/* The contents of this file are subject to the Netscape Public * License Version 1.1 (the "License"); you may not use this file * except in compliance with the License. You may obtain a copy of * the License at http://www.mozilla.org/NPL/ * * Software distributed under the License is distributed on an "AS * IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or * implied. See the License for the specific language governing * rights and limitations under the License. * * The Original Code is Mozilla Communicator client code, released March * 31, 1998. * * The Initial Developer of the Original Code is Netscape Communications * Corporation. Portions created by Netscape are * Copyright (C) 1998 Netscape Communications Corporation. All * Rights Reserved. * * Contributor(s): * */ /** File Name: 11.5.3.js ECMA Section: 11.5.3 Applying the % operator Description: The binary % operator is said to yield the remainder of its operands from an implied division; the left operand is the dividend and the right operand is the divisor. In C and C++, the remainder operator accepts only integral operands, but in ECMAScript, it also accepts floating-point operands. The result of a floating-point remainder operation as computed by the % operator is not the same as the "remainder" operation defined by IEEE 754. The IEEE 754 "remainder" operation computes the remainder from a rounding division, not a truncating division, and so its behavior is not analogous to that of the usual integer remainder operator. Instead the ECMAScript language defines % on floating-point operations to behave in a manner analogous to that of the Java integer remainder operator; this may be compared with the C library function fmod. The result of a ECMAScript floating-point remainder operation is determined by the rules of IEEE arithmetic: If either operand is NaN, the result is NaN. The sign of the result equals the sign of the dividend. If the dividend is an infinity, or the divisor is a zero, or both, the result is NaN. If the dividend is finite and the divisor is an infinity, the result equals the dividend. If the dividend is a zero and the divisor is finite, the result is the same as the dividend. In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the floating-point remainder r from a dividend n and a divisor d is defined by the mathematical relation r = n (d * q) where q is an integer that is negative only if n/d is negative and positive only if n/d is positive, and whose magnitude is as large as possible without exceeding the magnitude of the true mathematical quotient of n and d. Author: christine@netscape.com Date: 12 november 1997 */ var SECTION = "11.5.3"; var VERSION = "ECMA_1"; startTest(); var testcases = getTestCases(); var BUGNUMBER="111202"; writeHeaderToLog( SECTION + " Applying the % operator"); test(); function test() { for ( tc=0; tc < testcases.length; tc++ ) { testcases[tc].passed = writeTestCaseResult( testcases[tc].expect, testcases[tc].actual, testcases[tc].description +" = "+ testcases[tc].actual ); testcases[tc].reason += ( testcases[tc].passed ) ? "" : "wrong value "; } stopTest(); return ( testcases ); } function getTestCases() { var array = new Array(); var item = 0; // if either operand is NaN, the result is NaN. array[item++] = new TestCase( SECTION, "Number.NaN % Number.NaN", Number.NaN, Number.NaN % Number.NaN ); array[item++] = new TestCase( SECTION, "Number.NaN % 1", Number.NaN, Number.NaN % 1 ); array[item++] = new TestCase( SECTION, "1 % Number.NaN", Number.NaN, 1 % Number.NaN ); array[item++] = new TestCase( SECTION, "Number.POSITIVE_INFINITY % Number.NaN", Number.NaN, Number.POSITIVE_INFINITY % Number.NaN ); array[item++] = new TestCase( SECTION, "Number.NEGATIVE_INFINITY % Number.NaN", Number.NaN, Number.NEGATIVE_INFINITY % Number.NaN ); // If the dividend is an infinity, or the divisor is a zero, or both, the result is NaN. // dividend is an infinity array[item++] = new TestCase( SECTION, "Number.NEGATIVE_INFINITY % Number.NEGATIVE_INFINITY", Number.NaN, Number.NEGATIVE_INFINITY % Number.NEGATIVE_INFINITY ); array[item++] = new TestCase( SECTION, "Number.POSITIVE_INFINITY % Number.NEGATIVE_INFINITY", Number.NaN, Number.POSITIVE_INFINITY % Number.NEGATIVE_INFINITY ); array[item++] = new TestCase( SECTION, "Number.NEGATIVE_INFINITY % Number.POSITIVE_INFINITY", Number.NaN, Number.NEGATIVE_INFINITY % Number.POSITIVE_INFINITY ); array[item++] = new TestCase( SECTION, "Number.POSITIVE_INFINITY % Number.POSITIVE_INFINITY", Number.NaN, Number.POSITIVE_INFINITY % Number.POSITIVE_INFINITY ); array[item++] = new TestCase( SECTION, "Number.POSITIVE_INFINITY % 0", Number.NaN, Number.POSITIVE_INFINITY % 0 ); array[item++] = new