// // Copyright (c) 2002-2010 The ANGLE Project Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // #include "compiler/OutputGLSL.h" #include "compiler/debug.h" namespace { TString getTypeName(const TType& type) { TInfoSinkBase out; if (type.isMatrix()) { out << "mat"; out << type.getNominalSize(); } else if (type.isVector()) { switch (type.getBasicType()) { case EbtFloat: out << "vec"; break; case EbtInt: out << "ivec"; break; case EbtBool: out << "bvec"; break; default: UNREACHABLE(); break; } out << type.getNominalSize(); } else { if (type.getBasicType() == EbtStruct) out << type.getTypeName(); else out << type.getBasicString(); } return TString(out.c_str()); } TString arrayBrackets(const TType& type) { ASSERT(type.isArray()); TInfoSinkBase out; out << "[" << type.getArraySize() << "]"; return TString(out.c_str()); } bool isSingleStatement(TIntermNode* node) { if (const TIntermAggregate* aggregate = node->getAsAggregate()) { return (aggregate->getOp() != EOpFunction) && (aggregate->getOp() != EOpSequence); } else if (const TIntermSelection* selection = node->getAsSelectionNode()) { // Ternary operators are usually part of an assignment operator. // This handles those rare cases in which they are all by themselves. return selection->usesTernaryOperator(); } else if (node->getAsLoopNode()) { return false; } return true; } } // namespace TOutputGLSL::TOutputGLSL(TInfoSinkBase& objSink) : TIntermTraverser(true, true, true), mObjSink(objSink), mDeclaringVariables(false) { } void TOutputGLSL::writeTriplet(Visit visit, const char* preStr, const char* inStr, const char* postStr) { TInfoSinkBase& out = objSink(); if (visit == PreVisit && preStr) { out << preStr; } else if (visit == InVisit && inStr) { out << inStr; } else if (visit == PostVisit && postStr) { out << postStr; } } void TOutputGLSL::writeVariableType(const TType& type) { TInfoSinkBase& out = objSink(); TQualifier qualifier = type.getQualifier(); // TODO(alokp): Validate qualifier for variable declarations. if ((qualifier != EvqTemporary) && (qualifier != EvqGlobal)) out << type.getQualifierString() << " "; // Declare the struct if we have not done so already. if ((type.getBasicType() == EbtStruct) && (mDeclaredStructs.find(type.getTypeName()) == mDeclaredStructs.end())) { out << "struct " << type.getTypeName() << "{\n"; const TTypeList* structure = type.getStruct(); ASSERT(structure != NULL); for (size_t i = 0; i < structure->size(); ++i) { const TType* fieldType = (*structure)[i].type; ASSERT(fieldType != NULL); out << getTypeName(*fieldType) << " " << fieldType->getFieldName(); if (fieldType->isArray()) out << arrayBrackets(*fieldType); out << ";\n"; } out << "}"; mDeclaredStructs.insert(type.getTypeName()); } else { out << getTypeName(type); } } void TOutputGLSL::writeFunctionParameters(const TIntermSequence& args) { TInfoSinkBase& out = objSink(); for (TIntermSequence::const_iterator iter = args.begin(); iter != args.end(); ++iter) { const TIntermSymbol* arg = (*iter)->getAsSymbolNode(); ASSERT(arg != NULL); const TType& type = arg->getType(); TQualifier qualifier = type.getQualifier(); // TODO(alokp): Validate qualifier for function arguments. if ((qualifier != EvqTemporary) && (qualifier != EvqGlobal)) out << type.getQualifierString() << " "; out << getTypeName(type); const TString& name = arg->getSymbol(); if (!name.empty()) out << " " << name; if (type.isArray()) out << arrayBrackets(type); // Put a comma if this is not the last argument. if (iter != args.end() - 1) out << ", "; } } const ConstantUnion* TOutputGLSL::writeConstantUnion(const TType& type, const ConstantUnion* pConstUnion) { TInfoSinkBase& out = objSink(); if (type.getBasicType() == EbtStruct) { out << type.getTypeName() << "("; const TTypeList* structure = type.getStruct(); ASSERT(structure != NULL); for (size_t i = 0; i < structure->size(); ++i) { const