/* * Copyright (C) 2003, 2004, 2005, 2006, 2007 Apple Inc. All rights reserved. * Copyright (C) 2008 Eric Seidel * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY APPLE COMPUTER, INC. ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE COMPUTER, INC. OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #define _USE_MATH_DEFINES 1 #include "config.h" #include "GraphicsContextCG.h" #include "AffineTransform.h" #include "FloatConversion.h" #include "GraphicsContextPlatformPrivateCG.h" #include "ImageBuffer.h" #include "KURL.h" #include "Path.h" #include "Pattern.h" #include "ShadowBlur.h" #include #include #include #include #include #if PLATFORM(MAC) || PLATFORM(CHROMIUM) #include "WebCoreSystemInterface.h" #endif #if PLATFORM(WIN) #include #endif #if PLATFORM(MAC) || (PLATFORM(CHROMIUM) && OS(DARWIN)) #if !defined(BUILDING_ON_TIGER) && !defined(BUILDING_ON_LEOPARD) // Building on 10.6 or later: kCGInterpolationMedium is defined in the CGInterpolationQuality enum. #define HAVE_CG_INTERPOLATION_MEDIUM 1 #endif #if !defined(TARGETING_TIGER) && !defined(TARGETING_LEOPARD) // Targeting 10.6 or later: use kCGInterpolationMedium. #define WTF_USE_CG_INTERPOLATION_MEDIUM 1 #endif #endif // Undocumented CGContextSetCTM function, available at least since 10.4. extern "C" { CG_EXTERN void CGContextSetCTM(CGContextRef, CGAffineTransform); }; using namespace std; namespace WebCore { static void setCGFillColor(CGContextRef context, const Color& color, ColorSpace colorSpace) { CGContextSetFillColorWithColor(context, cachedCGColor(color, colorSpace)); } static void setCGStrokeColor(CGContextRef context, const Color& color, ColorSpace colorSpace) { CGContextSetStrokeColorWithColor(context, cachedCGColor(color, colorSpace)); } CGColorSpaceRef deviceRGBColorSpaceRef() { static CGColorSpaceRef deviceSpace = CGColorSpaceCreateDeviceRGB(); return deviceSpace; } CGColorSpaceRef sRGBColorSpaceRef() { // FIXME: Windows should be able to use kCGColorSpaceSRGB, this is tracked by http://webkit.org/b/31363. #if PLATFORM(WIN) || defined(BUILDING_ON_TIGER) return deviceRGBColorSpaceRef(); #else static CGColorSpaceRef sRGBSpace = CGColorSpaceCreateWithName(kCGColorSpaceSRGB); return sRGBSpace; #endif } CGColorSpaceRef linearRGBColorSpaceRef() { // FIXME: Windows should be able to use kCGColorSpaceGenericRGBLinear, this is tracked by http://webkit.org/b/31363. #if PLATFORM(WIN) || defined(BUILDING_ON_TIGER) return deviceRGBColorSpaceRef(); #else static CGColorSpaceRef linearRGBSpace = CGColorSpaceCreateWithName(kCGColorSpaceGenericRGBLinear); return linearRGBSpace; #endif } void GraphicsContext::platformInit(CGContextRef cgContext) { m_data = new GraphicsContextPlatformPrivate(cgContext); setPaintingDisabled(!cgContext); if (cgContext) { // Make sure the context starts in sync with our state. setPlatformFillColor(fillColor(), fillColorSpace()); setPlatformStrokeColor(strokeColor(), strokeColorSpace()); } } void GraphicsContext::platformDestroy() { delete m_data; } CGContextRef GraphicsContext::platformContext() const { ASSERT(!paintingDisabled()); ASSERT(m_data->m_cgContext); return m_data->m_cgContext.get(); } void GraphicsContext::savePlatformState() { // Note: Do not use this function within this class implementation, since we want to avoid the extra // save of the secondary context (in GraphicsContextPlatformPrivateCG.h). CGContextSaveGState(platformContext()); m_data->save(); } void GraphicsContext::restorePlatformState() { // Note: Do not use this function within this class implementation, since we want to avoid the extra // restore of the secondary context (in GraphicsContextPlatformPrivateCG.h). CGContextRestoreGState(platformContext()); m_data->restore(); m_data->m_userToDeviceTransformKnownToBeIdentity = false; } // Draws a filled rectangle with a stroked border. void GraphicsContext::drawRect(const IntRect& rect) { // FIXME: this function does not handle patterns and gradients // like drawPath does, it probably should. if (paintingDisabled()) return; CGContextRef context = platformContext(); CGContextFillRect(context, rect); if (strokeStyle() != NoStroke) { // We do a fill of four rects to simulate the stroke of a border. Color oldFillColor = fillColor(); if (oldFillColor != strokeColor()) setCGFillColor(context, strokeColor(), strokeColorSpace()); CGRect rects[4] = { FloatRect(rect.x(), rect.y(), rect.width(), 1), FloatRect(rect.x(), rect.maxY() - 1, rect.width(), 1), FloatRect(rect.x(), rect.y() + 1, 1, rect.height() - 2), FloatRect(rect.maxX() - 1, rect.y() + 1, 1, rect.height() - 2) }; CGContextFillRects(context, rects, 4); if (oldFillColor != strokeColor()) setCGFillColor(context, oldFillColor, fillColorSpace()); } } // This is only used to draw borders. void GraphicsContext::drawLine(const IntPoint& point1, const IntPoint& point2) { if (paintingDisabled()) return; if (strokeStyle() == NoStroke) return; float width = strokeThickness(); FloatPoint p1 = point1; FloatPoint p2 = point2; bool isVerticalLine = (p1.x() == p2.x()); // For odd widths, we add in 0.5 to the appropriate x/y so that the float arithmetic // works out. For example, with a border width of 3, KHTML will pass us (y1+y2)/2, e.g., // (50+53)/2 = 103/2 = 51 when