/* * Copyright (C) 2010, Google Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "config.h" #if ENABLE(WEB_AUDIO) #include "HRTFPanner.h" #include "AudioBus.h" #include "FFTConvolver.h" #include "HRTFDatabase.h" #include "HRTFDatabaseLoader.h" #include #include #include using namespace std; namespace WebCore { // The value of 2 milliseconds is larger than the largest delay which exists in any HRTFKernel from the default HRTFDatabase (0.0136 seconds). // We ASSERT the delay values used in process() with this value. const double MaxDelayTimeSeconds = 0.002; HRTFPanner::HRTFPanner(double sampleRate) : Panner(PanningModelHRTF) , m_sampleRate(sampleRate) , m_isFirstRender(true) , m_azimuthIndex(0) , m_convolverL(fftSizeForSampleRate(sampleRate)) , m_convolverR(fftSizeForSampleRate(sampleRate)) , m_delayLineL(MaxDelayTimeSeconds, sampleRate) , m_delayLineR(MaxDelayTimeSeconds, sampleRate) { } HRTFPanner::~HRTFPanner() { } size_t HRTFPanner::fftSizeForSampleRate(double sampleRate) { // The HRTF impulse responses (loaded as audio resources) are 512 sample-frames @44.1KHz. // Currently, we truncate the impulse responses to half this size, but an FFT-size of twice impulse response size is needed (for convolution). // So for sample rates around 44.1KHz an FFT size of 512 is good. We double that size for higher sample rates. ASSERT(sampleRate >= 44100 && sampleRate <= 96000.0); return (sampleRate <= 48000.0) ? 512 : 1024; } void HRTFPanner::reset() { m_isFirstRender = true; m_convolverL.reset(); m_convolverR.reset(); m_delayLineL.reset(); m_delayLineR.reset(); } static bool wrapDistance(int i, int j, int length) { int directDistance = abs(i - j); int indirectDistance = length - directDistance; return indirectDistance < directDistance; } int HRTFPanner::calculateDesiredAzimuthIndexAndBlend(double azimuth, double& azimuthBlend) { // Convert the azimuth angle from the range -180 -> +180 into the range 0 -> 360. // The azimuth index may then be calculated from this positive value. if (azimuth < 0) azimuth += 360.0; HRTFDatabase* database = HRTFDatabaseLoader::defaultHRTFDatabase(); ASSERT(database); int numberOfAzimuths = database->numberOfAzimuths(); const double angleBetweenAzimuths = 360.0 / numberOfAzimuths; // Calculate the azimuth index and the blend (0 -> 1) for interpolation. double desiredAzimuthIndexFloat = azimuth / angleBetweenAzimuths; int desiredAzimuthIndex = static_cast(desiredAzimuthIndexFloat); azimuthBlend = desiredAzimuthIndexFloat - static_cast(desiredAzimuthIndex); // We don't immediately start using this azimuth index, but instead approach this index from the last index we rendered at. // This minimizes the clicks and graininess for moving sources which occur otherwise. desiredAzimuthIndex = max(0, desiredAzimuthIndex); desiredAzimuthIndex = min(numberOfAzimuths - 1, desiredAzimuthIndex); return desiredAzimuthIndex; } void HRTFPanner::pan(double desiredAzimuth, double elevation, AudioBus* inputBus, AudioBus* outputBus, size_t framesToProcess) { unsigned numInputChannels = inputBus ? inputBus->numberOfChannels() : 0; bool isInputGood = inputBus && numInputChannels >= 1 && numInputChannels <= 2; ASSERT(isInputGood); bool isOutputGood = outputBus && outputBus->numberOfChannels() == 2 && framesToProcess <= outputBus->length(); ASSERT(isOutputGood); if (!isInputGood || !isOutputGood) { if (outputBus) outputBus->zero(); return; } // This code only runs as long as the context is alive and after database has been loaded. HRTFDatabase* database = HRTFDatabaseLoader::defaultHRTFDatabase(); ASSERT(database); if (!database) { outputBus->zero(); return; } // IRCAM HRTF azimuths values from the loaded database is reversed from the panner's notion of