TType* fieldType = (*structure)[i].type; ASSERT(fieldType != NULL); pConstUnion = writeConstantUnion(*fieldType, pConstUnion); if (i != structure->size() - 1) out << ", "; } out << ")"; } else { int size = type.getObjectSize(); bool writeType = size > 1; if (writeType) out << getTypeName(type) << "("; for (int i = 0; i < size; ++i, ++pConstUnion) { switch (pConstUnion->getType()) { case EbtFloat: out << pConstUnion->getFConst(); break; case EbtInt: out << pConstUnion->getIConst(); break; case EbtBool: out << pConstUnion->getBConst(); break; default: UNREACHABLE(); } if (i != size - 1) out << ", "; } if (writeType) out << ")"; } return pConstUnion; } void TOutputGLSL::visitSymbol(TIntermSymbol* node) { TInfoSinkBase& out = objSink(); out << node->getSymbol(); if (mDeclaringVariables && node->getType().isArray()) out << arrayBrackets(node->getType()); } void TOutputGLSL::visitConstantUnion(TIntermConstantUnion* node) { writeConstantUnion(node->getType(), node->getUnionArrayPointer()); } bool TOutputGLSL::visitBinary(Visit visit, TIntermBinary* node) { bool visitChildren = true; TInfoSinkBase& out = objSink(); switch (node->getOp()) { case EOpInitialize: if (visit == InVisit) { out << " = "; // RHS of initialize is not being declared. mDeclaringVariables = false; } break; case EOpAssign: writeTriplet(visit, "(", " = ", ")"); break; case EOpAddAssign: writeTriplet(visit, "(", " += ", ")"); break; case EOpSubAssign: writeTriplet(visit, "(", " -= ", ")"); break; case EOpDivAssign: writeTriplet(visit, "(", " /= ", ")"); break; // Notice the fall-through. case EOpMulAssign: case EOpVectorTimesMatrixAssign: case EOpVectorTimesScalarAssign: case EOpMatrixTimesScalarAssign: case EOpMatrixTimesMatrixAssign: writeTriplet(visit, "(", " *= ", ")"); break; case EOpIndexDirect: case EOpIndexIndirect: writeTriplet(visit, NULL, "[", "]"); break; case EOpIndexDirectStruct: if (visit == InVisit) { out << "."; // TODO(alokp): ASSERT out << node->getType().getFieldName(); visitChildren = false; } break; case EOpVectorSwizzle: if (visit == InVisit) { out << "."; TIntermAggregate* rightChild = node->getRight()->getAsAggregate(); TIntermSequence& sequence = rightChild->getSequence(); for (TIntermSequence::iterator sit = sequence.begin(); sit != sequence.end(); ++sit) { TIntermConstantUnion* element = (*sit)->getAsConstantUnion(); ASSERT(element->getBasicType() == EbtInt); ASSERT(element->getNominalSize() == 1); const ConstantUnion& data = element->getUnionArrayPointer()[0]; ASSERT(data.getType() == EbtInt); switch (data.getIConst()) { case 0: out << "x"; break; case 1: out << "y"; break; case 2: out << "z"; break; case 3: out << "w"; break; default: UNREACHABLE(); break; } } visitChildren = false; } break; case EOpAdd: writeTriplet(visit, "(", " + ", ")"); break; case EOpSub: writeTriplet(visit, "(", " - ", ")"); break; case EOpMul: writeTriplet(visit, "(", " * ", ")"); break; case EOpDiv: writeTriplet(visit, "(", " / ", ")"); break; case EOpMod: UNIMPLEMENTED(); break; case EOpEqual: writeTriplet(visit, "(", " == ", ")"); break; case EOpNotEqual: writeTriplet(visit, "(", " != ", ")"); break; case EOpLessThan: writeTriplet(visit, "(", " < ", ")"); break; case EOpGreaterThan: writeTriplet(visit, "(", " > ", ")"); break; case EOpLessThanEqual: writeTriplet(visit, "(", " <= ", ")"); break; case EOpGreaterThanEqual: writeTriplet(visit, "(", " >= ", ")"); break; // Notice the fall-through. case EOpVectorTimesScalar: case EOpVectorTimesMatrix: case EOpMatrixTimesVector: case EOpMatrixTimesScalar: case EOpMatrixTimesMatrix: writeTriplet(visit, "(", " * ", ")"); break; case EOpLogicalOr: writeTriplet(visit, "(", " || ", ")"); break; case EOpLogicalXor: writeTriplet(visit, "(", " ^^ ", ")"); break; case EOpLogicalAnd: writeTriplet(visit, "(", " && ", ")"); break; default: UNREACHABLE(); break; } return visitChildren; } bool