we want 51.5. It is always true that an even width gave // us a perfect position, but an odd width gave us a position that is off by exactly 0.5. if (strokeStyle() == DottedStroke || strokeStyle() == DashedStroke) { if (isVerticalLine) { p1.move(0, width); p2.move(0, -width); } else { p1.move(width, 0); p2.move(-width, 0); } } if (((int)width) % 2) { if (isVerticalLine) { // We're a vertical line. Adjust our x. p1.move(0.5f, 0.0f); p2.move(0.5f, 0.0f); } else { // We're a horizontal line. Adjust our y. p1.move(0.0f, 0.5f); p2.move(0.0f, 0.5f); } } int patWidth = 0; switch (strokeStyle()) { case NoStroke: case SolidStroke: break; case DottedStroke: patWidth = (int)width; break; case DashedStroke: patWidth = 3 * (int)width; break; } CGContextRef context = platformContext(); if (shouldAntialias()) CGContextSetShouldAntialias(context, false); if (patWidth) { CGContextSaveGState(context); // Do a rect fill of our endpoints. This ensures we always have the // appearance of being a border. We then draw the actual dotted/dashed line. setCGFillColor(context, strokeColor(), strokeColorSpace()); // The save/restore make it safe to mutate the fill color here without setting it back to the old color. if (isVerticalLine) { CGContextFillRect(context, FloatRect(p1.x() - width / 2, p1.y() - width, width, width)); CGContextFillRect(context, FloatRect(p2.x() - width / 2, p2.y(), width, width)); } else { CGContextFillRect(context, FloatRect(p1.x() - width, p1.y() - width / 2, width, width)); CGContextFillRect(context, FloatRect(p2.x(), p2.y() - width / 2, width, width)); } // Example: 80 pixels with a width of 30 pixels. // Remainder is 20. The maximum pixels of line we could paint // will be 50 pixels. int distance = (isVerticalLine ? (point2.y() - point1.y()) : (point2.x() - point1.x())) - 2*(int)width; int remainder = distance % patWidth; int coverage = distance - remainder; int numSegments = coverage / patWidth; float patternOffset = 0.0f; // Special case 1px dotted borders for speed. if (patWidth == 1) patternOffset = 1.0f; else { bool evenNumberOfSegments = !(numSegments % 2); if (remainder) evenNumberOfSegments = !evenNumberOfSegments; if (evenNumberOfSegments) { if (remainder) { patternOffset += patWidth - remainder; patternOffset += remainder / 2; } else patternOffset = patWidth / 2; } else { if (remainder) patternOffset = (patWidth - remainder)/2; } } const CGFloat dottedLine[2] = { patWidth, patWidth }; CGContextSetLineDash(context, patternOffset, dottedLine, 2); } CGContextBeginPath(context); CGContextMoveToPoint(context, p1.x(), p1.y()); CGContextAddLineToPoint(context, p2.x(), p2.y()); CGContextStrokePath(context); if (patWidth) CGContextRestoreGState(context); if (shouldAntialias()) CGContextSetShouldAntialias(context, true); } // This method is only used to draw the little circles used in lists. void GraphicsContext::drawEllipse(const IntRect& rect) { if (paintingDisabled()) return; Path path; path.addEllipse(rect); drawPath(path); } void GraphicsContext::strokeArc(const IntRect& rect, int startAngle, int angleSpan) { if (paintingDisabled() || strokeStyle() == NoStroke || strokeThickness() <= 0.0f) return; CGContextRef context = platformContext(); CGContextSaveGState(context); CGContextBeginPath(context); CGContextSetShouldAntialias(context, false); int x = rect.x(); int y = rect.y(); float w = (float)rect.width(); float h = (float)rect.height(); float scaleFactor = h / w; float reverseScaleFactor = w / h; if (w != h) scale(FloatSize(1, scaleFactor)); float hRadius = w / 2; float vRadius = h / 2; float fa = startAngle; float falen = fa + angleSpan; float start = -fa * piFloat / 180.0f; float end = -falen * piFloat / 180.0f; CGContextAddArc(context, x + hRadius, (y + vRadius) * reverseScaleFactor, hRadius, start, end, true); if (w != h) scale(FloatSize(1, reverseScaleFactor)); float width = strokeThickness(); int patWidth = 0; switch (strokeStyle()) { case DottedStroke: patWidth = (int)(width / 2); break; case DashedStroke: patWidth = 3 * (int)(width / 2); break; default: break; } if (patWidth) { // Example: 80 pixels with a width of 30 pixels. // Remainder is 20. The maximum pixels of line we could paint // will be 50 pixels. int distance; if (hRadius == vRadius) distance = static_cast((piFloat * hRadius) / 2.0f); else // We are elliptical and will have to estimate the distance distance = static_cast((piFloat * sqrtf((hRadius * hRadius + vRadius * vRadius) / 2.0f)) / 2.0f); int remainder = distance % patWidth; int coverage = distance - remainder; int numSegments = coverage / patWidth; float patternOffset = 0.0f; // Special case 1px dotted borders for speed. if (patWidth == 1) patternOffset = 1.0f; else { bool evenNumberOfSegments = !