// // Copyright (c) 2002-2012 The ANGLE Project Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // // Program.cpp: Implements the gl::Program class. Implements GL program objects // and related functionality. [OpenGL ES 2.0.24] section 2.10.3 page 28. #include "libGLESv2/Program.h" #include "common/debug.h" #include "libGLESv2/main.h" #include "libGLESv2/Shader.h" #include "libGLESv2/utilities.h" #include #if !defined(ANGLE_COMPILE_OPTIMIZATION_LEVEL) #define ANGLE_COMPILE_OPTIMIZATION_LEVEL D3DCOMPILE_OPTIMIZATION_LEVEL3 #endif namespace gl { unsigned int Program::mCurrentSerial = 1; const char *fakepath = "C:\\fakepath"; std::string str(int i) { char buffer[20]; sprintf(buffer, "%d", i); return buffer; } Uniform::Uniform(GLenum type, const std::string &_name, unsigned int arraySize) : type(type), _name(_name), name(Program::undecorateUniform(_name)), arraySize(arraySize) { int bytes = UniformInternalSize(type) * arraySize; data = new unsigned char[bytes]; memset(data, 0, bytes); dirty = true; } Uniform::~Uniform() { delete[] data; } bool Uniform::isArray() { return _name.compare(0, 3, "ar_") == 0; } UniformLocation::UniformLocation(const std::string &_name, unsigned int element, unsigned int index) : name(Program::undecorateUniform(_name)), element(element), index(index) { } Program::Program(ResourceManager *manager, GLuint handle) : mResourceManager(manager), mHandle(handle), mSerial(issueSerial()) { mDevice = getDevice(); mFragmentShader = NULL; mVertexShader = NULL; mPixelExecutable = NULL; mVertexExecutable = NULL; mConstantTablePS = NULL; mConstantTableVS = NULL; mInfoLog = NULL; mValidated = false; unlink(); mDeleteStatus = false; mRefCount = 0; } Program::~Program() { unlink(true); if (mVertexShader != NULL) { mVertexShader->release(); } if (mFragmentShader != NULL) { mFragmentShader->release(); } } bool Program::attachShader(Shader *shader) { if (shader->getType() == GL_VERTEX_SHADER) { if (mVertexShader) { return false; } mVertexShader = (VertexShader*)shader; mVertexShader->addRef(); } else if (shader->getType() == GL_FRAGMENT_SHADER) { if (mFragmentShader) { return false; } mFragmentShader = (FragmentShader*)shader; mFragmentShader->addRef(); } else UNREACHABLE(); return true; } bool Program::detachShader(Shader *shader) { if (shader->getType() == GL_VERTEX_SHADER) { if (mVertexShader != shader) { return false; } mVertexShader->release(); mVertexShader = NULL; } else if (shader->getType() == GL_FRAGMENT_SHADER) { if (mFragmentShader != shader) { return false; } mFragmentShader->release(); mFragmentShader = NULL; } else UNREACHABLE(); return true; } int Program::getAttachedShadersCount() const { return (mVertexShader ? 1 : 0) + (mFragmentShader ? 1 : 0); } IDirect3DPixelShader9 *Program::getPixelShader() { return mPixelExecutable; } IDirect3DVertexShader9 *Program::getVertexShader() { return mVertexExecutable; } void Program::bindAttributeLocation(GLuint index, const char *name) { if (index < MAX_VERTEX_ATTRIBS) { for (int i = 0; i < MAX_VERTEX_ATTRIBS; i++) { mAttributeBinding[i].erase(name); } mAttributeBinding[index].insert(name); } } GLuint Program::getAttributeLocation(const char *name) { if (name) { for (int index = 0; index < MAX_VERTEX_ATTRIBS; index++) { if (mLinkedAttribute[index].name == std::string(name)) { return index; } } } return -1; } int Program::getSemanticIndex(int attributeIndex) { ASSERT(attributeIndex >= 0 && attributeIndex < MAX_VERTEX_ATTRIBS); return mSemanticIndex[attributeIndex]; } // Returns one more than the highest sampler index used. GLint Program::getUsedSamplerRange(SamplerType type) { switch (type) { case SAMPLER_PIXEL: return mUsedPixelSamplerRange; case SAMPLER_VERTEX: return mUsedVertexSamplerRange; default: UNREACHABLE(); return 0; } } // Returns the index of the texture image unit (0-19) corresponding to a Direct3D 9 sampler // index (0-15 for the pixel shader and 0-3 for the vertex shader). GLint Program::getSamplerMapping(SamplerType type, unsigned int samplerIndex) { GLint logicalTextureUnit = -1; switch (type) { case SAMPLER_PIXEL: ASSERT(samplerIndex < sizeof(mSamplersPS)/sizeof(mSamplersPS[0])); if (mSamplersPS[samplerIndex].active) { logicalTextureUnit = mSamplersPS[samplerIndex].logicalTextureUnit; } break; case SAMPLER_VERTEX: ASSERT(samplerIndex < sizeof(mSamplersVS)/sizeof(mSamplersVS[0])); if (mSamplersVS[samplerIndex].active) { logicalTextureUnit = mSamplersVS[samplerIndex].logicalTextureUnit; } break; default: UNREACHABLE(); } if (logicalTextureUnit >= 0 && logicalTextureUnit < (GLint)getContext()->getMaximumCombinedTextureImageUnits()) { return logicalTextureUnit; } return -1; } // Returns the texture type for a given Direct3D 9 sampler type and // index (0-15 for the pixel shader and 0-3 for the vertex shader). TextureType Program::getSamplerTextureType(SamplerType type, unsigned int samplerIndex) { switch (type) { case SAMPLER_PIXEL: ASSERT(samplerIndex < sizeof(mSamplersPS)/sizeof(mSamplersPS[0])); ASSERT(mSamplersPS[samplerIndex].active); return mSamplersPS[samplerIndex].textureType; case SAMPLER_VERTEX: ASSERT(samplerIndex < sizeof(mSamplersVS)/sizeof(mSamplersVS[0])); ASSERT(mSamplersVS[samplerIndex].active); return mSamplersVS[samplerIndex].textureType; default: UNREACHABLE(); } return TEXTURE_2D; } GLint Program::getUniformLocation(std::string name) { unsigned int subscript = 0; // Strip any trailing array operator and retrieve the subscript size_t open = name.find_last_of('['); size_t close = name.find_last_of(']'); if (open != std::string::npos && close == name.length() - 1) { subscript = atoi(name.substr(open + 1).c_str()); name.erase(open); } unsigned int numUniforms = mUniformIndex.size(); for (unsigned int location = 0; location < numUniforms; location++) { if (mUniformIndex[location].name == name && mUniformIndex[location].element == subscript) { return location; } } return -1; } bool Program::setUniform1fv(GLint location, GLsizei count, const GLfloat* v) { if (location < 0 || location >= (int)mUniformIndex.size()) { return false; } Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; targetUniform->dirty = true; if (targetUniform->type == GL_FLOAT) { int arraySize = targetUniform->arraySize; if (arraySize == 1 && count > 1) return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION count = std::min(arraySize - (int)mUniformIndex[location].element, count); GLfloat *target = (GLfloat*)targetUniform->data + mUniformIndex[location].element * 4; for (int i = 0; i < count; i++) { target[0] = v[0]; target[1] = 0; target[2] = 0; target[3] = 0; target += 4; v += 1; } } else if (targetUniform->type == GL_BOOL) { int arraySize = targetUniform->arraySize; if (arraySize == 1 && count > 1) return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION count = std::min(arraySize - (int)mUniformIndex[location].element, count); GLboolean *boolParams = (GLboolean*)targetUniform->data + mUniformIndex[location].element; for (int i = 0; i < count; ++i) { if (v[i] == 0.0f) { boolParams[i] = GL_FALSE; } else { boolParams[i] = GL_TRUE; } } } else { return false; } return true; } bool Program::setUniform2fv(GLint location, GLsizei count, const GLfloat *v) { if (location < 0 || location >= (int)mUniformIndex.size()) { return false; } Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; targetUniform->dirty = true; if (targetUniform->type == GL_FLOAT_VEC2) { int arraySize = targetUniform->arraySize; if (arraySize == 1 && count > 1) return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION count = std::min(arraySize - (int)mUniformIndex[location].element, count); GLfloat *target = (GLfloat*)targetUniform->data + mUniformIndex[location].element * 4; for (int i = 0; i < count; i++) { target[0] = v[0]; target[1] = v[1]; target[2] = 0; target[3] = 0; target += 4; v += 2; } } else if (targetUniform->type == GL_BOOL_VEC2) { int arraySize = targetUniform->arraySize; if (arraySize == 1 && count > 1) return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION count = std::min(arraySize - (int)mUniformIndex[location].element, count); GLboolean *boolParams = (GLboolean*)targetUniform->data + mUniformIndex[location].element * 2; for (int i = 0; i < count * 2; ++i) { if (v[i] == 0.0f) { boolParams[i] = GL_FALSE; } else { boolParams[i] = GL_TRUE; } } } else { return false; } return true; } bool Program::setUniform3fv(GLint location, GLsizei count, const GLfloat *v) { if (location < 0 || location >= (int)mUniformIndex.size()) { return false; } Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; targetUniform->dirty = true; if (targetUniform->type == GL_FLOAT_VEC3) { int arraySize = targetUniform->arraySize; if (arraySize == 1 && count > 1) return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION count = std::min(arraySize - (int)mUniformIndex[location].element, count); GLfloat *target = (GLfloat*)targetUniform->data + mUniformIndex[location].element * 4; for (int i = 0; i < count; i++) { target[0] = v[0]; target[1] = v[1]; target[2] = v[2]; target[3] = 0; target += 4; v += 3; } } else if (targetUniform->type == GL_BOOL_VEC3) { int arraySize = targetUniform->arraySize; if (arraySize == 1 && count > 1) return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION count = std::min(arraySize - (int)mUniformIndex[location].element, count); GLboolean *boolParams = (GLboolean*)targetUniform->data + mUniformIndex[location].element * 3; for (int i = 0; i < count * 3; ++i) { if (v[i] == 0.0f) { boolParams[i] = GL_FALSE; } else { boolParams[i] = GL_TRUE; } } } else { return false; } return true; } bool Program::setUniform4fv(GLint location, GLsizei count, const GLfloat *v) { if (location < 0 || location >= (int)mUniformIndex.size()) { return false; } Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; targetUniform->dirty = true; if (targetUniform->type == GL_FLOAT_VEC4) { int arraySize = targetUniform->arraySize; if (arraySize == 1 && count > 1) return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION count = std::min(arraySize - (int)mUniformIndex[location].element, count); memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLfloat) * 4, v, 4 * sizeof(GLfloat) * count); } else if (targetUniform->type == GL_BOOL_VEC4) { int arraySize = targetUniform->arraySize; if (arraySize == 1 && count > 1) return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION count = std::min(arraySize - (int)mUniformIndex[location].element, count); GLboolean *boolParams = (GLboolean*)targetUniform->data + mUniformIndex[location].element * 4; for (int i = 0; i < count * 4; ++i) { if (v[i] == 0.0f) { boolParams[i] = GL_FALSE; } else { boolParams[i] = GL_TRUE; } } } else { return false; } return true; } template void transposeMatrix(T *target, const GLfloat *value) { int copyWidth = std::min(targetWidth, srcWidth); int copyHeight = std::min(targetHeight, srcHeight); for (int x = 0; x < copyWidth; x++) { for (int y = 0; y < copyHeight; y++) { target[x * targetWidth + y] = (T)value[y * srcWidth + x]; } } // clear unfilled right side for (int y = 0; y < copyHeight; y++) { for (int x = srcWidth; x < targetWidth; x++) { target[y * targetWidth + x] = (T)0; } } // clear unfilled bottom. for (int y = srcHeight; y < targetHeight; y++) { for (int x = 0; x < targetWidth; x++) { target[y * targetWidth + x] = (T)0; } } } bool Program::setUniformMatrix2fv(GLint location, GLsizei count, const GLfloat *value) { if (location < 0 || location >= (int)mUniformIndex.size()) { return false; } Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; targetUniform->dirty = true; if (targetUniform->type != GL_FLOAT_MAT2) { return false; } int arraySize = targetUniform->arraySize; if (arraySize == 1 && count > 1) return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION count = std::min(arraySize - (int)mUniformIndex[location].element, count); GLfloat *target = (GLfloat*)targetUniform->data + mUniformIndex[location].element * 8; for (int i = 0; i < count; i++) { transposeMatrix(target, value); target += 8; value += 4; } return true; } bool Program::setUniformMatrix3fv(GLint location, GLsizei count, const GLfloat *value) { if (location < 0 || location >= (int)mUniformIndex.size()) { return false; } Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; targetUniform->dirty = true; if (targetUniform->type != GL_FLOAT_MAT3) { return false; } int arraySize = targetUniform->arraySize; if (arraySize == 1 && count > 1) return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION count = std::min(arraySize - (int)mUniformIndex[location].element, count); GLfloat *target = (GLfloat*)targetUniform->data + mUniformIndex[location].element * 12; for (int i = 0; i < count; i++) { transposeMatrix(target, value); target += 12; value += 9; } return true; } bool Program::setUniformMatrix4fv(GLint location, GLsizei count, const GLfloat *value) { if (location < 0 || location >= (int)mUniformIndex.size()) { return false; } Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; targetUniform->dirty = true; if (targetUniform->type != GL_FLOAT_MAT4) { return false; } int arraySize = targetUniform->arraySize; if (arraySize == 1 && count > 1) return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION count = std::min(arraySize - (int)mUniformIndex[location].element, count); GLfloat *target = (GLfloat*)(targetUniform->data + mUniformIndex[location].element * sizeof(GLfloat) * 16); for (int i = 0; i < count; i++) { transposeMatrix(target, value); target += 16; value += 16; } return true; } bool Program::setUniform1iv(GLint location, GLsizei count, const GLint *v) { if (location < 0 || location >= (int)mUniformIndex.size()) { return false; } Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; targetUniform->dirty = true; if (targetUniform->type == GL_INT || targetUniform->type == GL_SAMPLER_2D || targetUniform->type == GL_SAMPLER_CUBE) { int arraySize = targetUniform->arraySize; if (arraySize == 1 && count > 1) return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION count = std::min(arraySize - (int)mUniformIndex[location].element, count); memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLint), v, sizeof(GLint) * count); } else if (targetUniform->type == GL_BOOL) { int arraySize = targetUniform->arraySize; if (arraySize == 1 && count > 1) return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION count = std::min(arraySize - (int)mUniformIndex[location].element, count); GLboolean *boolParams = (GLboolean*)targetUniform->data + mUniformIndex[location].element; for (int i = 0; i < count; ++i) { if (v[i] == 0) { boolParams[i] = GL_FALSE; } else { boolParams[i] = GL_TRUE; } } } else { return false; } return true; } bool Program::setUniform2iv(GLint location, GLsizei count, const GLint *v) { if (location < 0 || location >= (int)mUniformIndex.size()) { return false; } Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; targetUniform->dirty = true; if (targetUniform->type == GL_INT_VEC2) { int arraySize = targetUniform->arraySize; if (arraySize == 1 && count > 1) return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION count = std::min(arraySize - (int)mUniformIndex[location].element, count); memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLint) * 2, v, 2 * sizeof(GLint) * count); } else if (targetUniform->type == GL_BOOL_VEC2) { int arraySize = targetUniform->arraySize; if (arraySize == 1 && count > 1) return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION count = std::min(arraySize - (int)mUniformIndex[location].element, count); GLboolean *boolParams = (GLboolean*)targetUniform->data + mUniformIndex[location].element * 2; for (int i = 0; i < count * 2; ++i) { if (v[i] == 0) { boolParams[i] = GL_FALSE; } else { boolParams[i] = GL_TRUE; } } } else { return false; } return true; } bool Program::setUniform3iv(GLint location, GLsizei count, const GLint *v) { if (location < 0 || location >= (int)mUniformIndex.size()) { return false; } Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; targetUniform->dirty = true; if (targetUniform->type == GL_INT_VEC3) { int arraySize = targetUniform->arraySize; if (arraySize == 1 && count > 1) return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION count = std::min(arraySize - (int)mUniformIndex[location].element, count); memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLint) * 3, v, 3 * sizeof(GLint) * count); } else if (targetUniform->type == GL_BOOL_VEC3) { int arraySize = targetUniform->arraySize; if (arraySize == 1 && count > 1) return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION count = std::min(arraySize - (int)mUniformIndex[location].element, count); GLboolean *boolParams = (GLboolean*)targetUniform->data + mUniformIndex[location].element * 3; for (int i = 0; i < count * 3; ++i) { if (v[i] == 0) { boolParams[i] = GL_FALSE; } else { boolParams[i] = GL_TRUE; } } } else { return false; } return true; } bool Program::setUniform4iv(GLint location, GLsizei count, const GLint *v) { if (location < 0 || location >= (int)mUniformIndex.size()) { return false; } Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; targetUniform->dirty = true; if (targetUniform->type == GL_INT_VEC4) { int arraySize = targetUniform->arraySize; if (arraySize == 1 && count > 1) return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION count = std::min(arraySize - (int)mUniformIndex[location].element, count); memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLint) * 4, v, 4 * sizeof(GLint) * count); } else if (targetUniform->type == GL_BOOL_VEC4) { int arraySize = targetUniform->arraySize; if (arraySize == 1 && count > 1) return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION count = std::min(arraySize - (int)mUniformIndex[location].element, count); GLboolean *boolParams = (GLboolean*)targetUniform->data + mUniformIndex[location].element * 4; for (int i = 0; i < count * 4; ++i) { if (v[i] == 0) { boolParams[i] = GL_FALSE; } else { boolParams[i] = GL_TRUE; } } } else { return false; } return true; } bool Program::getUniformfv(GLint location, GLsizei *bufSize, GLfloat *params) { if (location < 0 || location >= (int)mUniformIndex.size()) { return false; } Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; // sized queries -- ensure the provided buffer is large enough if (bufSize) { int requiredBytes = UniformExternalSize(targetUniform->type); if (*bufSize < requiredBytes) { return false; } } switch (targetUniform->type) { case GL_FLOAT_MAT2: transposeMatrix(params, (GLfloat*)targetUniform->data + mUniformIndex[location].element * 8); break; case GL_FLOAT_MAT3: transposeMatrix(params, (GLfloat*)targetUniform->data + mUniformIndex[location].element * 12); break; case GL_FLOAT_MAT4: transposeMatrix(params, (GLfloat*)targetUniform->data + mUniformIndex[location].element * 16); break; default: { unsigned int count = UniformExternalComponentCount(targetUniform->type); unsigned int internalCount = UniformInternalComponentCount(targetUniform->type); switch (UniformComponentType(targetUniform->type)) { case GL_BOOL: { GLboolean *boolParams = (GLboolean*)targetUniform->data + mUniformIndex[location].element * internalCount; for (unsigned int i = 0; i < count; ++i) { params[i] = (boolParams[i] == GL_FALSE) ? 0.0f : 1.0f; } } break; case GL_FLOAT: memcpy(params, targetUniform->data + mUniformIndex[location].element * internalCount * sizeof(GLfloat), count * sizeof(GLfloat)); break; case GL_INT: { GLint *intParams = (GLint*)targetUniform->data + mUniformIndex[location].element * internalCount; for (unsigned int i = 0; i < count; ++i) { params[i] = (float)intParams[i]; } } break; default: UNREACHABLE(); } } } return true; } bool Program::getUniformiv(GLint location, GLsizei *bufSize, GLint *params) { if (location < 0 || location >= (int)mUniformIndex.size()) { return false; } Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; // sized queries -- ensure the provided buffer is large enough if (bufSize) { int requiredBytes = UniformExternalSize(targetUniform->type); if (*bufSize < requiredBytes) { return false; } } switch (targetUniform->type) { case GL_FLOAT_MAT2: { transposeMatrix(params, (GLfloat*)targetUniform->data + mUniformIndex[location].element * 8); } break; case GL_FLOAT_MAT3: { transposeMatrix(params, (GLfloat*)targetUniform->data + mUniformIndex[location].element * 12); } break; case GL_FLOAT_MAT4: { transposeMatrix(params, (GLfloat*)targetUniform->data + mUniformIndex[location].element * 16); } break; default: { unsigned int count = UniformExternalComponentCount(targetUniform->type); unsigned int internalCount = UniformInternalComponentCount(targetUniform->type); switch (UniformComponentType(targetUniform->type)) { case GL_BOOL: { GLboolean *boolParams = targetUniform->data + mUniformIndex[location].element * internalCount; for (unsigned int i = 0; i < count; ++i) { params[i] = (GLint)boolParams[i]; } } break; case GL_FLOAT: { GLfloat *floatParams = (GLfloat*)targetUniform->data + mUniformIndex[location].element * internalCount; for (unsigned int i = 0; i < count; ++i) { params[i] = (GLint)floatParams[i]; } } break; case GL_INT: memcpy(params, targetUniform->data + mUniformIndex[location].element * internalCount * sizeof(GLint), count * sizeof(GLint)); break; default: UNREACHABLE(); } } } return true; } void Program::dirtyAllUniforms() { unsigned int numUniforms = mUniforms.size(); for (unsigned int index = 0; index < numUniforms; index++) { mUniforms[index]->dirty = true; } } // Applies all the uniforms set for this program object to the Direct3D 9 device void Program::applyUniforms() { for (std::vector::iterator ub = mUniforms.begin(), ue = mUniforms.end(); ub != ue; ++ub) { Uniform *targetUniform = *ub; if (targetUniform->dirty) { int arraySize = targetUniform->arraySize; GLfloat *f = (GLfloat*)targetUniform->data; GLint *i = (GLint*)targetUniform->data; GLboolean *b = (GLboolean*)targetUniform->data; switch (targetUniform->type) { case GL_BOOL: applyUniformnbv(targetUniform, arraySize, 1, b); break; case GL_BOOL_VEC2: applyUniformnbv(targetUniform, arraySize, 2, b); break; case GL_BOOL_VEC3: applyUniformnbv(targetUniform, arraySize, 3, b); break; case GL_BOOL_VEC4: applyUniformnbv(targetUniform, arraySize, 4, b); break; case GL_FLOAT: case GL_FLOAT_VEC2: case GL_FLOAT_VEC3: case GL_FLOAT_VEC4: case GL_FLOAT_MAT2: case GL_FLOAT_MAT3: case GL_FLOAT_MAT4: applyUniformnfv(targetUniform, f); break; case GL_SAMPLER_2D: case GL_SAMPLER_CUBE: case GL_INT: applyUniform1iv(targetUniform, arraySize, i); break; case GL_INT_VEC2: applyUniform2iv(targetUniform, arraySize, i); break; case GL_INT_VEC3: applyUniform3iv(targetUniform, arraySize, i); break; case GL_INT_VEC4: applyUniform4iv(targetUniform, arraySize, i); break; default: UNREACHABLE(); } targetUniform->dirty = false; } } } // Compiles the HLSL code of the attached shaders into executable