TOutputGLSL::visitUnary(Visit visit, TIntermUnary* node) { switch (node->getOp()) { case EOpNegative: writeTriplet(visit, "(-", NULL, ")"); break; case EOpVectorLogicalNot: writeTriplet(visit, "not(", NULL, ")"); break; case EOpLogicalNot: writeTriplet(visit, "(!", NULL, ")"); break; case EOpPostIncrement: writeTriplet(visit, "(", NULL, "++)"); break; case EOpPostDecrement: writeTriplet(visit, "(", NULL, "--)"); break; case EOpPreIncrement: writeTriplet(visit, "(++", NULL, ")"); break; case EOpPreDecrement: writeTriplet(visit, "(--", NULL, ")"); break; case EOpConvIntToBool: case EOpConvFloatToBool: switch (node->getOperand()->getType().getNominalSize()) { case 1: writeTriplet(visit, "bool(", NULL, ")"); break; case 2: writeTriplet(visit, "bvec2(", NULL, ")"); break; case 3: writeTriplet(visit, "bvec3(", NULL, ")"); break; case 4: writeTriplet(visit, "bvec4(", NULL, ")"); break; default: UNREACHABLE(); } break; case EOpConvBoolToFloat: case EOpConvIntToFloat: switch (node->getOperand()->getType().getNominalSize()) { case 1: writeTriplet(visit, "float(", NULL, ")"); break; case 2: writeTriplet(visit, "vec2(", NULL, ")"); break; case 3: writeTriplet(visit, "vec3(", NULL, ")"); break; case 4: writeTriplet(visit, "vec4(", NULL, ")"); break; default: UNREACHABLE(); } break; case EOpConvFloatToInt: case EOpConvBoolToInt: switch (node->getOperand()->getType().getNominalSize()) { case 1: writeTriplet(visit, "int(", NULL, ")"); break; case 2: writeTriplet(visit, "ivec2(", NULL, ")"); break; case 3: writeTriplet(visit, "ivec3(", NULL, ")"); break; case 4: writeTriplet(visit, "ivec4(", NULL, ")"); break; default: UNREACHABLE(); } break; case EOpRadians: writeTriplet(visit, "radians(", NULL, ")"); break; case EOpDegrees: writeTriplet(visit, "degrees(", NULL, ")"); break; case EOpSin: writeTriplet(visit, "sin(", NULL, ")"); break; case EOpCos: writeTriplet(visit, "cos(", NULL, ")"); break; case EOpTan: writeTriplet(visit, "tan(", NULL, ")"); break; case EOpAsin: writeTriplet(visit, "asin(", NULL, ")"); break; case EOpAcos: writeTriplet(visit, "acos(", NULL, ")"); break; case EOpAtan: writeTriplet(visit, "atan(", NULL, ")"); break; case EOpExp: writeTriplet(visit, "exp(", NULL, ")"); break; case EOpLog: writeTriplet(visit, "log(", NULL, ")"); break; case EOpExp2: writeTriplet(visit, "exp2(", NULL, ")"); break; case EOpLog2: writeTriplet(visit, "log2(", NULL, ")"); break; case EOpSqrt: writeTriplet(visit, "sqrt(", NULL, ")"); break; case EOpInverseSqrt: writeTriplet(visit, "inversesqrt(", NULL, ")"); break; case EOpAbs: writeTriplet(visit, "abs(", NULL, ")"); break; case EOpSign: writeTriplet(visit, "sign(", NULL, ")"); break; case EOpFloor: writeTriplet(visit, "floor(", NULL, ")"); break; case EOpCeil: writeTriplet(visit, "ceil(", NULL, ")"); break; case EOpFract: writeTriplet(visit, "fract(", NULL, ")"); break; case EOpLength: writeTriplet(visit, "length(", NULL, ")"); break; case EOpNormalize: writeTriplet(visit, "normalize(", NULL, ")"); break; case EOpDFdx: writeTriplet(visit, "dFdx(", NULL, ")"); break; case EOpDFdy: writeTriplet(visit, "dFdy(", NULL, ")"); break; case EOpFwidth: writeTriplet(visit, "fwidth(", NULL, ")"); break; case EOpAny: writeTriplet(visit, "any(", NULL, ")"); break; case EOpAll: writeTriplet(visit, "all(", NULL, ")"); break; default: UNREACHABLE(); break; } return true; } bool TOutputGLSL::visitSelection(Visit visit, TIntermSelection* node) { TInfoSinkBase& out = objSink(); if (node->usesTernaryOperator()) { // Notice two brackets at the beginning and end. The outer ones // encapsulate the whole ternary expression. This preserves the // order of precedence when ternary expressions are used in a // compound expression, i.e., c = 2 * (a < b ? 