(numSegments % 2); if (remainder) evenNumberOfSegments = !evenNumberOfSegments; if (evenNumberOfSegments) { if (remainder) { patternOffset += patWidth - remainder; patternOffset += remainder / 2.0f; } else patternOffset = patWidth / 2.0f; } else { if (remainder) patternOffset = (patWidth - remainder) / 2.0f; } } const CGFloat dottedLine[2] = { patWidth, patWidth }; CGContextSetLineDash(context, patternOffset, dottedLine, 2); } CGContextStrokePath(context); CGContextRestoreGState(context); } static void addConvexPolygonToPath(Path& path, size_t numberOfPoints, const FloatPoint* points) { ASSERT(numberOfPoints > 0); path.moveTo(points[0]); for (size_t i = 1; i < numberOfPoints; ++i) path.addLineTo(points[i]); path.closeSubpath(); } void GraphicsContext::drawConvexPolygon(size_t numberOfPoints, const FloatPoint* points, bool antialiased) { if (paintingDisabled()) return; if (numberOfPoints <= 1) return; CGContextRef context = platformContext(); if (antialiased != shouldAntialias()) CGContextSetShouldAntialias(context, antialiased); Path path; addConvexPolygonToPath(path, numberOfPoints, points); drawPath(path); if (antialiased != shouldAntialias()) CGContextSetShouldAntialias(context, shouldAntialias()); } void GraphicsContext::clipConvexPolygon(size_t numberOfPoints, const FloatPoint* points, bool antialias) { if (paintingDisabled()) return; if (numberOfPoints <= 1) return; CGContextRef context = platformContext(); if (antialias != shouldAntialias()) CGContextSetShouldAntialias(context, antialias); Path path; addConvexPolygonToPath(path, numberOfPoints, points); clipPath(path, RULE_NONZERO); if (antialias != shouldAntialias()) CGContextSetShouldAntialias(context, shouldAntialias()); } void GraphicsContext::applyStrokePattern() { CGContextRef cgContext = platformContext(); RetainPtr platformPattern(AdoptCF, m_state.strokePattern->createPlatformPattern(getCTM())); if (!platformPattern) return; RetainPtr patternSpace(AdoptCF, CGColorSpaceCreatePattern(0)); CGContextSetStrokeColorSpace(cgContext, patternSpace.get()); const CGFloat patternAlpha = 1; CGContextSetStrokePattern(cgContext, platformPattern.get(), &patternAlpha); } void GraphicsContext::applyFillPattern() { CGContextRef cgContext = platformContext(); RetainPtr platformPattern(AdoptCF, m_state.fillPattern->createPlatformPattern(getCTM())); if (!platformPattern) return; RetainPtr patternSpace(AdoptCF, CGColorSpaceCreatePattern(0)); CGContextSetFillColorSpace(cgContext, patternSpace.get()); const CGFloat patternAlpha = 1; CGContextSetFillPattern(cgContext, platformPattern.get(), &patternAlpha); } static inline bool calculateDrawingMode(const GraphicsContextState& state, CGPathDrawingMode& mode) { bool shouldFill = state.fillPattern || state.fillColor.alpha(); bool shouldStroke = state.strokePattern || (state.strokeStyle != NoStroke && state.strokeColor.alpha()); bool useEOFill = state.fillRule == RULE_EVENODD; if (shouldFill) { if (shouldStroke) { if (useEOFill) mode = kCGPathEOFillStroke; else mode = kCGPathFillStroke; } else { // fill, no stroke if (useEOFill) mode = kCGPathEOFill; else mode = kCGPathFill; } } else { // Setting mode to kCGPathStroke even if shouldStroke is false. In that case, we return false and mode will not be used, // but the compiler will not complain about an uninitialized variable. mode = kCGPathStroke; } return shouldFill || shouldStroke; } void GraphicsContext::drawPath(const Path& path) { if (paintingDisabled()) return; CGContextRef context = platformContext(); const GraphicsContextState& state = m_state; if (state.fillGradient || state.strokeGradient) { // We don't have any optimized way to fill & stroke a path using gradients // FIXME: Be smarter about this. fillPath(path); strokePath(path); return; } CGContextBeginPath(context); CGContextAddPath(context, path.platformPath()); if (state.fillPattern) applyFillPattern(); if (state.strokePattern) applyStrokePattern(); CGPathDrawingMode drawingMode; if (calculateDrawingMode(state, drawingMode)) CGContextDrawPath(context, drawingMode); } static inline void fillPathWithFillRule(CGContextRef context, WindRule fillRule) { if (fillRule == RULE_EVENODD) CGContextEOFillPath(context); else CGContextFillPath(context); } void GraphicsContext::fillPath(const Path& path) { if (paintingDisabled()) return; CGContextRef context = platformContext(); if (m_state.fillGradient) { if (hasShadow()) { FloatRect rect = path.boundingRect(); CGLayerRef layer = CGLayerCreateWithContext(context, CGSizeMake(rect.width(), rect.height()), 0); CGContextRef layerContext = CGLayerGetContext(layer); CGContextTranslateCTM(layerContext, -rect.x(), -rect.y()); CGContextBeginPath(layerContext); CGContextAddPath(layerContext, path.platformPath()); CGContextConcatCTM(layerContext, m_state.fillGradient->gradientSpaceTransform()); if (fillRule() == RULE_EVENODD) CGContextEOClip(layerContext); else CGContextClip(layerContext); m_state.fillGradient->paint(layerContext); CGContextDrawLayerAtPoint(context, CGPointMake(rect.x(), rect.y()), layer); CGLayerRelease(layer); } else { CGContextBeginPath(context); CGContextAddPath(context, path.platformPath()); CGContextSaveGState(context); CGContextConcatCTM(context, m_state.fillGradient->gradientSpaceTransform()); if (fillRule() == RULE_EVENODD) CGContextEOClip(context); else CGContextClip(context); m_state.fillGradient->paint(this); CGContextRestoreGState(context); } return; } CGContextBeginPath(context); CGContextAddPath(context, path.platformPath()); if (m_state.fillPattern) applyFillPattern(); fillPathWithFillRule(context, fillRule()); } void GraphicsContext::strokePath(const Path& path) { if (paintingDisabled()) return; CGContextRef context = platformContext(); CGContextBeginPath(context); CGContextAddPath(context, path.platformPath()); if (m_state.strokeGradient) { if (hasShadow()) { FloatRect rect = path.boundingRect(); float lineWidth = strokeThickness(); float doubleLineWidth = lineWidth * 2; float layerWidth = ceilf(rect.width() + doubleLineWidth); float layerHeight = ceilf(rect.height() + doubleLineWidth); CGLayerRef layer = CGLayerCreateWithContext(context, CGSizeMake(layerWidth, layerHeight), 0); CGContextRef layerContext = CGLayerGetContext(layer); CGContextSetLineWidth(layerContext, lineWidth); // Compensate for the line width, otherwise the layer's top-left corner would be // aligned with the rect's top-left corner. This would result in leaving pixels out of // the layer on the left and top sides. float translationX = lineWidth - rect.x(); float translationY = lineWidth - rect.y(); CGContextTranslateCTM(layerContext, translationX, translationY); CGContextAddPath(layerContext, path.platformPath()); CGContextReplacePathWithStrokedPath(layerContext); CGContextClip(layerContext); CGContextConcatCTM(layerContext, m_state.strokeGradient->gradientSpaceTransform()); m_state.strokeGradient->paint(layerContext); float destinationX = roundf(rect.x() - lineWidth); float destinationY = roundf(rect.y() - lineWidth); CGContextDrawLayerAtPoint(context, CGPointMake(destinationX, destinationY), layer); CGLayerRelease(layer); } else { CGContextSaveGState(context); CGContextReplacePathWithStrokedPath(context); CGContextClip(context); CGContextConcatCTM(context, m_state.strokeGradient->gradientSpaceTransform()); m_state.strokeGradient->paint(this); CGContextRestoreGState(context); } return; } if (m_state.strokePattern) applyStrokePattern(); CGContextStrokePath(context); } static float radiusToLegacyRadius(float radius) { return radius > 8 ? 8 + 4 * sqrt((radius - 8) / 2) : radius; } static bool hasBlurredShadow(const GraphicsContextState& state) { return state.shadowColor.isValid() && state.shadowColor.alpha() && state.shadowBlur; } void GraphicsContext::fillRect(const FloatRect& rect) { if (paintingDisabled()) return; CGContextRef context = platformContext(); if (m_state.fillGradient) { CGContextSaveGState(context); if (hasShadow()) { CGLayerRef layer = CGLayerCreateWithContext(context, CGSizeMake(rect.width(), rect.height()), 0); CGContextRef layerContext = CGLayerGetContext(layer); CGContextTranslateCTM(layerContext, -rect.x(), -rect.y()); CGContextAddRect(layerContext, rect); CGContextClip(layerContext); CGContextConcatCTM(layerContext, m_state.fillGradient->gradientSpaceTransform()); m_state.fillGradient->paint(layerContext); CGContextDrawLayerAtPoint(context, CGPointMake(rect.x(), rect.y()), layer); CGLayerRelease(layer); } else { CGContextClipToRect(context, rect); CGContextConcatCTM(context, m_state.fillGradient->gradientSpaceTransform()); m_state.fillGradient->paint(this); } CGContextRestoreGState(context); return; } if (m_state.fillPattern) applyFillPattern(); bool drawOwnShadow = hasBlurredShadow(m_state) && !m_state.shadowsIgnoreTransforms; // Don't use ShadowBlur for canvas yet. if (drawOwnShadow) { float shadowBlur = m_state.shadowsUseLegacyRadius ? radiusToLegacyRadius(m_state.shadowBlur) : m_state.shadowBlur; // Turn off CG shadows. CGContextSaveGState(context); CGContextSetShadowWithColor(platformContext(), CGSizeZero, 0, 0); ShadowBlur contextShadow(shadowBlur, m_state.shadowOffset, m_state.shadowColor, m_state.shadowColorSpace); contextShadow.drawRectShadow(this, rect, RoundedIntRect::Radii()); } CGContextFillRect(context, rect); if (drawOwnShadow) CGContextRestoreGState(context); } void GraphicsContext::fillRect(const FloatRect& rect, const Color& color, ColorSpace colorSpace) { if (paintingDisabled()) return; CGContextRef context = platformContext(); Color oldFillColor = fillColor(); ColorSpace oldColorSpace = fillColorSpace(); if (oldFillColor != color || oldColorSpace != colorSpace) setCGFillColor(context, color, colorSpace); bool drawOwnShadow = hasBlurredShadow(m_state) && !m_state.shadowsIgnoreTransforms; // Don't use ShadowBlur for canvas yet. if (drawOwnShadow) { float shadowBlur = m_state.shadowsUseLegacyRadius ? radiusToLegacyRadius(m_state.shadowBlur) : m_state.shadowBlur; // Turn off CG shadows. CGContextSaveGState(context); CGContextSetShadowWithColor(platformContext(), CGSizeZero, 0, 0); ShadowBlur contextShadow(shadowBlur, m_state.shadowOffset, m_state.shadowColor, m_state.shadowColorSpace); contextShadow.drawRectShadow(this, rect, RoundedIntRect::Radii()); } CGContextFillRect(context, rect); if (drawOwnShadow) CGContextRestoreGState(context); if (oldFillColor != color || oldColorSpace != colorSpace) setCGFillColor(context, oldFillColor, oldColorSpace); } void GraphicsContext::fillRoundedRect(const IntRect& rect, const IntSize& topLeft, const IntSize& topRight, const IntSize& bottomLeft, const IntSize& bottomRight, const Color& color, ColorSpace colorSpace) { if (paintingDisabled()) return; CGContextRef context = platformContext(); Color oldFillColor = fillColor(); ColorSpace oldColorSpace = fillColorSpace(); if (oldFillColor != color || oldColorSpace != colorSpace) setCGFillColor(context, color, colorSpace); Path path; path.addRoundedRect(rect, topLeft, topRight, bottomLeft, bottomRight); bool