/* * Copyright (C) 2006 Apple Computer, Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY APPLE COMPUTER, INC. ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE COMPUTER, INC. OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "config.h" #include "GIFImageDecoder.h" #include "GIFImageReader.h" namespace WebCore { GIFImageDecoder::GIFImageDecoder(ImageSource::AlphaOption alphaOption, ImageSource::GammaAndColorProfileOption gammaAndColorProfileOption) : ImageDecoder(alphaOption, gammaAndColorProfileOption) , m_alreadyScannedThisDataForFrameCount(true) , m_repetitionCount(cAnimationLoopOnce) , m_readOffset(0) { } GIFImageDecoder::~GIFImageDecoder() { } void GIFImageDecoder::setData(SharedBuffer* data, bool allDataReceived) { if (failed()) return; ImageDecoder::setData(data, allDataReceived); // We need to rescan the frame count, as the new data may have changed it. m_alreadyScannedThisDataForFrameCount = false; } bool GIFImageDecoder::isSizeAvailable() { if (!ImageDecoder::isSizeAvailable()) decode(0, GIFSizeQuery); return ImageDecoder::isSizeAvailable(); } bool GIFImageDecoder::setSize(int width, int height) { if (ImageDecoder::isSizeAvailable() && size().width() == width && size().height() == height) return true; if (!ImageDecoder::setSize(width, height)) return false; prepareScaleDataIfNecessary(); return true; } size_t GIFImageDecoder::frameCount() { if (!m_alreadyScannedThisDataForFrameCount) { // FIXME: Scanning all the data has O(n^2) behavior if the data were to // come in really slowly. Might be interesting to try to clone our // existing read session to preserve state, but for now we just crawl // all the data. Note that this is no worse than what ImageIO does on // Mac right now (it also crawls all the data again). GIFImageReader reader(0); reader.read((const unsigned char*)m_data->data(), m_data->size(), GIFFrameCountQuery, static_cast(-1)); m_alreadyScannedThisDataForFrameCount = true; m_frameBufferCache.resize(reader.images_count); for (int i = 0; i < reader.images_count; ++i) m_frameBufferCache[i].setPremultiplyAlpha(m_premultiplyAlpha); } return m_frameBufferCache.size(); } int GIFImageDecoder::repetitionCount() const { // This value can arrive at any point in the image data stream. Most GIFs // in the wild declare it near the beginning of the file, so it usually is // set by the time we've decoded the size, but (depending on the GIF and the // packets sent back by the webserver) not always. If the reader hasn't // seen a loop count yet, it will return cLoopCountNotSeen, in which case we // should default to looping once (the initial value for // |m_repetitionCount|). // // There are two additional wrinkles here. First, ImageSource::clear() may // destroy the reader, making the result from the reader _less_ // authoritative on future calls if the recreated reader hasn't seen the // loop count. We don't need to special-case this because in this case the // new reader will once again return cLoopCountNotSeen, and we won't // overwrite the cached correct value. // // Second, a GIF might never set a loop count at all, in which case we // should continue to treat it as a "loop once" animation. We don't need // special code here either, because in this case we'll never change // |m_repetitionCount| from its default value. if (m_reader && (m_reader->loop_count != cLoopCountNotSeen)) m_repetitionCount = m_reader->loop_count; return m_repetitionCount; } ImageFrame* GIFImageDecoder::frameBufferAtIndex(size_t index) { if (index >= frameCount()) return 0; ImageFrame& frame = m_frameBufferCache[index]; if (frame.status() != ImageFrame::FrameComplete) decode(index + 1, GIFFullQuery); return &frame; } bool GIFImageDecoder::setFailed() { m_reader.clear(); return ImageDecoder::setFailed(); } void GIFImageDecoder::clearFrameBufferCache(size_t clearBeforeFrame) { // In some cases, like if the decoder was destroyed while animating, we // can be asked to clear more frames than we currently have. if (m_frameBufferCache.isEmpty()) return; // Nothing to do. // The "-1" here is tricky. It does not mean that |clearBeforeFrame| is the // last frame we wish to preserve, but rather that we never want to clear // the very last frame in the cache: it's empty (so