1 : 2). out << "(("; node->getCondition()->traverse(this); out << ") ? ("; node->getTrueBlock()->traverse(this); out << ") : ("; node->getFalseBlock()->traverse(this); out << "))"; } else { out << "if ("; node->getCondition()->traverse(this); out << ")\n"; incrementDepth(); visitCodeBlock(node->getTrueBlock()); if (node->getFalseBlock()) { out << "else\n"; visitCodeBlock(node->getFalseBlock()); } decrementDepth(); } return false; } bool TOutputGLSL::visitAggregate(Visit visit, TIntermAggregate* node) { bool visitChildren = true; TInfoSinkBase& out = objSink(); switch (node->getOp()) { case EOpSequence: { // Scope the sequences except when at the global scope. if (depth > 0) out << "{\n"; incrementDepth(); const TIntermSequence& sequence = node->getSequence(); for (TIntermSequence::const_iterator iter = sequence.begin(); iter != sequence.end(); ++iter) { TIntermNode* node = *iter; ASSERT(node != NULL); node->traverse(this); if (isSingleStatement(node)) out << ";\n"; } decrementDepth(); // Scope the sequences except when at the global scope. if (depth > 0) out << "}\n"; visitChildren = false; break; } case EOpPrototype: { // Function declaration. ASSERT(visit == PreVisit); TString returnType = getTypeName(node->getType()); out << returnType << " " << node->getName(); out << "("; writeFunctionParameters(node->getSequence()); out << ")"; visitChildren = false; break; } case EOpFunction: { // Function definition. ASSERT(visit == PreVisit); TString returnType = getTypeName(node->getType()); TString functionName = TFunction::unmangleName(node->getName()); out << returnType << " " << functionName; incrementDepth(); // Function definition node contains one or two children nodes // representing function parameters and function body. The latter // is not present in case of empty function bodies. const TIntermSequence& sequence = node->getSequence(); ASSERT((sequence.size() == 1) || (sequence.size() == 2)); TIntermSequence::const_iterator seqIter = sequence.begin(); // Traverse function parameters. TIntermAggregate* params = (*seqIter)->getAsAggregate(); ASSERT(params != NULL); ASSERT(params->getOp() == EOpParameters); params->traverse(this); // Traverse function body. TIntermAggregate* body = ++seqIter != sequence.end() ? (*seqIter)->getAsAggregate() : NULL; visitCodeBlock(body); decrementDepth(); // Fully processed; no need to visit children. visitChildren = false; break; } case EOpFunctionCall: // Function call. if (visit == PreVisit) { TString functionName = TFunction::unmangleName(node->getName()); out << functionName << "("; } else if (visit == InVisit) { out << ", "; } else { out << ")"; } break; case EOpParameters: { // Function parameters. ASSERT(visit == PreVisit); out << "("; writeFunctionParameters(node->getSequence()); out << ")"; visitChildren = false; break; } case EOpDeclaration: { // Variable declaration. if (visit == PreVisit) { const TIntermSequence& sequence = node->getSequence(); const TIntermTyped* variable = sequence.front()->getAsTyped(); writeVariableType(variable->getType()); out << " "; mDeclaringVariables = true; } else if (visit == InVisit) { out << ", "; mDeclaringVariables = true; } else { mDeclaringVariables = false; } break; } case EOpConstructFloat: writeTriplet(visit, "float(", NULL, ")"); break; case EOpConstructVec2: writeTriplet(visit, "vec2(", ", ", ")"); break; case EOpConstructVec3: writeTriplet(visit, "vec3(", ", ", ")"); break; case EOpConstructVec4: writeTriplet(visit, "vec4(", ", ", ")"); break; case EOpConstructBool: writeTriplet(visit, "bool(", NULL, ")"); break; case EOpConstructBVec2: writeTriplet(visit, "bvec2(", ", ", ")"); break; case EOpConstructBVec3: writeTriplet(visit, "bvec3(", ", ", ")"); break; case EOpConstructBVec4: writeTriplet(visit, "bvec4(", ", ", ")"); break; case EOpConstructInt: writeTriplet(visit, "int(", NULL, ")"); break; case EOpConstructIVec2: writeTriplet(visit, "ivec2(", ", ", ")"); break; case EOpConstructIVec3: writeTriplet(visit, "ivec3(", ", ", ")"); break; case