binaries ID3D10Blob *Program::compileToBinary(const char *hlsl, const char *profile, ID3DXConstantTable **constantTable) { if (!hlsl) { return NULL; } DWORD result; UINT flags = 0; std::string sourceText; if (perfActive()) { flags |= D3DCOMPILE_DEBUG; #ifdef NDEBUG flags |= ANGLE_COMPILE_OPTIMIZATION_LEVEL; #else flags |= D3DCOMPILE_SKIP_OPTIMIZATION; #endif std::string sourcePath = getTempPath(); sourceText = std::string("#line 2 \"") + sourcePath + std::string("\"\n\n") + std::string(hlsl); writeFile(sourcePath.c_str(), sourceText.c_str(), sourceText.size()); } else { flags |= ANGLE_COMPILE_OPTIMIZATION_LEVEL; sourceText = hlsl; } ID3D10Blob *binary = NULL; ID3D10Blob *errorMessage = NULL; result = D3DCompile(hlsl, strlen(hlsl), fakepath, NULL, NULL, "main", profile, flags, 0, &binary, &errorMessage); if (errorMessage) { const char *message = (const char*)errorMessage->GetBufferPointer(); appendToInfoLogSanitized(message); TRACE("\n%s", hlsl); TRACE("\n%s", message); errorMessage->Release(); errorMessage = NULL; } if (FAILED(result)) { if (result == D3DERR_OUTOFVIDEOMEMORY || result == E_OUTOFMEMORY) { error(GL_OUT_OF_MEMORY); } return NULL; } result = D3DXGetShaderConstantTable(static_cast(binary->GetBufferPointer()), constantTable); if (FAILED(result)) { if (result == D3DERR_OUTOFVIDEOMEMORY || result == E_OUTOFMEMORY) { error(GL_OUT_OF_MEMORY); } binary->Release(); return NULL; } return binary; } // Packs varyings into generic varying registers, using the algorithm from [OpenGL ES Shading Language 1.00 rev. 17] appendix A section 7 page 111 // Returns the number of used varying registers, or -1 if unsuccesful int Program::packVaryings(const Varying *packing[][4]) { Context *context = getContext(); const int maxVaryingVectors = context->getMaximumVaryingVectors(); for (VaryingList::iterator varying = mFragmentShader->mVaryings.begin(); varying != mFragmentShader->mVaryings.end(); varying++) { int n = VariableRowCount(varying->type) * varying->size; int m = VariableColumnCount(varying->type); bool success = false; if (m == 2 || m == 3 || m == 4) { for (int r = 0; r <= maxVaryingVectors - n && !success; r++) { bool available = true; for (int y = 0; y < n && available; y++) { for (int x = 0; x < m && available; x++) { if (packing[r + y][x]) { available = false; } } } if (available) { varying->reg = r; varying->col = 0; for (int y = 0; y < n; y++) { for (int x = 0; x < m; x++) { packing[r + y][x] = &*varying; } } success = true; } } if (!success && m == 2) { for (int r = maxVaryingVectors - n; r >= 0 && !success; r--) { bool available = true; for (int y = 0; y < n && available; y++) { for (int x = 2; x < 4 && available; x++) { if (packing[r + y][x]) { available = false; } } } if (available) { varying->reg = r; varying->col = 2; for (int y = 0; y < n; y++) { for (int x = 2; x < 4; x++) { packing[r + y][x] = &*varying; } } success = true; } } } } else if (m == 1) { int space[4] = {0}; for (int y = 0; y < maxVaryingVectors; y++) { for (int x = 0; x < 4; x++) { space[x] += packing[y][x] ? 0 : 1; } } int column = 0; for (int x = 0; x < 4; x++) { if (space[x] >= n && space[x] < space[column]) { column = x; } } if (space[column] >= n) { for (int r = 0; r < maxVaryingVectors; r++) { if (!packing[r][column]) { varying->reg = r; for (int y = r; y < r + n; y++) { packing[y][column] = &*varying; } break; } } varying->col = column; success = true; } } else UNREACHABLE(); if (!success) { appendToInfoLog("Could not pack varying %s", varying->name.c_str()); return -1; } } // Return the number of used registers int registers = 0; for (int r = 0; r < maxVaryingVectors; r++) { if (packing[r][0] || packing[r][1] || packing[r][2] || packing[r][3]) { registers++; } } return registers; } bool Program::linkVaryings() { if (mPixelHLSL.empty() || mVertexHLSL.empty()) { return false; } // Reset the varying register assignments for (VaryingList::iterator fragVar = mFragmentShader->mVaryings.begin(); fragVar != mFragmentShader->mVaryings.end(); fragVar++) { fragVar->reg = -1; fragVar->col = -1; } for (VaryingList::iterator vtxVar = mVertexShader->mVaryings.begin(); vtxVar != mVertexShader->mVaryings.end(); vtxVar++) { vtxVar->reg = -1; vtxVar->col = -1; } // Map the varyings to the register file const Varying *packing[MAX_VARYING_VECTORS_SM3][4] = {NULL}; int registers = packVaryings(packing); if (registers < 0) { return false; } // Write the HLSL input/output declarations Context *context = getContext(); const bool sm3 = context->supportsShaderModel3(); const int maxVaryingVectors = context->getMaximumVaryingVectors(); if (registers == maxVaryingVectors && mFragmentShader->mUsesFragCoord) { appendToInfoLog("No varying registers left to support gl_FragCoord"); return false; } for (VaryingList::iterator input = mFragmentShader->mVaryings.begin(); input != mFragmentShader->mVaryings.end(); input++) { bool matched = false; for (VaryingList::iterator output = mVertexShader->mVaryings.begin(); output != mVertexShader->mVaryings.end(); output++) { if (output->name == input->name) { if (output->type != input->type || output->size != input->size) { appendToInfoLog("Type of vertex varying %s does not match that of the fragment varying", output->name.c_str()); return false; } output->reg = input->reg; output->col = input->col; matched = true; break; } } if (!matched) { appendToInfoLog("Fragment varying %s does not match any vertex varying", input->name.c_str()); return false; } } std::string varyingSemantic = (sm3 ? "COLOR" : "TEXCOORD"); mVertexHLSL += "struct VS_INPUT\n" "{\n"; int semanticIndex = 0; for (AttributeArray::iterator attribute = mVertexShader->mAttributes.begin(); attribute != mVertexShader->mAttributes.end(); attribute++) { switch (attribute->type) { case GL_FLOAT: mVertexHLSL += " float "; break; case GL_FLOAT_VEC2: mVertexHLSL += " float2 "; break; case GL_FLOAT_VEC3: mVertexHLSL += " float3 "; break; case GL_FLOAT_VEC4: mVertexHLSL += " float4 "; break; case GL_FLOAT_MAT2: mVertexHLSL += " float2x2 "; break; case GL_FLOAT_MAT3: mVertexHLSL += " float3x3 "; break; case GL_FLOAT_MAT4: mVertexHLSL += " float4x4 "; break; default: UNREACHABLE(); } mVertexHLSL += decorateAttribute(attribute->name) + " : TEXCOORD" + str(semanticIndex) + ";\n"; semanticIndex += VariableRowCount(attribute->type); } mVertexHLSL += "};\n" "\n" "struct VS_OUTPUT\n" "{\n" " float4 gl_Position : POSITION;\n"; for (int r = 0; r < registers; r++) { int registerSize = packing[r][3] ? 4 : (packing[r][2] ? 3 : (packing[r][1] ? 