/* * Copyright (C) 2006 Zack Rusin * 2006 Rob Buis * 2009, 2010 Dirk Schulze * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY APPLE COMPUTER, INC. ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE COMPUTER, INC. OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "config.h" #include "Path.h" #include "AffineTransform.h" #include "FloatRect.h" #include "GraphicsContext.h" #include "ImageBuffer.h" #include "PlatformString.h" #include "StrokeStyleApplier.h" #include #include #include #include #include namespace WebCore { Path::Path() { } Path::~Path() { } Path::Path(const Path& other) : m_path(other.m_path) { } Path& Path::operator=(const Path& other) { m_path = other.m_path; return *this; } static inline bool areCollinear(const QPointF& a, const QPointF& b, const QPointF& c) { // Solved from comparing the slopes of a to b and b to c: (ay-by)/(ax-bx) == (cy-by)/(cx-bx) return qFuzzyCompare((c.y() - b.y()) * (a.x() - b.x()), (a.y() - b.y()) * (c.x() - b.x())); } static inline bool withinRange(qreal p, qreal a, qreal b) { return (p >= a && p <= b) || (p >= b && p <= a); } // Check whether a point is on the border static bool isPointOnPathBorder(const QPolygonF& border, const QPointF& p) { // null border doesn't contain points if (border.isEmpty()) return false; QPointF p1 = border.at(0); QPointF p2; for (int i = 1; i < border.size(); ++i) { p2 = border.at(i); if (areCollinear(p, p1, p2) // Once we know that the points are collinear we // only need to check one of the coordinates && (qAbs(p2.x() - p1.x()) > qAbs(p2.y() - p1.y()) ? withinRange(p.x(), p1.x(), p2.x()) : withinRange(p.y(), p1.y(), p2.y()))) { return true; } p1 = p2; } return false; } bool Path::contains(const FloatPoint& point, WindRule rule) const { Qt::FillRule savedRule = m_path.fillRule(); const_cast(&m_path)->setFillRule(rule == RULE_EVENODD ? Qt::OddEvenFill : Qt::WindingFill); bool contains = m_path.contains(point); if (!contains) { // check whether the point is on the border contains = isPointOnPathBorder(m_path.toFillPolygon(), point); } const_cast(&m_path)->setFillRule(savedRule); return contains; } static GraphicsContext* scratchContext() { static QImage image(1, 1, QImage::Format_ARGB32_Premultiplied); static QPainter painter(&image); static GraphicsContext* context = new GraphicsContext(&painter); return context; } bool Path::strokeContains(StrokeStyleApplier* applier, const FloatPoint& point) const { ASSERT(applier); QPainterPathStroker stroke; GraphicsContext* context = scratchContext(); applier->strokeStyle(context); QPen pen = context->platformContext()->pen(); stroke.setWidth(pen.widthF()); stroke.setCapStyle(pen.capStyle()); stroke.setJoinStyle(pen.joinStyle()); stroke.setMiterLimit(pen.miterLimit()); stroke.setDashPattern(pen.dashPattern()); stroke.setDashOffset(pen.dashOffset()); return stroke.createStroke(m_path).contains(point); } void Path::translate(const FloatSize& size) { QTransform matrix; matrix.translate(size.width(), size.height()); m_path = m_path * matrix; } FloatRect Path::boundingRect() const { return m_path.boundingRect(); } FloatRect Path::strokeBoundingRect(StrokeStyleApplier* applier) const { GraphicsContext* context = scratchContext(); QPainterPathStroker stroke; if (applier) { applier->strokeStyle(context); QPen pen = context->platformContext()->pen(); stroke.setWidth(pen.widthF()); stroke.setCapStyle(pen.capStyle()); stroke.setJoinStyle(pen.joinStyle()); stroke.setMiterLimit(pen.miterLimit()); stroke.setDashPattern(pen.dashPattern()); stroke.setDashOffset(pen.dashOffset()); } return