drawOwnShadow = hasBlurredShadow(m_state) && !m_state.shadowsIgnoreTransforms; // Don't use ShadowBlur for canvas yet. if (drawOwnShadow) { float shadowBlur = m_state.shadowsUseLegacyRadius ? radiusToLegacyRadius(m_state.shadowBlur) : m_state.shadowBlur; // Turn off CG shadows. CGContextSaveGState(context); CGContextSetShadowWithColor(platformContext(), CGSizeZero, 0, 0); ShadowBlur contextShadow(shadowBlur, m_state.shadowOffset, m_state.shadowColor, m_state.shadowColorSpace); contextShadow.drawRectShadow(this, rect, RoundedIntRect::Radii(topLeft, topRight, bottomLeft, bottomRight)); } fillPath(path); if (drawOwnShadow) CGContextRestoreGState(context); if (oldFillColor != color || oldColorSpace != colorSpace) setCGFillColor(context, oldFillColor, oldColorSpace); } void GraphicsContext::fillRectWithRoundedHole(const IntRect& rect, const RoundedIntRect& roundedHoleRect, const Color& color, ColorSpace colorSpace) { if (paintingDisabled()) return; CGContextRef context = platformContext(); Path path; path.addRect(rect); if (!roundedHoleRect.radii().isZero()) path.addRoundedRect(roundedHoleRect.rect(), roundedHoleRect.radii().topLeft(), roundedHoleRect.radii().topRight(), roundedHoleRect.radii().bottomLeft(), roundedHoleRect.radii().bottomRight()); else path.addRect(roundedHoleRect.rect()); WindRule oldFillRule = fillRule(); Color oldFillColor = fillColor(); ColorSpace oldFillColorSpace = fillColorSpace(); setFillRule(RULE_EVENODD); setFillColor(color, colorSpace); // fillRectWithRoundedHole() assumes that the edges of rect are clipped out, so we only care about shadows cast around inside the hole. bool drawOwnShadow = hasBlurredShadow(m_state) && !m_state.shadowsIgnoreTransforms; if (drawOwnShadow) { float shadowBlur = m_state.shadowsUseLegacyRadius ? radiusToLegacyRadius(m_state.shadowBlur) : m_state.shadowBlur; // Turn off CG shadows. CGContextSaveGState(context); CGContextSetShadowWithColor(platformContext(), CGSizeZero, 0, 0); ShadowBlur contextShadow(shadowBlur, m_state.shadowOffset, m_state.shadowColor, m_state.shadowColorSpace); contextShadow.drawInsetShadow(this, rect, roundedHoleRect.rect(), roundedHoleRect.radii()); } fillPath(path); if (drawOwnShadow) CGContextRestoreGState(context); setFillRule(oldFillRule); setFillColor(oldFillColor, oldFillColorSpace); } void GraphicsContext::clip(const FloatRect& rect) { if (paintingDisabled()) return; CGContextClipToRect(platformContext(), rect); m_data->clip(rect); } void GraphicsContext::clipOut(const IntRect& rect) { if (paintingDisabled()) return; CGRect rects[2] = { CGContextGetClipBoundingBox(platformContext()), rect }; CGContextBeginPath(platformContext()); CGContextAddRects(platformContext(), rects, 2); CGContextEOClip(platformContext()); } void GraphicsContext::clipPath(const Path& path, WindRule clipRule) { if (paintingDisabled()) return; if (path.isEmpty()) return; CGContextRef context = platformContext(); CGContextBeginPath(platformContext()); CGContextAddPath(platformContext(), path.platformPath()); if (clipRule == RULE_EVENODD) CGContextEOClip(context); else CGContextClip(context); } IntRect GraphicsContext::clipBounds() const { return enclosingIntRect(CGContextGetClipBoundingBox(platformContext())); } void GraphicsContext::addInnerRoundedRectClip(const IntRect& rect, int thickness) { if (paintingDisabled()) return; clip(rect); CGContextRef context = platformContext(); // Add outer ellipse CGContextAddEllipseInRect(context, CGRectMake(rect.x(), rect.y(), rect.width(), rect.height())); // Add inner ellipse. CGContextAddEllipseInRect(context, CGRectMake(rect.x() + thickness, rect.y() + thickness, rect.width() - (thickness * 2), rect.height() - (thickness * 2))); CGContextEOClip(context); } void GraphicsContext::beginTransparencyLayer(float opacity) { if (paintingDisabled()) return; CGContextRef context = platformContext(); CGContextSaveGState(context); CGContextSetAlpha(context, opacity); CGContextBeginTransparencyLayer(context, 0); m_data->beginTransparencyLayer(); m_data->m_userToDeviceTransformKnownToBeIdentity = false; } void GraphicsContext::endTransparencyLayer() { if (paintingDisabled()) return; CGContextRef context = platformContext(); CGContextEndTransparencyLayer(context); CGContextRestoreGState(context); m_data->endTransparencyLayer(); m_data->m_userToDeviceTransformKnownToBeIdentity = false; } void GraphicsContext::setPlatformShadow(const FloatSize& offset, float blur, const Color& color, ColorSpace colorSpace) { if (paintingDisabled()) return; // FIXME: we could avoid the shadow setup cost when we know we'll render the shadow ourselves. CGFloat xOffset = offset.width(); CGFloat yOffset = offset.height(); CGFloat blurRadius = blur; CGContextRef context = platformContext(); if (!m_state.shadowsIgnoreTransforms) { CGAffineTransform userToBaseCTM = wkGetUserToBaseCTM(context); CGFloat A = userToBaseCTM.a * userToBaseCTM.a + userToBaseCTM.b * userToBaseCTM.b; CGFloat B = userToBaseCTM.a * userToBaseCTM.c + userToBaseCTM.b * userToBaseCTM.d; CGFloat C = B; CGFloat D = userToBaseCTM.c * userToBaseCTM.c + userToBaseCTM.d * userToBaseCTM.d; CGFloat smallEigenvalue = narrowPrecisionToCGFloat(sqrt(0.5 * ((A + D) - sqrt(4 * B * C + (A - D) * (A - D))))); // Extreme "blur" values can make text drawing crash or take crazy long times, so clamp blurRadius = min(blur * smallEigenvalue, narrowPrecisionToCGFloat(1000.0)); CGSize offsetInBaseSpace = CGSizeApplyAffineTransform(offset, userToBaseCTM); xOffset = offsetInBaseSpace.width; yOffset = offsetInBaseSpace.height; } // Work around by ensuring that the offsets will get truncated // to the desired integer. static const CGFloat extraShadowOffset = narrowPrecisionToCGFloat(1.0 / 128); if (xOffset > 0) xOffset += extraShadowOffset; else if (xOffset < 0) xOffset -= extraShadowOffset; if (yOffset > 0) yOffset += extraShadowOffset; else if (yOffset < 0) yOffset -= extraShadowOffset; // Check for an invalid color, as this means that the color was not set for the shadow // and we should therefore just use the default shadow color. if (!color.isValid()) CGContextSetShadow(context, CGSizeMake(xOffset, yOffset), blurRadius); else CGContextSetShadowWithColor(context, CGSizeMake(xOffset, yOffset), blurRadius, cachedCGColor(color, colorSpace)); } void GraphicsContext::clearPlatformShadow() { if (paintingDisabled()) return; CGContextSetShadowWithColor(platformContext(), CGSizeZero, 0, 0); } void GraphicsContext::setMiterLimit(float limit) { if (paintingDisabled()) return; CGContextSetMiterLimit(platformContext(), limit); } void GraphicsContext::setAlpha(float alpha) { if (paintingDisabled()) return; CGContextSetAlpha(platformContext(), alpha); } void GraphicsContext::clearRect(const FloatRect& r) { if (paintingDisabled()) return; CGContextClearRect(platformContext(), r); } void GraphicsContext::strokeRect(const FloatRect& rect, float lineWidth) { if (paintingDisabled()) return; CGContextRef context = platformContext(); if (m_state.strokeGradient) { if (hasShadow()) { const float doubleLineWidth = lineWidth * 2; const float layerWidth = ceilf(rect.width() + doubleLineWidth); const float layerHeight = ceilf(rect.height() + doubleLineWidth); CGLayerRef layer = CGLayerCreateWithContext(context, CGSizeMake(layerWidth, layerHeight), 0); CGContextRef layerContext = CGLayerGetContext(layer); m_state.strokeThickness = lineWidth; CGContextSetLineWidth(layerContext, lineWidth); // Compensate for the line width, otherwise the layer's top-left corner would be // aligned with the rect's top-left corner. This would result in leaving pixels out of // the layer on the left and top sides. const float translationX = lineWidth - rect.x(); const float translationY = lineWidth - rect.y(); CGContextTranslateCTM(layerContext, translationX, translationY); CGContextAddRect(layerContext, rect); CGContextReplacePathWithStrokedPath(layerContext); CGContextClip(layerContext); CGContextConcatCTM(layerContext, m_state.strokeGradient->gradientSpaceTransform()); m_state.strokeGradient->paint(layerContext); const float destinationX = roundf(rect.x() - lineWidth); const float destinationY = roundf(rect.y() - lineWidth); CGContextDrawLayerAtPoint(context, CGPointMake(destinationX, destinationY), layer); CGLayerRelease(layer); } else { CGContextSaveGState(context); setStrokeThickness(lineWidth); CGContextAddRect(context, rect); CGContextReplacePathWithStrokedPath(context); CGContextClip(context); CGContextConcatCTM(context, m_state.strokeGradient->gradientSpaceTransform()); m_state.strokeGradient->paint(this); CGContextRestoreGState(context); } return; } if (m_state.strokePattern) applyStrokePattern(); CGContextStrokeRectWithWidth(context, rect, lineWidth); } void GraphicsContext::setLineCap(LineCap cap) { if (paintingDisabled()) return; switch (cap) { case ButtCap: CGContextSetLineCap(platformContext(), kCGLineCapButt); break; case RoundCap: CGContextSetLineCap(platformContext(), kCGLineCapRound); break; case SquareCap: CGContextSetLineCap(platformContext(), kCGLineCapSquare); break; } } void GraphicsContext::setLineDash(const DashArray& dashes, float dashOffset) { CGContextSetLineDash(platformContext(), dashOffset, dashes.data(), dashes.size()); } void GraphicsContext::setLineJoin(LineJoin join) { if (paintingDisabled()) return; switch (join) { case MiterJoin: CGContextSetLineJoin(platformContext(), kCGLineJoinMiter); break; case RoundJoin: CGContextSetLineJoin(platformContext(), kCGLineJoinRound); break; case BevelJoin: CGContextSetLineJoin(platformContext(), kCGLineJoinBevel); break; } } void GraphicsContext::clip(const Path& path) { if (paintingDisabled()) return; CGContextRef context = platformContext(); // CGContextClip does nothing if the path is empty, so in this case, we // instead clip against a zero rect to reduce the clipping region to // nothing - which is the intended behavior of clip() if the path is empty. if (path.isEmpty()) CGContextClipToRect(context, CGRectZero); else { CGContextBeginPath(context); CGContextAddPath(context, path.platformPath()); CGContextClip(context); } m_data->clip(path); } void GraphicsContext::canvasClip(const Path& path) { clip(path); } void GraphicsContext::clipOut(const Path& path) { if (paintingDisabled()) return; CGContextBeginPath(platformContext()); CGContextAddRect(platformContext(), CGContextGetClipBoundingBox(platformContext())); CGContextAddPath(platformContext(), path.platformPath()); CGContextEOClip(platformContext()); } void