/* * Copyright (C) 2006, 2008 Apple Inc. All rights reserved. * Copyright (C) 2009 Google Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY APPLE COMPUTER, INC. ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE COMPUTER, INC. OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "config.h" #include "Timer.h" #include "SharedTimer.h" #include "ThreadGlobalData.h" #include "ThreadTimers.h" #include #include #include #include #include #include using namespace std; namespace WebCore { // Timers are stored in a heap data structure, used to implement a priority queue. // This allows us to efficiently determine which timer needs to fire the soonest. // Then we set a single shared system timer to fire at that time. // // When a timer's "next fire time" changes, we need to move it around in the priority queue. // Simple accessors to thread-specific data. static Vector& timerHeap() { return threadGlobalData().threadTimers().timerHeap(); } // Class to represent elements in the heap when calling the standard library heap algorithms. // Maintains the m_heapIndex value in the timers themselves, which allows us to do efficient // modification of the heap. class TimerHeapElement { public: explicit TimerHeapElement(int i) : m_index(i) , m_timer(timerHeap()[m_index]) { checkConsistency(); } TimerHeapElement(const TimerHeapElement&); TimerHeapElement& operator=(const TimerHeapElement&); TimerBase* timer() const { return m_timer; } void checkConsistency() const { ASSERT(m_index >= 0); ASSERT(m_index < static_cast(timerHeap().size())); } private: TimerHeapElement(); int m_index; TimerBase* m_timer; }; inline TimerHeapElement::TimerHeapElement(const TimerHeapElement& o) : m_index(-1), m_timer(o.timer()) { } inline TimerHeapElement& TimerHeapElement::operator=(const TimerHeapElement& o) { TimerBase* t = o.timer(); m_timer = t; if (m_index != -1) { checkConsistency(); timerHeap()[m_index] = t; t->m_heapIndex = m_index; } return *this; } inline bool operator<(const TimerHeapElement& a, const TimerHeapElement& b) { // The comparisons below are "backwards" because the heap puts the largest // element first and we want the lowest time to be the first one in the heap. double aFireTime = a.timer()->m_nextFireTime; double bFireTime = b.timer()->m_nextFireTime; if (bFireTime != aFireTime) return bFireTime < aFireTime; // We need to look at the difference of the insertion orders instead of comparing the two // outright in case of overflow. unsigned difference = a.timer()->m_heapInsertionOrder - b.timer()->m_heapInsertionOrder; return difference < UINT_MAX / 2; } // ---------------- // Class to represent iterators in the heap when calling the standard library heap algorithms. // Returns TimerHeapElement for elements in the heap rather than the TimerBase pointers themselves. class TimerHeapIterator : public iterator { public: TimerHeapIterator() : m_index(-1) { } TimerHeapIterator(int i) : m_index(i) { checkConsistency(); } TimerHeapIterator& operator++() { checkConsistency(); ++m_index; checkConsistency(); return *this; } TimerHeapIterator operator++(int) { checkConsistency(); checkConsistency(1); return m_index++; } TimerHeapIterator& operator--() { checkConsistency(); --m_index; checkConsistency(); return *this; } TimerHeapIterator operator--(int) { checkConsistency(); checkConsistency(-1); return m_index--; } TimerHeapIterator& operator+=(int i) { checkConsistency(); m_index += i; checkConsistency(); return *this; } TimerHeapIterator& operator-=(int i) { checkConsistency(); m_index -= i; checkConsistency(); return *this; } TimerHeapElement operator*() const { return TimerHeapElement(m_index); } TimerHeapElement operator[](int i) const { return TimerHeapElement(m_index + i); } int index() const { return m_index; } void checkConsistency(int offset = 0) const { ASSERT_UNUSED(offset, m_index + offset >= 0); ASSERT_UNUSED(offset, m_index + offset <= static_cast(timerHeap().size())); } private: int m_index; }; inline bool operator==(TimerHeapIterator a, TimerHeapIterator b) { return a.index() == b.index(); } inline bool operator!