azimuth. double azimuth = -desiredAzimuth; bool isAzimuthGood = azimuth >= -180.0 && azimuth <= 180.0; ASSERT(isAzimuthGood); if (!isAzimuthGood) { outputBus->zero(); return; } // Normally, we'll just be dealing with mono sources. // If we have a stereo input, implement stereo panning with left source processed by left HRTF, and right source by right HRTF. AudioChannel* inputChannelL = inputBus->channelByType(AudioBus::ChannelLeft); AudioChannel* inputChannelR = numInputChannels > 1 ? inputBus->channelByType(AudioBus::ChannelRight) : 0; // Get source and destination pointers. float* sourceL = inputChannelL->data(); float* sourceR = numInputChannels > 1 ? inputChannelR->data() : sourceL; float* destinationL = outputBus->channelByType(AudioBus::ChannelLeft)->data(); float* destinationR = outputBus->channelByType(AudioBus::ChannelRight)->data(); double azimuthBlend; int desiredAzimuthIndex = calculateDesiredAzimuthIndexAndBlend(azimuth, azimuthBlend); // This algorithm currently requires that we process in power-of-two size chunks at least 128. ASSERT(1UL << static_cast(log2(framesToProcess)) == framesToProcess); ASSERT(framesToProcess >= 128); const unsigned framesPerSegment = 128; const unsigned numberOfSegments = framesToProcess / framesPerSegment; for (unsigned segment = 0; segment < numberOfSegments; ++segment) { if (m_isFirstRender) { // Snap exactly to desired position (first time and after reset()). m_azimuthIndex = desiredAzimuthIndex; m_isFirstRender = false; } else { // Each segment renders with an azimuth index closer by one to the desired azimuth index. // Because inter-aural time delay is mostly a factor of azimuth and the delay is where the clicks and graininess come from, // we don't bother smoothing the elevations. int numberOfAzimuths = database->numberOfAzimuths(); bool wrap = wrapDistance(m_azimuthIndex, desiredAzimuthIndex, numberOfAzimuths); if (wrap) { if (m_azimuthIndex < desiredAzimuthIndex) m_azimuthIndex = (m_azimuthIndex - 1 + numberOfAzimuths) % numberOfAzimuths; else if (m_azimuthIndex > desiredAzimuthIndex) m_azimuthIndex = (m_azimuthIndex + 1) % numberOfAzimuths; } else { if (m_azimuthIndex < desiredAzimuthIndex) m_azimuthIndex = (m_azimuthIndex + 1) % numberOfAzimuths; else if (m_azimuthIndex > desiredAzimuthIndex) m_azimuthIndex = (m_azimuthIndex - 1 + numberOfAzimuths) % numberOfAzimuths; } } // Get the HRTFKernels and interpolated delays. HRTFKernel* kernelL; HRTFKernel* kernelR; double frameDelayL; double frameDelayR; database->getKernelsFromAzimuthElevation(azimuthBlend, m_azimuthIndex, elevation, kernelL, kernelR, frameDelayL, frameDelayR); ASSERT(kernelL && kernelR); if (!kernelL || !kernelR) { outputBus->zero(); return; } ASSERT(frameDelayL / sampleRate() < MaxDelayTimeSeconds && frameDelayR / sampleRate() < MaxDelayTimeSeconds); // Calculate the source and destination pointers for the current segment. unsigned offset = segment * framesPerSegment; float* segmentSourceL = sourceL + offset; float* segmentSourceR = sourceR + offset; float* segmentDestinationL = destinationL + offset; float* segmentDestinationR = destinationR + offset; // First run through delay lines for inter-aural time difference. m_delayLineL.setDelayFrames(frameDelayL); m_delayLineR.setDelayFrames(frameDelayR); m_delayLineL.process(segmentSourceL, segmentDestinationL, framesPerSegment); m_delayLineR.process(segmentSourceR, segmentDestinationR, framesPerSegment); // Now do the convolutions in-place. m_convolverL.process(kernelL->fftFrame(), segmentDestinationL, segmentDestinationL, framesPerSegment); m_convolverR.process(kernelR->fftFrame(), segmentDestinationR, segmentDestinationR, framesPerSegment); } } } // namespace WebCore #endif // ENABLE(WEB_AUDIO)