GraphicsContext::scale(const FloatSize& size) { if (paintingDisabled()) return; CGContextScaleCTM(platformContext(), size.width(), size.height()); m_data->scale(size); m_data->m_userToDeviceTransformKnownToBeIdentity = false; } void GraphicsContext::rotate(float angle) { if (paintingDisabled()) return; CGContextRotateCTM(platformContext(), angle); m_data->rotate(angle); m_data->m_userToDeviceTransformKnownToBeIdentity = false; } void GraphicsContext::translate(float x, float y) { if (paintingDisabled()) return; CGContextTranslateCTM(platformContext(), x, y); m_data->translate(x, y); m_data->m_userToDeviceTransformKnownToBeIdentity = false; } void GraphicsContext::concatCTM(const AffineTransform& transform) { if (paintingDisabled()) return; CGContextConcatCTM(platformContext(), transform); m_data->concatCTM(transform); m_data->m_userToDeviceTransformKnownToBeIdentity = false; } void GraphicsContext::setCTM(const AffineTransform& transform) { if (paintingDisabled()) return; CGContextSetCTM(platformContext(), transform); m_data->setCTM(transform); m_data->m_userToDeviceTransformKnownToBeIdentity = false; } AffineTransform GraphicsContext::getCTM() const { CGAffineTransform t = CGContextGetCTM(platformContext()); return AffineTransform(t.a, t.b, t.c, t.d, t.tx, t.ty); } FloatRect GraphicsContext::roundToDevicePixels(const FloatRect& rect) { // It is not enough just to round to pixels in device space. The rotation part of the // affine transform matrix to device space can mess with this conversion if we have a // rotating image like the hands of the world clock widget. We just need the scale, so // we get the affine transform matrix and extract the scale. if (m_data->m_userToDeviceTransformKnownToBeIdentity) return rect; CGAffineTransform deviceMatrix = CGContextGetUserSpaceToDeviceSpaceTransform(platformContext()); if (CGAffineTransformIsIdentity(deviceMatrix)) { m_data->m_userToDeviceTransformKnownToBeIdentity = true; return rect; } float deviceScaleX = sqrtf(deviceMatrix.a * deviceMatrix.a + deviceMatrix.b * deviceMatrix.b); float deviceScaleY = sqrtf(deviceMatrix.c * deviceMatrix.c + deviceMatrix.d * deviceMatrix.d); CGPoint deviceOrigin = CGPointMake(rect.x() * deviceScaleX, rect.y() * deviceScaleY); CGPoint deviceLowerRight = CGPointMake((rect.x() + rect.width()) * deviceScaleX, (rect.y() + rect.height()) * deviceScaleY); deviceOrigin.x = roundf(deviceOrigin.x); deviceOrigin.y = roundf(deviceOrigin.y); deviceLowerRight.x = roundf(deviceLowerRight.x); deviceLowerRight.y = roundf(deviceLowerRight.y); // Don't let the height or width round to 0 unless either was originally 0 if (deviceOrigin.y == deviceLowerRight.y && rect.height()) deviceLowerRight.y += 1; if (deviceOrigin.x == deviceLowerRight.x && rect.width()) deviceLowerRight.x += 1; FloatPoint roundedOrigin = FloatPoint(deviceOrigin.x / deviceScaleX, deviceOrigin.y / deviceScaleY); FloatPoint roundedLowerRight = FloatPoint(deviceLowerRight.x / deviceScaleX, deviceLowerRight.y / deviceScaleY); return FloatRect(roundedOrigin, roundedLowerRight - roundedOrigin); } void GraphicsContext::drawLineForText(const FloatPoint& point, float width, bool printing) { if (paintingDisabled()) return; if (width <= 0) return; float x = point.x(); float y = point.y(); float lineLength = width; // Use a minimum thickness of 0.5 in user space. // See http://bugs.webkit.org/show_bug.cgi?id=4255 for details of why 0.5 is the right minimum thickness to use. float thickness = max(strokeThickness(), 0.5f); bool restoreAntialiasMode = false; if (!printing) { // On screen, use a minimum thickness of 1.0 in user space (later rounded to an integral number in device space). float adjustedThickness = max(thickness, 1.0f); // FIXME: This should be done a better way. // We try to round all parameters to integer boundaries in device space. If rounding pixels in device space // makes our thickness more than double, then there must be a shrinking-scale factor and rounding to pixels // in device space will make the underlines too thick. CGRect lineRect = roundToDevicePixels(FloatRect(x, y, lineLength, adjustedThickness)); if (lineRect.size.height < thickness * 2.0) { x = lineRect.origin.x; y = lineRect.origin.y; lineLength = lineRect.size.width; thickness = lineRect.size.height; if (shouldAntialias()) { CGContextSetShouldAntialias(platformContext(), false); restoreAntialiasMode = true; } } } if (fillColor() != strokeColor()) setCGFillColor(platformContext(), strokeColor(), strokeColorSpace()); CGContextFillRect(platformContext(), CGRectMake(x, y, lineLength, thickness)); if (fillColor() != strokeColor()) setCGFillColor(platformContext(), fillColor(), fillColorSpace()); if (restoreAntialiasMode) CGContextSetShouldAntialias(platformContext(), true); } void GraphicsContext::setURLForRect(const KURL& link, const IntRect& destRect) { if (paintingDisabled()) return; RetainPtr urlRef(AdoptCF, link.createCFURL()); if (!urlRef) return; CGContextRef context = platformContext(); // Get the bounding box to handle clipping. CGRect box = CGContextGetClipBoundingBox(context); IntRect intBox((int)box.origin.x, (int)box.origin.y, (int)box.size.width, (int)box.size.height); IntRect