2 : 1)); mVertexHLSL += " float" + str(registerSize) + " v" + str(r) + " : " + varyingSemantic + str(r) + ";\n"; } if (mFragmentShader->mUsesFragCoord) { mVertexHLSL += " float4 gl_FragCoord : " + varyingSemantic + str(registers) + ";\n"; } if (mVertexShader->mUsesPointSize && sm3) { mVertexHLSL += " float gl_PointSize : PSIZE;\n"; } mVertexHLSL += "};\n" "\n" "VS_OUTPUT main(VS_INPUT input)\n" "{\n"; for (AttributeArray::iterator attribute = mVertexShader->mAttributes.begin(); attribute != mVertexShader->mAttributes.end(); attribute++) { mVertexHLSL += " " + decorateAttribute(attribute->name) + " = "; if (VariableRowCount(attribute->type) > 1) // Matrix { mVertexHLSL += "transpose"; } mVertexHLSL += "(input." + decorateAttribute(attribute->name) + ");\n"; } mVertexHLSL += "\n" " gl_main();\n" "\n" " VS_OUTPUT output;\n" " output.gl_Position.x = gl_Position.x - dx_HalfPixelSize.x * gl_Position.w;\n" " output.gl_Position.y = gl_Position.y - dx_HalfPixelSize.y * gl_Position.w;\n" " output.gl_Position.z = (gl_Position.z + gl_Position.w) * 0.5;\n" " output.gl_Position.w = gl_Position.w;\n"; if (mVertexShader->mUsesPointSize && sm3) { mVertexHLSL += " output.gl_PointSize = clamp(gl_PointSize, 1.0, " + str((int)ALIASED_POINT_SIZE_RANGE_MAX_SM3) + ");\n"; } if (mFragmentShader->mUsesFragCoord) { mVertexHLSL += " output.gl_FragCoord = gl_Position;\n"; } for (VaryingList::iterator varying = mVertexShader->mVaryings.begin(); varying != mVertexShader->mVaryings.end(); varying++) { if (varying->reg >= 0) { for (int i = 0; i < varying->size; i++) { int rows = VariableRowCount(varying->type); for (int j = 0; j < rows; j++) { int r = varying->reg + i * rows + j; mVertexHLSL += " output.v" + str(r); bool sharedRegister = false; // Register used by multiple varyings for (int x = 0; x < 4; x++) { if (packing[r][x] && packing[r][x] != packing[r][0]) { sharedRegister = true; break; } } if(sharedRegister) { mVertexHLSL += "."; for (int x = 0; x < 4; x++) { if (packing[r][x] == &*varying) { switch(x) { case 0: mVertexHLSL += "x"; break; case 1: mVertexHLSL += "y"; break; case 2: mVertexHLSL += "z"; break; case 3: mVertexHLSL += "w"; break; } } } } mVertexHLSL += " = " + varying->name; if (varying->array) { mVertexHLSL += "[" + str(i) + "]"; } if (rows > 1) { mVertexHLSL += "[" + str(j) + "]"; } mVertexHLSL += ";\n"; } } } } mVertexHLSL += "\n" " return output;\n" "}\n"; mPixelHLSL += "struct PS_INPUT\n" "{\n"; for (VaryingList::iterator varying = mFragmentShader->mVaryings.begin(); varying != mFragmentShader->mVaryings.end(); varying++) { if (varying->reg >= 0) { for (int i = 0; i < varying->size; i++) { int rows = VariableRowCount(varying->type); for (int j = 0; j < rows; j++) { std::string n = str(varying->reg + i * rows + j); mPixelHLSL += " float4 v" + n + " : " + varyingSemantic + n + ";\n"; } } } else UNREACHABLE(); } if (mFragmentShader->mUsesFragCoord) { mPixelHLSL += " float4 gl_FragCoord : " + varyingSemantic + str(registers) + ";\n"; if (sm3) { mPixelHLSL += " float2 dx_VPos : VPOS;\n"; } } if (mFragmentShader->mUsesPointCoord && sm3) { mPixelHLSL += " float2 gl_PointCoord : TEXCOORD0;\n"; } if (mFragmentShader->mUsesFrontFacing) { mPixelHLSL += " float vFace : VFACE;\n"; } mPixelHLSL += "};\n" "\n" "struct PS_OUTPUT\n" "{\n" " float4 gl_Color[1] : COLOR;\n" "};\n" "\n" "PS_OUTPUT main(PS_INPUT input)\n" "{\n"; if (mFragmentShader->mUsesFragCoord) { mPixelHLSL += " float rhw = 1.0 / input.gl_FragCoord.w;\n"; if (sm3) { // dx_Coord.y contains the render target height. See Context::applyRenderTarget() mPixelHLSL += " gl_FragCoord.x = input.dx_VPos.x + 0.5;\n" " gl_FragCoord.y = dx_Coord.y - input.dx_VPos.y - 0.5;\n"; } else { // dx_Coord contains the viewport width/2, height/2, center.x and center.y. See Context::applyRenderTarget() mPixelHLSL += " gl_FragCoord.x = (input.gl_FragCoord.x * rhw) * dx_Coord.x + dx_Coord.z;\n" " gl_FragCoord.y = -(input.gl_FragCoord.y * rhw) * dx_Coord.y + dx_Coord.w;\n"; } mPixelHLSL += " gl_FragCoord.z = (input.gl_FragCoord.z * rhw) * dx_Depth.x + dx_Depth.y;\n" " gl_FragCoord.w = rhw;\n"; } if (mFragmentShader->mUsesPointCoord && sm3) { mPixelHLSL += " gl_PointCoord = input.gl_PointCoord;\n"; } if (mFragmentShader->mUsesFrontFacing) { mPixelHLSL += " gl_FrontFacing = dx_PointsOrLines || (dx_FrontCCW ? (input.vFace >= 0.0) : (input.vFace <= 0.0));\n"; } for (VaryingList::iterator varying = mFragmentShader->mVaryings.begin(); varying != mFragmentShader->mVaryings.end(); varying++) { if (varying->reg >= 0) { for (int i = 0; i < varying->size; i++) { int rows = VariableRowCount(varying->type); for (int j = 0; j < rows; j++) { std::string n = str(varying->reg + i * rows + j); mPixelHLSL += " " + varying->name; if (varying->array) { mPixelHLSL += "[" + str(i) + "]"; } if (rows > 1) { mPixelHLSL += "[" + str(j) + "]"; } mPixelHLSL += " = input.v" + n + ";\n"; } } } else UNREACHABLE(); } mPixelHLSL += "\n" " gl_main();\n" "\n" " PS_OUTPUT output;\n" " output.gl_Color[0] = gl_Color[0];\n" "\n" " return output;\n" "}\n"; return true; } // Links the HLSL code of the vertex and pixel shader by matching up their varyings, // compiling them into binaries, determining the attribute mappings, and collecting // a list of uniforms void Program::link() { unlink(); if (!mFragmentShader || !mFragmentShader->isCompiled()) { return; } if (!mVertexShader || !mVertexShader->isCompiled()) { return; } mPixelHLSL = mFragmentShader->getHLSL(); mVertexHLSL = mVertexShader->getHLSL(); if (!linkVaryings()) { return; } Context *context = getContext(); const char *vertexProfile = context->supportsShaderModel3() ? "vs_3_0" : "vs_2_0"; const char *pixelProfile = context->supportsShaderModel3() ? "ps_3_0" : "ps_2_0"; ID3D10Blob *vertexBinary = compileToBinary(mVertexHLSL.c_str(), vertexProfile, &mConstantTableVS); ID3D10Blob *pixelBinary = compileToBinary(mPixelHLSL.c_str(), pixelProfile, &mConstantTablePS); if (vertexBinary && pixelBinary) { HRESULT vertexResult = mDevice->CreateVertexShader((DWORD*)vertexBinary->GetBufferPointer(), &mVertexExecutable); HRESULT pixelResult = mDevice->CreatePixelShader((DWORD*)pixelBinary->GetBufferPointer(), &mPixelExecutable); if (vertexResult == D3DERR_OUTOFVIDEOMEMORY || vertexResult == E_OUTOFMEMORY || pixelResult == D3DERR_OUTOFVIDEOMEMORY || pixelResult == E_OUTOFMEMORY) { return error(GL_OUT_OF_MEMORY); } ASSERT(SUCCEEDED(vertexResult) && SUCCEEDED(pixelResult)); vertexBinary->Release(); pixelBinary->Release(); vertexBinary = NULL; pixelBinary = NULL; if (mVertexExecutable && mPixelExecutable) { if (!linkAttributes()) { return; } if (!linkUniforms(mConstantTablePS)) { return; } if (!linkUniforms(mConstantTableVS)) { return; } // these uniforms are searched as already-decorated because gl_ and dx_ // are reserved prefixes, and do not receive additional decoration mDxDepthRangeLocation = getUniformLocation("dx_DepthRange"); mDxDepthLocation = getUniformLocation("dx_Depth"); mDxCoordLocation = getUniformLocation("dx_Coord"); mDxHalfPixelSizeLocation = getUniformLocation("dx_HalfPixelSize"); mDxFrontCCWLocation = getUniformLocation("dx_FrontCCW"); mDxPointsOrLinesLocation = getUniformLocation("dx_PointsOrLines"); mLinked = true; // Success } } } // Determines the mapping between GL attributes and Direct3D 9 vertex stream usage indices bool Program::linkAttributes() { unsigned int usedLocations = 0; // Link attributes that have a binding location for (AttributeArray::iterator attribute = mVertexShader->mAttributes.begin(); attribute != mVertexShader->mAttributes.end(); attribute++) { int location = getAttributeBinding(attribute->name); if (location != -1) // Set by glBindAttribLocation { if (!mLinkedAttribute[location].name.empty()) { // Multiple active attributes bound to the same location; not an error } mLinkedAttribute[location] = *attribute; int rows = VariableRowCount(attribute->type); if (rows + location > MAX_VERTEX_ATTRIBS) { appendToInfoLog("Active attribute (%s) at location %d is too big to fit", attribute->name.c_str(), location); return false; } for (int i = 0; i < rows; i++) { usedLocations |= 1 << (location + i); } } } // Link attributes that don't have a binding location for (AttributeArray::iterator attribute = mVertexShader->mAttributes.begin(); attribute != mVertexShader->mAttributes.end(); attribute++) { int location = getAttributeBinding(attribute->name); if (location == -1) // Not set by glBindAttribLocation { int rows = VariableRowCount(attribute->type); int availableIndex = AllocateFirstFreeBits(&usedLocations, rows, MAX_VERTEX_ATTRIBS); if (availableIndex == -1 || availableIndex + rows > MAX_VERTEX_ATTRIBS) { appendToInfoLog("Too many active attributes (%s)", attribute->name.c_str()); return