/* * Copyright (c) 2010, Google Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following disclaimer * in the documentation and/or other materials provided with the * distribution. * * Neither the name of Google Inc. nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "config.h" #if ENABLE(ACCELERATED_2D_CANVAS) #include "Shader.h" #include "AffineTransform.h" #include "GraphicsContext3D.h" #include #include namespace WebCore { // static void Shader::affineTo3x3(const AffineTransform& transform, float mat[9]) { mat[0] = transform.a(); mat[1] = transform.b(); mat[2] = 0.0f; mat[3] = transform.c(); mat[4] = transform.d(); mat[5] = 0.0f; mat[6] = transform.e(); mat[7] = transform.f(); mat[8] = 1.0f; } // static void Shader::affineTo4x4(const AffineTransform& transform, float mat[16]) { mat[0] = transform.a(); mat[1] = transform.b(); mat[2] = 0.0f; mat[3] = 0.0f; mat[4] = transform.c(); mat[5] = transform.d(); mat[6] = 0.0f; mat[7] = 0.0f; mat[8] = 0.0f; mat[9] = 0.0f; mat[10] = 1.0f; mat[11] = 0.0f; mat[12] = transform.e(); mat[13] = transform.f(); mat[14] = 0.0f; mat[15] = 1.0f; } // static unsigned Shader::loadShader(GraphicsContext3D* context, unsigned type, const String& shaderSource) { unsigned shader = context->createShader(type); if (!shader) return 0; context->shaderSource(shader, shaderSource); context->compileShader(shader); int compileStatus = 0; context->getShaderiv(shader, GraphicsContext3D::COMPILE_STATUS, &compileStatus); if (!compileStatus) { String infoLog = context->getShaderInfoLog(shader); LOG_ERROR("%s", infoLog.utf8().data()); context->deleteShader(shader); return 0; } return shader; } // static unsigned Shader::loadProgram(GraphicsContext3D* context, const String& vertexShaderSource, const String& fragmentShaderSource) { unsigned vertexShader = loadShader(context, GraphicsContext3D::VERTEX_SHADER, vertexShaderSource); if (!vertexShader) return 0; unsigned fragmentShader = loadShader(context, GraphicsContext3D::FRAGMENT_SHADER, fragmentShaderSource); if (!fragmentShader) return 0; unsigned program = context->createProgram(); if (!program) return 0; context->attachShader(program, vertexShader); context->attachShader(program, fragmentShader); context->linkProgram(program); int linkStatus = 0; context->getProgramiv(program, GraphicsContext3D::LINK_STATUS, &linkStatus); if (!linkStatus) context->deleteProgram(program); context->deleteShader(vertexShader); context->deleteShader(fragmentShader); return program; } Shader::Shader(GraphicsContext3D* context, unsigned program) : m_context(context) , m_program(program) { } Shader::~Shader() { m_context->deleteProgram(m_program); } // static String Shader::generateVertex(Shader::VertexType vertexType, Shader::FillType fillType) { StringBuilder builder; switch (vertexType) { case TwoDimensional: builder.append( "uniform mat3 matrix;\n" "attribute vec2 position;\n"); break; case LoopBlinnInterior: builder.append( "uniform mat4 worldViewProjection;\n" "attribute vec2 position;\n"); break; case LoopBlinnExterior: builder.append( "uniform mat4 worldViewProjection;\n" "attribute vec2 position;\n" "attribute vec3 klm;\n" "varying vec3 v_klm;\n"); break; } if (fillType == TextureFill) { builder.append( "uniform mat3 texMatrix;\n" "varying vec3 texCoord;\n"); } builder.append( "void main() {\n"); if (vertexType == TwoDimensional) { builder.append( "gl_Position = vec4(matrix * vec3(position, 1.0), 1.0);\n"); } else { builder.append( "gl_Position = worldViewProjection * vec4(position, 0.0, 1.0);\n"); if (vertexType == LoopBlinnExterior) { builder.append( "v_klm = klm;\n"); } } if (fillType == TextureFill) { builder.append( "texCoord = texMatrix * vec3(position, 1.0);\n"); } builder.append( "}\n"); return builder.toString(); } // static String Shader::generateFragment(Shader::VertexType vertexType, Shader::FillType fillType, Shader::AntialiasType antialiasType) { StringBuilder builder; builder.append( "#ifdef GL_ES\n" "precision mediump float;\n" "#endif\n"); if (vertexType == LoopBlinnExterior) { if (antialiasType == Antialiased) { builder.append( "#extension GL_OES_standard_derivatives : enable\n"); } builder.append( "varying vec3 v_klm;\n"); } switch (fillType) { case SolidFill: builder.append( "uniform vec4 color;\n"); break; case TextureFill: builder.append( "uniform sampler2D sampler;\n" "uniform float globalAlpha;\n" "varying vec3 texCoord;\n"); break; } builder.append( "void main() {\n"); if (vertexType != LoopBlinnExterior) { builder.append( "float alpha = 1.0;\n"); } else { if (antialiasType == Antialiased) { builder.append( " // Gradients\n" " vec3 px = dFdx(v_klm);\n" " vec3 py = dFdy(v_klm);\n" "\n" " // Chain rule\n" " float k2 = v_klm.x * v_klm.x;\n" " float c = k2 * v_klm.x - v_klm.y * v_klm.z;\n" " float k23 = 3.0 * k2;\n" " float cx = k23 * px.x - v_klm.z * px.y - v_klm.y * px.z;\n" " float cy = k23 * py.x - v_klm.z * py.y - v_klm.y * py.z;\n" "\n" " // Signed distance\n" " float sd = c / sqrt(cx * cx + cy * cy);\n" "\n" " // Linear alpha\n" " // FIXME: figure out why this needs to be\n" " // negated compared to the HLSL version, and also why\n" " // we need an adjustment by +1.0 for it to look good.\n" " // float alpha = clamp(0.5 - sd, 0.0, 1.0);\n" " float alpha = clamp(sd + 0.5, 0.0, 1.0);\n"); } else { builder.append( " float t = v_klm.x * v_klm.x * v_klm.x - v_klm.y * v_klm.z;\n" " float alpha = clamp(sign(t), 0.0, 1.0);\n"); } } switch (fillType) { case SolidFill: builder.append( "gl_FragColor = color * alpha;\n"); break; case TextureFill: builder.append( "gl_FragColor = texture2D(sampler, texCoord.xy) * alpha * globalAlpha;\n"); break; } builder.append( "}\n"); return builder.toString(); } } // namespace WebCore #endif