stroke.createStroke(m_path).boundingRect(); } void Path::moveTo(const FloatPoint& point) { m_path.moveTo(point); } void Path::addLineTo(const FloatPoint& p) { m_path.lineTo(p); } void Path::addQuadCurveTo(const FloatPoint& cp, const FloatPoint& p) { m_path.quadTo(cp, p); } void Path::addBezierCurveTo(const FloatPoint& cp1, const FloatPoint& cp2, const FloatPoint& p) { m_path.cubicTo(cp1, cp2, p); } void Path::addArcTo(const FloatPoint& p1, const FloatPoint& p2, float radius) { FloatPoint p0(m_path.currentPosition()); FloatPoint p1p0((p0.x() - p1.x()), (p0.y() - p1.y())); FloatPoint p1p2((p2.x() - p1.x()), (p2.y() - p1.y())); float p1p0_length = sqrtf(p1p0.x() * p1p0.x() + p1p0.y() * p1p0.y()); float p1p2_length = sqrtf(p1p2.x() * p1p2.x() + p1p2.y() * p1p2.y()); double cos_phi = (p1p0.x() * p1p2.x() + p1p0.y() * p1p2.y()) / (p1p0_length * p1p2_length); // The points p0, p1, and p2 are on the same straight line (HTML5, 4.8.11.1.8) // We could have used areCollinear() here, but since we're reusing // the variables computed above later on we keep this logic. if (qFuzzyCompare(qAbs(cos_phi), 1.0)) { m_path.lineTo(p1); return; } float tangent = radius / tan(acos(cos_phi) / 2); float factor_p1p0 = tangent / p1p0_length; FloatPoint t_p1p0((p1.x() + factor_p1p0 * p1p0.x()), (p1.y() + factor_p1p0 * p1p0.y())); FloatPoint orth_p1p0(p1p0.y(), -p1p0.x()); float orth_p1p0_length = sqrt(orth_p1p0.x() * orth_p1p0.x() + orth_p1p0.y() * orth_p1p0.y()); float factor_ra = radius / orth_p1p0_length; // angle between orth_p1p0 and p1p2 to get the right vector orthographic to p1p0 double cos_alpha = (orth_p1p0.x() * p1p2.x() + orth_p1p0.y() * p1p2.y()) / (orth_p1p0_length * p1p2_length); if (cos_alpha < 0.f) orth_p1p0 = FloatPoint(-orth_p1p0.x(), -orth_p1p0.y()); FloatPoint p((t_p1p0.x() + factor_ra * orth_p1p0.x()), (t_p1p0.y() + factor_ra * orth_p1p0.y())); // calculate angles for addArc orth_p1p0 = FloatPoint(-orth_p1p0.x(), -orth_p1p0.y()); float sa = acos(orth_p1p0.x() / orth_p1p0_length); if (orth_p1p0.y() < 0.f) sa = 2 * piDouble - sa; // anticlockwise logic bool anticlockwise = false; float factor_p1p2 = tangent / p1p2_length; FloatPoint t_p1p2((p1.x() + factor_p1p2 * p1p2.x()), (p1.y() + factor_p1p2 * p1p2.y())); FloatPoint orth_p1p2((t_p1p2.x() - p.x()), (t_p1p2.y() - p.y())); float orth_p1p2_length = sqrtf(orth_p1p2.x() * orth_p1p2.x() + orth_p1p2.y() * orth_p1p2.y()); float ea = acos(orth_p1p2.x() / orth_p1p2_length); if (orth_p1p2.y() < 0) ea = 2 * piDouble - ea; if ((sa > ea) && ((sa - ea) < piDouble)) anticlockwise = true; if ((sa < ea) && ((ea - sa) > piDouble)) anticlockwise = true; m_path.lineTo(t_p1p0); addArc(p, radius, sa, ea, anticlockwise); } void Path::closeSubpath() { m_path.closeSubpath(); } void Path::addArc(const FloatPoint& p, float r, float sar, float ear, bool anticlockwise) { qreal xc = p.x(); qreal yc = p.y(); qreal radius = r; //### HACK // In Qt we don't switch the coordinate system for degrees // and still use the 0,0 as bottom left for degrees so we need // to switch sar = -sar; ear = -ear; anticlockwise = !anticlockwise; //end hack float sa = rad2deg(sar); float ea = rad2deg(ear); double span = 0; double xs = xc - radius; double ys = yc - radius; double width = radius*2; double height = radius*2; if ((!anticlockwise && (ea - sa >= 360)) || (anticlockwise && (sa - ea >= 360))) { // If the anticlockwise argument is false and endAngle-startAngle is equal to or greater than 2*PI, or, if the // anticlockwise argument is true and startAngle-endAngle is equal to or greater than 2*PI, then the arc is the whole // circumference of this circle. span = 360; if (anticlockwise) span = -span; } else { if (!anticlockwise && (ea < sa)) span += 360; else if (anticlockwise && (sa < ea)) span -= 360; // this is also due to switched coordinate system // we would end up with a 0 span instead of 360 if (!