JSValue(a) == b; } inline bool operator!=(const JSValue a, const JSCell* b) { return a != JSValue(b); } inline bool operator!=(const JSCell* a, const JSValue b) { return JSValue(a) != b; } bool isZombie(const JSCell*); } // namespace JSC #endif // JSValue_h