=(TimerHeapIterator a, TimerHeapIterator b) { return a.index() != b.index(); } inline bool operator<(TimerHeapIterator a, TimerHeapIterator b) { return a.index() < b.index(); } inline TimerHeapIterator operator+(TimerHeapIterator a, int b) { return a.index() + b; } inline TimerHeapIterator operator+(int a, TimerHeapIterator b) { return a + b.index(); } inline TimerHeapIterator operator-(TimerHeapIterator a, int b) { return a.index() - b; } inline int operator-(TimerHeapIterator a, TimerHeapIterator b) { return a.index() - b.index(); } // ---------------- TimerBase::TimerBase() : m_nextFireTime(0) , m_repeatInterval(0) , m_heapIndex(-1) #ifndef NDEBUG , m_thread(currentThread()) #endif { } TimerBase::~TimerBase() { stop(); ASSERT(!inHeap()); } void TimerBase::start(double nextFireInterval, double repeatInterval) { ASSERT(m_thread == currentThread()); m_repeatInterval = repeatInterval; setNextFireTime(currentTime() + nextFireInterval); } void TimerBase::stop() { ASSERT(m_thread == currentThread()); m_repeatInterval = 0; setNextFireTime(0); ASSERT(m_nextFireTime == 0); ASSERT(m_repeatInterval == 0); ASSERT(!inHeap()); } double TimerBase::nextFireInterval() const { ASSERT(isActive()); double current = currentTime(); if (m_nextFireTime < current) return 0; return m_nextFireTime - current; } inline void TimerBase::checkHeapIndex() const { ASSERT(!timerHeap().isEmpty()); ASSERT(m_heapIndex >= 0); ASSERT(m_heapIndex < static_cast(timerHeap().size())); ASSERT(timerHeap()[m_heapIndex] == this); } inline void TimerBase::checkConsistency() const { // Timers should be in the heap if and only if they have a non-zero next fire time. ASSERT(inHeap() == (m_nextFireTime != 0)); if (inHeap()) checkHeapIndex(); } void TimerBase::heapDecreaseKey() { ASSERT(m_nextFireTime != 0); checkHeapIndex(); push_heap(TimerHeapIterator(0), TimerHeapIterator(m_heapIndex + 1)); checkHeapIndex(); } inline void TimerBase::heapDelete() { ASSERT(m_nextFireTime == 0); heapPop(); timerHeap().removeLast(); m_heapIndex = -1; } void TimerBase::heapDeleteMin() { ASSERT(m_nextFireTime == 0); heapPopMin(); timerHeap().removeLast(); m_heapIndex = -1; } inline void TimerBase::heapIncreaseKey() { ASSERT(m_nextFireTime != 0); heapPop(); heapDecreaseKey(); } inline void TimerBase::heapInsert() { ASSERT(!inHeap()); timerHeap().append(this); m_heapIndex = timerHeap().size() - 1; heapDecreaseKey(); } inline void TimerBase::heapPop() { // Temporarily force this timer to have the minimum key so we can pop it. double fireTime = m_nextFireTime; m_nextFireTime = -numeric_limits::infinity(); heapDecreaseKey(); heapPopMin(); m_nextFireTime = fireTime; } void TimerBase::heapPopMin() { ASSERT(this == timerHeap().first()); checkHeapIndex(); pop_heap(TimerHeapIterator(0), TimerHeapIterator(timerHeap().size())); checkHeapIndex(); ASSERT(this == timerHeap().last()); } void TimerBase::setNextFireTime(double newTime) { ASSERT(m_thread == currentThread()); // Keep heap valid while changing the next-fire time. double oldTime = m_nextFireTime; if (oldTime != newTime) { m_nextFireTime = newTime; static unsigned currentHeapInsertionOrder; m_heapInsertionOrder = currentHeapInsertionOrder++; bool wasFirstTimerInHeap = m_heapIndex == 0; if (oldTime == 0) heapInsert(); else if (newTime == 0) heapDelete(); else if (newTime < oldTime) heapDecreaseKey(); else heapIncreaseKey(); bool isFirstTimerInHeap = m_heapIndex == 0; if (wasFirstTimerInHeap || isFirstTimerInHeap) threadGlobalData().threadTimers().updateSharedTimer(); } checkConsistency(); } void TimerBase::fireTimersInNestedEventLoop() { // Redirect to ThreadTimers. threadGlobalData().threadTimers().fireTimersInNestedEventLoop(); } } // namespace WebCore