false; // Fail to link } mLinkedAttribute[availableIndex] = *attribute; } } for (int attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; ) { int index = mVertexShader->getSemanticIndex(mLinkedAttribute[attributeIndex].name); int rows = std::max(VariableRowCount(mLinkedAttribute[attributeIndex].type), 1); for (int r = 0; r < rows; r++) { mSemanticIndex[attributeIndex++] = index++; } } return true; } int Program::getAttributeBinding(const std::string &name) { for (int location = 0; location < MAX_VERTEX_ATTRIBS; location++) { if (mAttributeBinding[location].find(name) != mAttributeBinding[location].end()) { return location; } } return -1; } bool Program::linkUniforms(ID3DXConstantTable *constantTable) { D3DXCONSTANTTABLE_DESC constantTableDescription; D3DXCONSTANT_DESC constantDescription; UINT descriptionCount = 1; constantTable->GetDesc(&constantTableDescription); for (unsigned int constantIndex = 0; constantIndex < constantTableDescription.Constants; constantIndex++) { D3DXHANDLE constantHandle = constantTable->GetConstant(0, constantIndex); HRESULT result = constantTable->GetConstantDesc(constantHandle, &constantDescription, &descriptionCount); ASSERT(SUCCEEDED(result)); if (!defineUniform(constantHandle, constantDescription)) { return false; } } return true; } // Adds the description of a constant found in the binary shader to the list of uniforms // Returns true if succesful (uniform not already defined) bool Program::defineUniform(const D3DXHANDLE &constantHandle, const D3DXCONSTANT_DESC &constantDescription, std::string name) { if (constantDescription.RegisterSet == D3DXRS_SAMPLER) { for (unsigned int i = 0; i < constantDescription.RegisterCount; i++) { D3DXHANDLE psConstant = mConstantTablePS->GetConstantByName(NULL, constantDescription.Name); D3DXHANDLE vsConstant = mConstantTableVS->GetConstantByName(NULL, constantDescription.Name); if (psConstant) { unsigned int samplerIndex = mConstantTablePS->GetSamplerIndex(psConstant) + i; if (samplerIndex < MAX_TEXTURE_IMAGE_UNITS) { mSamplersPS[samplerIndex].active = true; mSamplersPS[samplerIndex].textureType = (constantDescription.Type == D3DXPT_SAMPLERCUBE) ? TEXTURE_CUBE : TEXTURE_2D; mSamplersPS[samplerIndex].logicalTextureUnit = 0; mUsedPixelSamplerRange = std::max(samplerIndex + 1, mUsedPixelSamplerRange); } else { appendToInfoLog("Pixel shader sampler count exceeds MAX_TEXTURE_IMAGE_UNITS (%d).", MAX_TEXTURE_IMAGE_UNITS); return false; } } if (vsConstant) { unsigned int samplerIndex = mConstantTableVS->GetSamplerIndex(vsConstant) + i; if (samplerIndex < getContext()->getMaximumVertexTextureImageUnits()) { mSamplersVS[samplerIndex].active = true; mSamplersVS[samplerIndex].textureType = (constantDescription.Type == D3DXPT_SAMPLERCUBE) ? TEXTURE_CUBE : TEXTURE_2D; mSamplersVS[samplerIndex].logicalTextureUnit = 0; mUsedVertexSamplerRange = std::max(samplerIndex + 1, mUsedVertexSamplerRange); } else { appendToInfoLog("Vertex shader sampler count exceeds MAX_VERTEX_TEXTURE_IMAGE_UNITS (%d).", getContext()->getMaximumVertexTextureImageUnits()); return false; } } } } switch(constantDescription.Class) { case D3DXPC_STRUCT: { for (unsigned int arrayIndex = 0; arrayIndex < constantDescription.Elements; arrayIndex++) { for (unsigned int field = 0; field < constantDescription.StructMembers; field++) { D3DXHANDLE fieldHandle = mConstantTablePS->GetConstant(constantHandle, field); D3DXCONSTANT_DESC fieldDescription; UINT descriptionCount = 1; HRESULT result = mConstantTablePS->GetConstantDesc(fieldHandle, &fieldDescription, &descriptionCount); ASSERT(SUCCEEDED(result)); std::string structIndex = (constantDescription.Elements > 1) ? ("[" + str(arrayIndex) + "]") : ""; if (!defineUniform(fieldHandle, fieldDescription, name + constantDescription.Name + structIndex + ".")) { return false; } } } return true; } case D3DXPC_SCALAR: case D3DXPC_VECTOR: case D3DXPC_MATRIX_COLUMNS: case D3DXPC_OBJECT: return defineUniform(constantDescription, name + constantDescription.Name); default: UNREACHABLE(); return false; } } bool Program::defineUniform(const D3DXCONSTANT_DESC &constantDescription, const std::string &_name) { Uniform *uniform = createUniform(constantDescription, _name); if(!uniform) { return false; } // Check if already defined GLint location = getUniformLocation(uniform->name); GLenum type = uniform->type; if (location >= 0) { delete uniform; if (mUniforms[mUniformIndex[location].index]->type != type) { return false; } else { return true; } } initializeConstantHandles(uniform, &uniform->ps, mConstantTablePS); initializeConstantHandles(uniform, &uniform->vs, mConstantTableVS); mUniforms.push_back(uniform); unsigned int uniformIndex = mUniforms.size() - 1; for (unsigned int i = 0; i < uniform->arraySize; ++i) { mUniformIndex.push_back(UniformLocation(_name, i, uniformIndex)); } return true; } Uniform *Program::createUniform(const D3DXCONSTANT_DESC &constantDescription, const std::string &_name) { if (constantDescription.Rows == 1) // Vectors and scalars { switch (constantDescription.Type) { case D3DXPT_SAMPLER2D: switch (constantDescription.Columns) { case 1: return new Uniform(GL_SAMPLER_2D, _name, constantDescription.Elements); default: UNREACHABLE(); } break; case D3DXPT_SAMPLERCUBE: switch (constantDescription.Columns) { case 1: return new Uniform(GL_SAMPLER_CUBE, _name, constantDescription.Elements); default: UNREACHABLE(); } break; case D3DXPT_BOOL: switch (constantDescription.Columns) { case 1: return new Uniform(GL_BOOL, _name, constantDescription.Elements); case 2: return new Uniform(GL_BOOL_VEC2, _name, constantDescription.Elements); case 3: return new Uniform(GL_BOOL_VEC3, _name, constantDescription.Elements); case 4: return new Uniform(GL_BOOL_VEC4, _name, constantDescription.Elements); default: UNREACHABLE(); } break; case D3DXPT_INT: switch (constantDescription.Columns) { case 1: return new Uniform(GL_INT, _name, constantDescription.Elements); case 2: return new Uniform(GL_INT_VEC2, _name, constantDescription.Elements); case 3: return new Uniform(GL_INT_VEC3, _name, constantDescription.Elements); case 4: return new Uniform(GL_INT_VEC4, _name, constantDescription.Elements); default: UNREACHABLE(); } break; case D3DXPT_FLOAT: switch (constantDescription.Columns) { case 1: return new Uniform(GL_FLOAT, _name, constantDescription.Elements); case 2: return new Uniform(GL_FLOAT_VEC2, _name, constantDescription.Elements); case 3: return new Uniform(GL_FLOAT_VEC3, _name, constantDescription.Elements); case 4: return new Uniform(GL_FLOAT_VEC4, _name, constantDescription.Elements); default: UNREACHABLE(); } break; default: UNREACHABLE(); } } else if (constantDescription.Rows == constantDescription.Columns) // Square matrices { switch (constantDescription.Type) { case D3DXPT_FLOAT: switch (constantDescription.Rows) { case 2: return new Uniform(GL_FLOAT_MAT2, _name, constantDescription.Elements); case 3: return new Uniform(GL_FLOAT_MAT3, _name, constantDescription.Elements); case 4: return new Uniform(GL_FLOAT_MAT4, _name, constantDescription.Elements); default: UNREACHABLE(); } break; default: UNREACHABLE(); } } else UNREACHABLE(); return 0; } // This method needs to match OutputHLSL::decorate std::string Program::decorateAttribute(const std::string &name) { if (name.compare(0, 3, "gl_") != 0 && name.compare(0, 3, "dx_") != 0) { return "_" + name; } return name; } std::string Program::undecorateUniform(const std::string &_name) { if (_name[0] == '_') { return _name.substr(1); } else if (_name.compare(0, 3, "ar_") == 0) { return _name.substr(3); } return _name; } void Program::applyUniformnbv(Uniform *targetUniform, GLsizei count, int width, const GLboolean *v) { float vector[D3D9_MAX_FLOAT_CONSTANTS * 4]; BOOL boolVector[D3D9_MAX_BOOL_CONSTANTS]; if (targetUniform->ps.registerCount && targetUniform->ps.registerSet == D3DXRS_FLOAT4 || targetUniform->vs.registerCount && targetUniform->vs.registerSet == D3DXRS_FLOAT4) { ASSERT(count <= D3D9_MAX_FLOAT_CONSTANTS); for (int i = 0; i < count; i++) { for (int j = 0; j < 4; j++) { if (j < width) { vector[i * 4 + j] = (v[i * width + j] == GL_FALSE) ? 