EOpConstructIVec4: writeTriplet(visit, "ivec4(", ", ", ")"); break; case EOpConstructMat2: writeTriplet(visit, "mat2(", ", ", ")"); break; case EOpConstructMat3: writeTriplet(visit, "mat3(", ", ", ")"); break; case EOpConstructMat4: writeTriplet(visit, "mat4(", ", ", ")"); break; case EOpConstructStruct: if (visit == PreVisit) { const TType& type = node->getType(); ASSERT(type.getBasicType() == EbtStruct); out << type.getTypeName() << "("; } else if (visit == InVisit) { out << ", "; } else { out << ")"; } break; case EOpLessThan: writeTriplet(visit, "lessThan(", ", ", ")"); break; case EOpGreaterThan: writeTriplet(visit, "greaterThan(", ", ", ")"); break; case EOpLessThanEqual: writeTriplet(visit, "lessThanEqual(", ", ", ")"); break; case EOpGreaterThanEqual: writeTriplet(visit, "greaterThanEqual(", ", ", ")"); break; case EOpVectorEqual: writeTriplet(visit, "equal(", ", ", ")"); break; case EOpVectorNotEqual: writeTriplet(visit, "notEqual(", ", ", ")"); break; case EOpComma: writeTriplet(visit, NULL, ", ", NULL); break; case EOpMod: writeTriplet(visit, "mod(", ", ", ")"); break; case EOpPow: writeTriplet(visit, "pow(", ", ", ")"); break; case EOpAtan: writeTriplet(visit, "atan(", ", ", ")"); break; case EOpMin: writeTriplet(visit, "min(", ", ", ")"); break; case EOpMax: writeTriplet(visit, "max(", ", ", ")"); break; case EOpClamp: writeTriplet(visit, "clamp(", ", ", ")"); break; case EOpMix: writeTriplet(visit, "mix(", ", ", ")"); break; case EOpStep: writeTriplet(visit, "step(", ", ", ")"); break; case EOpSmoothStep: writeTriplet(visit, "smoothstep(", ", ", ")"); break; case EOpDistance: writeTriplet(visit, "distance(", ", ", ")"); break; case EOpDot: writeTriplet(visit, "dot(", ", ", ")"); break; case EOpCross: writeTriplet(visit, "cross(", ", ", ")"); break; case EOpFaceForward: writeTriplet(visit, "faceforward(", ", ", ")"); break; case EOpReflect: writeTriplet(visit, "reflect(", ", ", ")"); break; case EOpRefract: writeTriplet(visit, "refract(", ", ", ")"); break; case EOpMul: writeTriplet(visit, "matrixCompMult(", ", ", ")"); break; default: UNREACHABLE(); break; } return visitChildren; } bool TOutputGLSL::visitLoop(Visit visit, TIntermLoop* node) { TInfoSinkBase& out = objSink(); incrementDepth(); // Loop header. TLoopType loopType = node->getType(); if (loopType == ELoopFor) // for loop { out << "for ("; if (node->getInit()) node->getInit()->traverse(this); out << "; "; if (node->getCondition()) node->getCondition()->traverse(this); out << "; "; if (node->getExpression()) node->getExpression()->traverse(this); out << ")\n"; } else if (loopType == ELoopWhile) // while loop { out << "while ("; ASSERT(node->getCondition() != NULL); node->getCondition()->traverse(this); out << ")\n"; } else // do-while loop { ASSERT(loopType == ELoopDoWhile); out << "do\n"; } // Loop body. visitCodeBlock(node->getBody()); // Loop footer. if (loopType == ELoopDoWhile) // do-while loop { out << "while ("; ASSERT(node->getCondition() != NULL); node->getCondition()->traverse(this); out << ");\n"; } decrementDepth(); // No need to visit children. They have been already processed in // this function. return false; } bool TOutputGLSL::visitBranch(Visit visit, TIntermBranch* node) { switch (node->getFlowOp()) { case EOpKill: writeTriplet(visit, "discard", NULL, NULL); break; case EOpBreak: writeTriplet(visit, "break", NULL, NULL); break; case EOpContinue: writeTriplet(visit, "continue", NULL, NULL); break; case EOpReturn: writeTriplet(visit, "return ", NULL, NULL); break; default: UNREACHABLE(); break; } return true; } void TOutputGLSL::visitCodeBlock(TIntermNode* node) { TInfoSinkBase &out = objSink(); if (node != NULL) { node->traverse(this); // Single statements not part of a sequence need to be terminated // with semi-colon. if (isSingleStatement(node)) out << ";\n"; } else { out << "{\n}\n"; // Empty code block. } }