rect = destRect; rect.intersect(intBox); CGPDFContextSetURLForRect(context, urlRef.get(), CGRectApplyAffineTransform(rect, CGContextGetCTM(context))); } void GraphicsContext::setImageInterpolationQuality(InterpolationQuality mode) { if (paintingDisabled()) return; CGInterpolationQuality quality = kCGInterpolationDefault; switch (mode) { case InterpolationDefault: quality = kCGInterpolationDefault; break; case InterpolationNone: quality = kCGInterpolationNone; break; case InterpolationLow: quality = kCGInterpolationLow; break; // Fall through to InterpolationHigh if kCGInterpolationMedium is not usable. case InterpolationMedium: #if USE(CG_INTERPOLATION_MEDIUM) quality = kCGInterpolationMedium; break; #endif case InterpolationHigh: quality = kCGInterpolationHigh; break; } CGContextSetInterpolationQuality(platformContext(), quality); } InterpolationQuality GraphicsContext::imageInterpolationQuality() const { if (paintingDisabled()) return InterpolationDefault; CGInterpolationQuality quality = CGContextGetInterpolationQuality(platformContext()); switch (quality) { case kCGInterpolationDefault: return InterpolationDefault; case kCGInterpolationNone: return InterpolationNone; case kCGInterpolationLow: return InterpolationLow; #if HAVE(CG_INTERPOLATION_MEDIUM) // kCGInterpolationMedium is known to be present in the CGInterpolationQuality enum. case kCGInterpolationMedium: #if USE(CG_INTERPOLATION_MEDIUM) // Only map to InterpolationMedium if targeting a system that understands it. return InterpolationMedium; #else return InterpolationDefault; #endif // USE(CG_INTERPOLATION_MEDIUM) #endif // HAVE(CG_INTERPOLATION_MEDIUM) case kCGInterpolationHigh: return InterpolationHigh; } return InterpolationDefault; } void GraphicsContext::setAllowsFontSmoothing(bool allowsFontSmoothing) { UNUSED_PARAM(allowsFontSmoothing); #if !defined(BUILDING_ON_TIGER) && !defined(BUILDING_ON_LEOPARD) CGContextRef context = platformContext(); CGContextSetAllowsFontSmoothing(context, allowsFontSmoothing); #endif } void GraphicsContext::setIsCALayerContext(bool) { m_data->m_isCALayerContext = true; } bool GraphicsContext::isCALayerContext() const { return m_data->m_isCALayerContext; } void GraphicsContext::setPlatformTextDrawingMode(TextDrawingModeFlags mode) { if (paintingDisabled()) return; // Wow, wish CG had used bits here. CGContextRef context = platformContext(); switch (mode) { case TextModeInvisible: CGContextSetTextDrawingMode(context, kCGTextInvisible); break; case TextModeFill: CGContextSetTextDrawingMode(context, kCGTextFill); break; case TextModeStroke: CGContextSetTextDrawingMode(context, kCGTextStroke); break; case TextModeFill | TextModeStroke: CGContextSetTextDrawingMode(context, kCGTextFillStroke); break; case TextModeClip: CGContextSetTextDrawingMode(context, kCGTextClip); break; case TextModeFill | TextModeClip: CGContextSetTextDrawingMode(context, kCGTextFillClip); break; case TextModeStroke | TextModeClip: CGContextSetTextDrawingMode(context, kCGTextStrokeClip); break; case TextModeFill | TextModeStroke | TextModeClip: CGContextSetTextDrawingMode(context, kCGTextFillStrokeClip); break; default: break; } } void GraphicsContext::setPlatformStrokeColor(const Color& color, ColorSpace colorSpace) { if (paintingDisabled()) return; setCGStrokeColor(platformContext(), color, colorSpace); } void GraphicsContext::setPlatformStrokeThickness(float thickness) { if (paintingDisabled()) return; CGContextSetLineWidth(platformContext(), thickness); } void GraphicsContext::setPlatformFillColor(const Color& color, ColorSpace colorSpace) { if (paintingDisabled()) return; setCGFillColor(platformContext(), color, colorSpace); } void GraphicsContext::setPlatformShouldAntialias(bool enable) { if (paintingDisabled()) return; CGContextSetShouldAntialias(platformContext(), enable); } void GraphicsContext::setPlatformShouldSmoothFonts(bool enable) { if (paintingDisabled()) return; CGContextSetShouldSmoothFonts(platformContext(), enable); } #ifndef BUILDING_ON_TIGER // Tiger's setPlatformCompositeOperation() is defined in GraphicsContextMac.mm. void GraphicsContext::setPlatformCompositeOperation(CompositeOperator mode) { if (paintingDisabled()) return; CGBlendMode target = kCGBlendModeNormal; switch (mode) { case CompositeClear: target = kCGBlendModeClear; break; case CompositeCopy: target = kCGBlendModeCopy; break; case CompositeSourceOver: //kCGBlendModeNormal break; case CompositeSourceIn: target = kCGBlendModeSourceIn; break; case CompositeSourceOut: target = kCGBlendModeSourceOut; break; case CompositeSourceAtop: target = kCGBlendModeSourceAtop; break; case CompositeDestinationOver: target = kCGBlendModeDestinationOver; break; case CompositeDestinationIn: target = kCGBlendModeDestinationIn; break; case CompositeDestinationOut: target = kCGBlendModeDestinationOut; break; case CompositeDestinationAtop: target = kCGBlendModeDestinationAtop; break; case CompositeXOR: target = kCGBlendModeXOR; break; case CompositePlusDarker: target = kCGBlendModePlusDarker; break; case CompositeHighlight: // currently unsupported break; case CompositePlusLighter: target = kCGBlendModePlusLighter; break; } CGContextSetBlendMode(platformContext(), target); } #endif }