0.0f : 1.0f; } else { vector[i * 4 + j] = 0.0f; } } } } if (targetUniform->ps.registerCount && targetUniform->ps.registerSet == D3DXRS_BOOL || targetUniform->vs.registerCount && targetUniform->vs.registerSet == D3DXRS_BOOL) { int psCount = targetUniform->ps.registerSet == D3DXRS_BOOL ? targetUniform->ps.registerCount : 0; int vsCount = targetUniform->vs.registerSet == D3DXRS_BOOL ? targetUniform->vs.registerCount : 0; int copyCount = std::min(count * width, std::max(psCount, vsCount)); ASSERT(copyCount <= D3D9_MAX_BOOL_CONSTANTS); for (int i = 0; i < copyCount; i++) { boolVector[i] = v[i] != GL_FALSE; } } if (targetUniform->ps.registerCount) { if (targetUniform->ps.registerSet == D3DXRS_FLOAT4) { mDevice->SetPixelShaderConstantF(targetUniform->ps.registerIndex, vector, targetUniform->ps.registerCount); } else if (targetUniform->ps.registerSet == D3DXRS_BOOL) { mDevice->SetPixelShaderConstantB(targetUniform->ps.registerIndex, boolVector, targetUniform->ps.registerCount); } else UNREACHABLE(); } if (targetUniform->vs.registerCount) { if (targetUniform->vs.registerSet == D3DXRS_FLOAT4) { mDevice->SetVertexShaderConstantF(targetUniform->vs.registerIndex, vector, targetUniform->vs.registerCount); } else if (targetUniform->vs.registerSet == D3DXRS_BOOL) { mDevice->SetVertexShaderConstantB(targetUniform->vs.registerIndex, boolVector, targetUniform->vs.registerCount); } else UNREACHABLE(); } } bool Program::applyUniformnfv(Uniform *targetUniform, const GLfloat *v) { if (targetUniform->ps.registerCount) { mDevice->SetPixelShaderConstantF(targetUniform->ps.registerIndex, v, targetUniform->ps.registerCount); } if (targetUniform->vs.registerCount) { mDevice->SetVertexShaderConstantF(targetUniform->vs.registerIndex, v, targetUniform->vs.registerCount); } return true; } bool Program::applyUniform1iv(Uniform *targetUniform, GLsizei count, const GLint *v) { ASSERT(count <= D3D9_MAX_FLOAT_CONSTANTS); D3DXVECTOR4 vector[D3D9_MAX_FLOAT_CONSTANTS]; for (int i = 0; i < count; i++) { vector[i] = D3DXVECTOR4((float)v[i], 0, 0, 0); } if (targetUniform->ps.registerCount) { if (targetUniform->ps.registerSet == D3DXRS_SAMPLER) { unsigned int firstIndex = targetUniform->ps.registerIndex; for (int i = 0; i < count; i++) { unsigned int samplerIndex = firstIndex + i; if (samplerIndex < MAX_TEXTURE_IMAGE_UNITS) { ASSERT(mSamplersPS[samplerIndex].active); mSamplersPS[samplerIndex].logicalTextureUnit = v[i]; } } } else { ASSERT(targetUniform->ps.registerSet == D3DXRS_FLOAT4); mDevice->SetPixelShaderConstantF(targetUniform->ps.registerIndex, (const float*)vector, targetUniform->ps.registerCount); } } if (targetUniform->vs.registerCount) { if (targetUniform->vs.registerSet == D3DXRS_SAMPLER) { unsigned int firstIndex = targetUniform->vs.registerIndex; for (int i = 0; i < count; i++) { unsigned int samplerIndex = firstIndex + i; if (samplerIndex < MAX_VERTEX_TEXTURE_IMAGE_UNITS_VTF) { ASSERT(mSamplersVS[samplerIndex].active); mSamplersVS[samplerIndex].logicalTextureUnit = v[i]; } } } else { ASSERT(targetUniform->vs.registerSet == D3DXRS_FLOAT4); mDevice->SetVertexShaderConstantF(targetUniform->vs.registerIndex, (const float *)vector, targetUniform->vs.registerCount); } } return true; } bool Program::applyUniform2iv(Uniform *targetUniform, GLsizei count, const GLint *v) { ASSERT(count <= D3D9_MAX_FLOAT_CONSTANTS); D3DXVECTOR4 vector[D3D9_MAX_FLOAT_CONSTANTS]; for (int i = 0; i < count; i++) { vector[i] = D3DXVECTOR4((float)v[0], (float)v[1], 0, 0); v += 2; } applyUniformniv(targetUniform, count, vector); return true; } bool Program::applyUniform3iv(Uniform *targetUniform, GLsizei count, const GLint *v) { ASSERT(count <= D3D9_MAX_FLOAT_CONSTANTS); D3DXVECTOR4 vector[D3D9_MAX_FLOAT_CONSTANTS]; for (int i = 0; i < count; i++) { vector[i] = D3DXVECTOR4((float)v[0], (float)v[1], (float)v[2], 0); v += 3; } applyUniformniv(targetUniform, count, vector); return true; } bool Program::applyUniform4iv(Uniform *targetUniform, GLsizei count, const GLint *v) { ASSERT(count <= D3D9_MAX_FLOAT_CONSTANTS); D3DXVECTOR4 vector[D3D9_MAX_FLOAT_CONSTANTS]; for (int i = 0; i < count; i++) { vector[i] = D3DXVECTOR4((float)v[0], (float)v[1], (float)v[2], (float)v[3]); v += 4; } applyUniformniv(targetUniform, count, vector); return true; } void Program::applyUniformniv(Uniform *targetUniform, GLsizei count, const D3DXVECTOR4 *vector) { if (targetUniform->ps.registerCount) { ASSERT(targetUniform->ps.registerSet == D3DXRS_FLOAT4); mDevice->SetPixelShaderConstantF(targetUniform->ps.registerIndex, (const float *)vector, targetUniform->ps.registerCount); } if (targetUniform->vs.registerCount) { ASSERT(targetUniform->vs.registerSet == D3DXRS_FLOAT4); mDevice->SetVertexShaderConstantF(targetUniform->vs.registerIndex, (const float *)vector, targetUniform->vs.registerCount); } } // append a santized message to the program info log. // The D3D compiler includes a fake file path in some of the warning or error // messages, so lets remove all occurrences of this fake file path from the log. void Program::appendToInfoLogSanitized(const char *message) { std::string msg(message); size_t found; do { found = msg.find(fakepath); if (found != std::string::npos) { msg.erase(found, strlen(fakepath)); } } while (found != std::string::npos); appendToInfoLog("%s\n", msg.c_str()); } void Program::appendToInfoLog(const char *format, ...) { if (!format) { return; } char info[1024]; va_list vararg; va_start(vararg, format); vsnprintf(info, sizeof(info), format, vararg); va_end(vararg); size_t infoLength = strlen(info); if (!mInfoLog) { mInfoLog = new char[infoLength + 1]; strcpy(mInfoLog, info); } else { size_t logLength = strlen(mInfoLog); char *newLog = new char[logLength + infoLength + 1]; strcpy(newLog, mInfoLog); strcpy(newLog + logLength, info); delete[] mInfoLog; mInfoLog = newLog; } } void Program::resetInfoLog() { if (mInfoLog) { delete [] mInfoLog; mInfoLog = NULL; } } // Returns the program object to an unlinked state, before re-linking, or at destruction void Program::unlink(bool destroy) { if (destroy) // Object being destructed { if (mFragmentShader) { mFragmentShader->release(); mFragmentShader = NULL; } if (mVertexShader) { mVertexShader->release(); mVertexShader = NULL; } } if (mPixelExecutable) { mPixelExecutable->Release(); mPixelExecutable = NULL; } if (mVertexExecutable) { mVertexExecutable->Release(); mVertexExecutable = NULL; } if (mConstantTablePS) { mConstantTablePS->Release(); mConstantTablePS = NULL; } if (mConstantTableVS) { mConstantTableVS->Release(); mConstantTableVS = NULL; } for (int index = 0; index < MAX_VERTEX_ATTRIBS; index++) { mLinkedAttribute[index].name.clear(); mSemanticIndex[index] = -1; } for (int index = 0; index < MAX_TEXTURE_IMAGE_UNITS; index++) { mSamplersPS[index].active = false; } for (int index = 0; index < MAX_VERTEX_TEXTURE_IMAGE_UNITS_VTF; index++) { mSamplersVS[index].active = false; } mUsedVertexSamplerRange = 0; mUsedPixelSamplerRange = 0; while (!mUniforms.empty()) { delete mUniforms.back(); mUniforms.pop_back(); } mDxDepthRangeLocation = -1; mDxDepthLocation = -1; mDxCoordLocation = -1; mDxHalfPixelSizeLocation = -1; mDxFrontCCWLocation = -1; mDxPointsOrLinesLocation = -1; mUniformIndex.clear(); mPixelHLSL.clear(); mVertexHLSL.clear(); delete[] mInfoLog; mInfoLog = NULL; mLinked = false; } bool Program::isLinked() { return mLinked; } bool Program::isValidated() const { return mValidated; } void Program::release() { mRefCount--; if (mRefCount == 0 && mDeleteStatus) { mResourceManager->deleteProgram(mHandle); } } void Program::addRef() { mRefCount++; } unsigned int Program::getRefCount() const { return mRefCount; } unsigned int Program::getSerial() const { return mSerial; } unsigned int Program::issueSerial() { return mCurrentSerial++; } int Program::getInfoLogLength() const { if (!mInfoLog) { return 0; } else { return strlen(mInfoLog) + 1; } } void Program::getInfoLog(GLsizei bufSize, GLsizei *length, char *infoLog) { int index = 0; if (mInfoLog) { index = std::min(bufSize - 1, (int)strlen(mInfoLog)); memcpy(infoLog, mInfoLog, index); } if (bufSize) { infoLog[index] = '\0'; } if (length) { *length = index; } } void Program::getAttachedShaders(GLsizei maxCount, GLsizei *count, GLuint *shaders) { int total = 0; if (mVertexShader) { if (total < maxCount) { shaders[total] = mVertexShader->getHandle(); } total++; } if (mFragmentShader) { if (total < maxCount) { shaders[total] = mFragmentShader->getHandle(); } total++; } if (count) { *count = total; } } void Program::getActiveAttribute(GLuint index, GLsizei bufsize, GLsizei *length, GLint *size, GLenum *type, GLchar *name) { // Skip over inactive attributes unsigned int activeAttribute = 0; unsigned int attribute; for (attribute = 0; attribute < MAX_VERTEX_ATTRIBS; attribute++) { if (mLinkedAttribute[attribute].name.empty()) { continue; } if (activeAttribute == index) { break; } activeAttribute++; } if (bufsize > 0) { const char *string = mLinkedAttribute[attribute].name.c_str(); strncpy(name, string, bufsize); name[bufsize - 1] = '\0'; if (length) { *length = strlen(name); } } *size = 1; // Always a single 'type' instance *type = mLinkedAttribute[attribute].type; } GLint Program::getActiveAttributeCount() { int count = 0; for (int attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; attributeIndex++) { if (!mLinkedAttribute[attributeIndex].name.empty()) { count++; } } return count; } GLint Program::getActiveAttributeMaxLength() { int maxLength = 0; for (int attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; attributeIndex++) { if (!mLinkedAttribute[attributeIndex].name.empty()) { maxLength = std::max((int)(mLinkedAttribute[attributeIndex].name.length() + 1), maxLength); } } return maxLength; } void Program::getActiveUniform(GLuint index, GLsizei bufsize, GLsizei *length, GLint *size, GLenum *type, GLchar *name) { // Skip over internal uniforms unsigned int activeUniform = 0; unsigned int uniform; for (uniform = 0; uniform < mUniforms.size(); uniform++) { if (mUniforms[uniform]->name.compare(0, 3, "dx_") == 0) { continue; } if (activeUniform == index) { break; } activeUniform++; } ASSERT(uniform < mUniforms.size()); // index must be smaller than getActiveUniformCount() if (bufsize > 0) { std::string string = mUniforms[uniform]->name; if (mUniforms[uniform]->isArray()) { string += "[0]"; } strncpy(name, string.c_str(), bufsize); name[bufsize - 1] = '\0'; if (length) { *length = strlen(name); } } *size = mUniforms[uniform]->arraySize; *type = mUniforms[uniform]->type; } GLint Program::getActiveUniformCount() { int count = 0; unsigned int numUniforms = mUniforms.size(); for (unsigned int uniformIndex = 0; uniformIndex < numUniforms; uniformIndex++) { if (mUniforms[uniformIndex]->name.compare(0, 3, "dx_") != 0) { count++; } } return count; } GLint Program::getActiveUniformMaxLength() { int maxLength = 0; unsigned int numUniforms = mUniforms.size(); for (unsigned int uniformIndex = 0; uniformIndex < numUniforms; uniformIndex++) { if (!mUniforms[uniformIndex]->name.empty() && mUniforms[uniformIndex]->name.compare(0, 3, "dx_") != 0) { int length = (int)(mUniforms[uniformIndex]->name.length() + 1); if (mUniforms[uniformIndex]->isArray()) { length += 3; // Counting in "[0]". } maxLength = std::max(length, maxLength); } } return maxLength; } void Program::flagForDeletion() { mDeleteStatus = true; } bool Program::isFlaggedForDeletion() const { return mDeleteStatus; } void Program::validate() { resetInfoLog(); if (!isLinked()) { appendToInfoLog("Program has not been successfully linked."); mValidated = false; } else { applyUniforms(); if (!validateSamplers(true)) { mValidated = false; } else { mValidated = true; } } } bool Program::validateSamplers(bool logErrors) { // if any two active samplers in a program are of different types, but refer to the same // texture image unit, and this is the current program, then ValidateProgram will fail, and // DrawArrays and DrawElements will issue the INVALID_OPERATION error. const unsigned int maxCombinedTextureImageUnits = getContext()->getMaximumCombinedTextureImageUnits(); TextureType textureUnitType[MAX_COMBINED_TEXTURE_IMAGE_UNITS_VTF]; for (unsigned int i = 0; i < MAX_COMBINED_TEXTURE_IMAGE_UNITS_VTF; ++i) { textureUnitType[i] = TEXTURE_UNKNOWN; } for (unsigned int i = 0; i < mUsedPixelSamplerRange; ++i) { if (mSamplersPS[i].active) { unsigned int unit = mSamplersPS[i].logicalTextureUnit; if (unit >= maxCombinedTextureImageUnits) { if (logErrors) { appendToInfoLog("Sampler uniform (%d) exceeds MAX_COMBINED_TEXTURE_IMAGE_UNITS (%d)", unit, maxCombinedTextureImageUnits); } return false; } if (textureUnitType[unit] != TEXTURE_UNKNOWN) { if (mSamplersPS[i].textureType != textureUnitType[unit]) { if (logErrors) { appendToInfoLog("Samplers of conflicting types refer to the same texture image unit (%d).", unit); } return false; } } else { textureUnitType[unit] = mSamplersPS[i].textureType; } } } for (unsigned int i = 0; i < mUsedVertexSamplerRange; ++i) { if (mSamplersVS[i].active) { unsigned int unit = mSamplersVS[i].logicalTextureUnit; if (unit >= maxCombinedTextureImageUnits) { if (logErrors) { appendToInfoLog("Sampler uniform (%d) exceeds MAX_COMBINED_TEXTURE_IMAGE_UNITS (%d)", unit, maxCombinedTextureImageUnits); } return false; } if (textureUnitType[unit] != TEXTURE_UNKNOWN) { if (mSamplersVS[i].textureType != textureUnitType[unit]) { if (logErrors) { appendToInfoLog("Samplers of conflicting types refer to the same texture image unit (%d).", unit); } return false; } } else { textureUnitType[unit] = mSamplersVS[i].textureType; } } } return true; } void Program::initializeConstantHandles(Uniform *targetUniform, Uniform::RegisterInfo *ri, ID3DXConstantTable *constantTable) { D3DXHANDLE handle = constantTable->GetConstantByName(0, targetUniform->_name.c_str()); if (handle) { UINT descriptionCount = 1; D3DXCONSTANT_DESC constantDescription; HRESULT result = constantTable->GetConstantDesc(handle, &constantDescription, &descriptionCount); ASSERT(SUCCEEDED(result)); ri->registerIndex = constantDescription.RegisterIndex; ri->registerCount = constantDescription.RegisterCount; ri->registerSet = constantDescription.RegisterSet; } else { ri->registerCount = 0; } } GLint Program::getDxDepthRangeLocation() const { return mDxDepthRangeLocation; } GLint Program::getDxDepthLocation() const { return mDxDepthLocation; } GLint Program::getDxCoordLocation() const { return mDxCoordLocation; } GLint Program::getDxHalfPixelSizeLocation() const { return mDxHalfPixelSizeLocation; } GLint Program::getDxFrontCCWLocation() const { return mDxFrontCCWLocation; } GLint Program::getDxPointsOrLinesLocation() const { return mDxPointsOrLinesLocation; } }