(qFuzzyCompare(span + (ea - sa) + 1, 1.0) && qFuzzyCompare(qAbs(span), 360.0))) { // mod 360 span += (ea - sa) - (static_cast((ea - sa) / 360)) * 360; } } // If the path is empty, move to where the arc will start to avoid painting a line from (0,0) // NOTE: QPainterPath::isEmpty() won't work here since it ignores a lone MoveToElement if (!m_path.elementCount()) m_path.arcMoveTo(xs, ys, width, height, sa); else if (!radius) { m_path.lineTo(xc, yc); return; } m_path.arcTo(xs, ys, width, height, sa, span); } void Path::addRect(const FloatRect& r) { m_path.addRect(r.x(), r.y(), r.width(), r.height()); } void Path::addEllipse(const FloatRect& r) { m_path.addEllipse(r.x(), r.y(), r.width(), r.height()); } void Path::clear() { if (!m_path.elementCount()) return; m_path = QPainterPath(); } bool Path::isEmpty() const { // Don't use QPainterPath::isEmpty(), as that also returns true if there's only // one initial MoveTo element in the path. return !m_path.elementCount(); } bool Path::hasCurrentPoint() const { return !isEmpty(); } FloatPoint Path::currentPoint() const { return m_path.currentPosition(); } void Path::apply(void* info, PathApplierFunction function) const { PathElement pelement; FloatPoint points[3]; pelement.points = points; for (int i = 0; i < m_path.elementCount(); ++i) { const QPainterPath::Element& cur = m_path.elementAt(i); switch (cur.type) { case QPainterPath::MoveToElement: pelement.type = PathElementMoveToPoint; pelement.points[0] = QPointF(cur); function(info, &pelement); break; case QPainterPath::LineToElement: pelement.type = PathElementAddLineToPoint; pelement.points[0] = QPointF(cur); function(info, &pelement); break; case QPainterPath::CurveToElement: { const QPainterPath::Element& c1 = m_path.elementAt(i + 1); const QPainterPath::Element& c2 = m_path.elementAt(i + 2); Q_ASSERT(c1.type == QPainterPath::CurveToDataElement); Q_ASSERT(c2.type == QPainterPath::CurveToDataElement); pelement.type = PathElementAddCurveToPoint; pelement.points[0] = QPointF(cur); pelement.points[1] = QPointF(c1); pelement.points[2] = QPointF(c2); function(info, &pelement); i += 2; break; } case QPainterPath::CurveToDataElement: Q_ASSERT(false); } } } void Path::transform(const AffineTransform& transform) { QTransform qTransform(transform); m_path = qTransform.map(m_path); } float Path::length() const { return m_path.length(); } FloatPoint Path::pointAtLength(float length, bool& ok) const { ok = (length >= 0 && length <= m_path.length()); qreal percent = m_path.percentAtLength(length); QPointF point = m_path.pointAtPercent(percent); return point; } float Path::normalAngleAtLength(float length, bool& ok) const { ok = (length >= 0 && length <= m_path.length()); qreal percent = m_path.percentAtLength(length); qreal angle = m_path.angleAtPercent(percent); // Normalize angle value. // QPainterPath returns angle values with the origo being at the top left corner. // In case of moveTo(0, 0) and addLineTo(0, 10) the angle is 270, // while the caller expects it to be 90. // Normalize the value by mirroring it to the x-axis. // For more info look at pathLengthApplierFunction(). if (angle > 0) angle = 360 - angle; return angle; } } // vim: ts=4 sw=4 et