TestCase( SECTION, "Number.NEGATIVE_INFINITY % 0", Number.NaN, Number.NEGATIVE_INFINITY % 0 ); array[item++] = new TestCase( SECTION, "Number.POSITIVE_INFINITY % -0", Number.NaN, Number.POSITIVE_INFINITY % -0 ); array[item++] = new TestCase( SECTION, "Number.NEGATIVE_INFINITY % -0", Number.NaN, Number.NEGATIVE_INFINITY % -0 ); array[item++] = new TestCase( SECTION, "Number.NEGATIVE_INFINITY % 1 ", Number.NaN, Number.NEGATIVE_INFINITY % 1 ); array[item++] = new TestCase( SECTION, "Number.NEGATIVE_INFINITY % -1 ", Number.NaN, Number.NEGATIVE_INFINITY % -1 ); array[item++] = new TestCase( SECTION, "Number.POSITIVE_INFINITY % 1 ", Number.NaN, Number.POSITIVE_INFINITY % 1 ); array[item++] = new TestCase( SECTION, "Number.POSITIVE_INFINITY % -1 ", Number.NaN, Number.POSITIVE_INFINITY % -1 ); array[item++] = new TestCase( SECTION, "Number.NEGATIVE_INFINITY % Number.MAX_VALUE ", Number.NaN, Number.NEGATIVE_INFINITY % Number.MAX_VALUE ); array[item++] = new TestCase( SECTION, "Number.NEGATIVE_INFINITY % -Number.MAX_VALUE ", Number.NaN, Number.NEGATIVE_INFINITY % -Number.MAX_VALUE ); array[item++] = new TestCase( SECTION, "Number.POSITIVE_INFINITY % Number.MAX_VALUE ", Number.NaN, Number.POSITIVE_INFINITY % Number.MAX_VALUE ); array[item++] = new TestCase( SECTION, "Number.POSITIVE_INFINITY % -Number.MAX_VALUE ", Number.NaN, Number.POSITIVE_INFINITY % -Number.MAX_VALUE ); // divisor is 0 array[item++] = new TestCase( SECTION, "0 % -0", Number.NaN, 0 % -0 ); array[item++] = new TestCase( SECTION, "-0 % 0", Number.NaN, -0 % 0 ); array[item++] = new TestCase( SECTION, "-0 % -0", Number.NaN, -0 % -0 ); array[item++] = new TestCase( SECTION, "0 % 0", Number.NaN, 0 % 0 ); array[item++] = new TestCase( SECTION, "1 % 0", Number.NaN, 1%0 ); array[item++] = new TestCase( SECTION, "1 % -0", Number.NaN, 1%-0 ); array[item++] = new TestCase( SECTION, "-1 % 0", Number.NaN, -1%0 ); array[item++] = new TestCase( SECTION, "-1 % -0", Number.NaN, -1%-0 ); array[item++] = new TestCase( SECTION, "Number.MAX_VALUE % 0", Number.NaN, Number.MAX_VALUE%0 ); array[item++] = new TestCase( SECTION, "Number.MAX_VALUE % -0", Number.NaN, Number.MAX_VALUE%-0 ); array[item++] = new TestCase( SECTION, "-Number.MAX_VALUE % 0", Number.NaN, -Number.MAX_VALUE%0 ); array[item++] = new TestCase( SECTION, "-Number.MAX_VALUE % -0", Number.NaN, -Number.MAX_VALUE%-0 ); // If the dividend is finite and the divisor is an infinity, the result equals the dividend. array[item++] = new TestCase( SECTION, "1 % Number.NEGATIVE_INFINITY", 1, 1 % Number.NEGATIVE_INFINITY ); array[item++] = new TestCase( SECTION, "1 % Number.POSITIVE_INFINITY", 1, 1 % Number.POSITIVE_INFINITY ); array[item++] = new TestCase( SECTION, "-1 % Number.POSITIVE_INFINITY", -1, -1 % Number.POSITIVE_INFINITY ); array[item++] = new TestCase( SECTION, "-1 % Number.NEGATIVE_INFINITY", -1, -1 % Number.NEGATIVE_INFINITY ); array[item++] = new TestCase( SECTION, "Number.MAX_VALUE % Number.NEGATIVE_INFINITY", Number.MAX_VALUE, Number.MAX_VALUE % Number.NEGATIVE_INFINITY ); array[item++] = new TestCase( SECTION, "Number.MAX_VALUE % Number.POSITIVE_INFINITY", Number.MAX_VALUE, Number.MAX_VALUE % Number.POSITIVE_INFINITY ); array[item++] = new TestCase( SECTION, "-Number.MAX_VALUE % Number.POSITIVE_INFINITY", -Number.MAX_VALUE, -Number.MAX_VALUE % Number.POSITIVE_INFINITY ); array[item++] = new TestCase( SECTION, "-Number.MAX_VALUE % Number.NEGATIVE_INFINITY", -Number.MAX_VALUE, -Number.MAX_VALUE % Number.NEGATIVE_INFINITY ); array[item++] = new TestCase( SECTION, "0 % Number.POSITIVE_INFINITY", 0, 0 % Number.POSITIVE_INFINITY ); array[item++] = new TestCase( SECTION, "0 % Number.NEGATIVE_INFINITY", 0, 0 % Number.NEGATIVE_INFINITY ); array[item++] = new TestCase( SECTION, "-0 % Number.POSITIVE_INFINITY", -0, -0 % Number.POSITIVE_INFINITY ); array[item++] = new TestCase( SECTION, "-0 % Number.NEGATIVE_INFINITY", -0, -0 % Number.NEGATIVE_INFINITY ); // If the dividend is a zero and the divisor is finite, the result is the same as the dividend. array[item++] = new TestCase( SECTION, "0 % 1", 0, 0 % 1 ); array[item++] = new TestCase( SECTION, "0 % -1", -0, 0 % -1 ); array[item++] = new TestCase( SECTION, "-0 % 1", -0, -0 % 1 ); array[item++] = new TestCase( SECTION, "-0 % -1", 0, -0 % -1 ); // In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the floating-point remainder r // from a dividend n and a divisor d is defined by the mathematical relation r = n (d * q) where q is an integer that // is negative only if n/d is negative and positive only if n/d is positive, and whose magnitude is as large as // possible without exceeding the magnitude of the true mathematical quotient of n and d. return ( array ); }