clearing it is // pointless), it's partial (so we don't want to clear it anyway), or the // cache could be enlarged with a future setData() call and it could be // needed to construct the next frame (see comments below). Callers can // always use ImageSource::clear(true, ...) to completely free the memory in // this case. clearBeforeFrame = std::min(clearBeforeFrame, m_frameBufferCache.size() - 1); const Vector::iterator end(m_frameBufferCache.begin() + clearBeforeFrame); // We need to preserve frames such that: // * We don't clear |end| // * We don't clear the frame we're currently decoding // * We don't clear any frame from which a future initFrameBuffer() call // will copy bitmap data // All other frames can be cleared. Because of the constraints on when // ImageSource::clear() can be called (see ImageSource.h), we're guaranteed // not to have non-empty frames after the frame we're currently decoding. // So, scan backwards from |end| as follows: // * If the frame is empty, we're still past any frames we care about. // * If the frame is complete, but is DisposeOverwritePrevious, we'll // skip over it in future initFrameBuffer() calls. We can clear it // unless it's |end|, and keep scanning. For any other disposal method, // stop scanning, as we've found the frame initFrameBuffer() will need // next. // * If the frame is partial, we're decoding it, so don't clear it; if it // has a disposal method other than DisposeOverwritePrevious, stop // scanning, as we'll only need this frame when decoding the next one. Vector::iterator i(end); for (; (i != m_frameBufferCache.begin()) && ((i->status() == ImageFrame::FrameEmpty) || (i->disposalMethod() == ImageFrame::DisposeOverwritePrevious)); --i) { if ((i->status() == ImageFrame::FrameComplete) && (i != end)) i->clear(); } // Now |i| holds the last frame we need to preserve; clear prior frames. for (Vector::iterator j(m_frameBufferCache.begin()); j != i; ++j) { ASSERT(j->status() != ImageFrame::FramePartial); if (j->status() != ImageFrame::FrameEmpty) j->clear(); } } void GIFImageDecoder::decodingHalted(unsigned bytesLeft) { m_readOffset = m_data->size() - bytesLeft; } bool GIFImageDecoder::haveDecodedRow(unsigned frameIndex, unsigned char* rowBuffer, unsigned char* rowEnd, unsigned rowNumber, unsigned repeatCount, bool writeTransparentPixels) { const GIFFrameReader* frameReader = m_reader->frame_reader; // The pixel data and coordinates supplied to us are relative to the frame's // origin within the entire image size, i.e. // (frameReader->x_offset, frameReader->y_offset). There is no guarantee // that (rowEnd - rowBuffer) == (size().width() - frameReader->x_offset), so // we must ensure we don't run off the end of either the source data or the // row's X-coordinates. int xBegin = upperBoundScaledX(frameReader->x_offset); int yBegin = upperBoundScaledY(frameReader->y_offset + rowNumber); int xEnd = lowerBoundScaledX(std::min(static_cast(frameReader->x_offset + (rowEnd - rowBuffer)), size().width()) - 1, xBegin + 1) + 1; int yEnd = lowerBoundScaledY(std::min(static_cast(frameReader->y_offset + rowNumber + repeatCount), size().height()) - 1, yBegin + 1) + 1; if (!rowBuffer || (xBegin < 0) || (yBegin < 0) || (xEnd <= xBegin) || (yEnd <= yBegin)) return true; // Get the colormap. const unsigned char* colorMap; unsigned colorMapSize; if (frameReader->is_local_colormap_defined) { colorMap = frameReader->local_colormap; colorMapSize = (unsigned)frameReader->local_colormap_size; } else { colorMap = m_reader->global_colormap; colorMapSize = m_reader->global_colormap_size; } if (!colorMap) return true; // Initialize the frame if necessary. ImageFrame& buffer = m_frameBufferCache[frameIndex]; if ((buffer.status() == ImageFrame::FrameEmpty) && !initFrameBuffer(frameIndex)) return false; // Write one row's worth of data into the frame. for (int x = xBegin; x < xEnd; ++x) { const unsigned char sourceValue = *(rowBuffer + (m_scaled ? m_scaledColumns[x] : x) - frameReader->x_offset); if ((!frameReader->is_transparent || (sourceValue != frameReader->tpixel)) && (sourceValue < colorMapSize)) { const size_t colorIndex = static_cast(sourceValue) * 3; buffer.setRGBA(x, yBegin, colorMap[colorIndex], colorMap[colorIndex + 1], colorMap[colorIndex + 2], 255); } else { m_currentBufferSawAlpha = true; // We may or may not need to write transparent pixels to the buffer. // If we're compositing against a previous image, it's wrong, and if // we're writing atop a cleared, fully transparent buffer, it's // unnecessary; but if we're decoding an interlaced gif and // displaying it "Haeberli"-style, we must write these for passes // beyond the first, or the initial passes will "show through" the // later ones. if (writeTransparentPixels) buffer.setRGBA(x, yBegin, 0, 0, 0, 0); } } // Tell the frame to copy the row data if need be. if (repeatCount > 1) buffer.copyRowNTimes(xBegin, xEnd, yBegin, yEnd); return true; } bool GIFImageDecoder::frameComplete(unsigned frameIndex, unsigned frameDuration, ImageFrame::FrameDisposalMethod disposalMethod) { // Initialize the frame if necessary. Some GIFs insert do-nothing frames, // in which case we never reach haveDecodedRow() before getting here. ImageFrame& buffer = m_frameBufferCache[frameIndex]; if ((buffer.status() == ImageFrame::FrameEmpty) && !initFrameBuffer(frameIndex)) return false; // initFrameBuffer() has already called setFailed(). buffer.setStatus(ImageFrame::FrameComplete); buffer.setDuration(frameDuration); buffer.setDisposalMethod(disposalMethod); if (!m_currentBufferSawAlpha) { // The whole frame was non-transparent, so it's possible that the entire // resulting buffer was non-transparent, and we can setHasAlpha(false). if (buffer.rect().contains(IntRect(IntPoint(), scaledSize()))) buffer.setHasAlpha(false); else if (frameIndex) { // Tricky case. This frame does not have alpha only if everywhere // outside its rect doesn't have alpha. To know whether this is // true, we check the start state of the frame -- if it doesn't have // alpha, we're safe. // // First skip over prior DisposeOverwritePrevious frames (since they // don't affect the start state of this frame) the same way we do in // initFrameBuffer(). const ImageFrame* prevBuffer = &m_frameBufferCache[--frameIndex]; while (frameIndex && (prevBuffer->disposalMethod() == ImageFrame::DisposeOverwritePrevious)) prevBuffer = &m_frameBufferCache[--frameIndex]; // Now, if we're at a DisposeNotSpecified or DisposeKeep frame, then // we can say we have no alpha if that frame had no alpha. But // since in initFrameBuffer() we already copied that frame's alpha // state into the current frame's, we need do nothing at all here. // // The only remaining case is a DisposeOverwriteBgcolor frame. If // it had no alpha, and its rect is contained in the current frame's // rect, we know the current frame has no alpha. if ((prevBuffer->disposalMethod() == ImageFrame::DisposeOverwriteBgcolor) && !prevBuffer->hasAlpha() && buffer.rect().contains(prevBuffer->rect())) buffer.setHasAlpha(false); } } return true; } void GIFImageDecoder::gifComplete() { // Cache the repetition count, which is now as authoritative as it's ever // going to be. repetitionCount(); m_reader.clear(); } void GIFImageDecoder::decode(unsigned haltAtFrame, GIFQuery query) { if (failed()) return; if (!m_reader) m_reader.set(new GIFImageReader(this)); // If we couldn't decode the image but we've received all the data, decoding // has failed. if (!m_reader->read((const unsigned char*)m_data->data() + m_readOffset, m_data->size() - m_readOffset, query, haltAtFrame) && isAllDataReceived()) setFailed(); } bool GIFImageDecoder::initFrameBuffer(unsigned frameIndex) { // Initialize the frame rect in our buffer. const GIFFrameReader* frameReader = m_reader->frame_reader; IntRect frameRect(frameReader->x_offset, frameReader->y_offset, frameReader->width, frameReader->height); // Make sure the frameRect doesn't extend outside the buffer. if (frameRect.right() > size().width()) frameRect.setWidth(size().width() - frameReader->x_offset); if (frameRect.bottom() > size().height()) frameRect.setHeight(size().height() - frameReader->y_offset); ImageFrame* const buffer = &m_frameBufferCache[frameIndex]; int left = upperBoundScaledX(frameRect.x()); int right = lowerBoundScaledX(frameRect.right(), left); int top = upperBoundScaledY(frameRect.y()); int bottom = lowerBoundScaledY(frameRect.bottom(), top); buffer->setRect(IntRect(left, top, right - left, bottom - top)); if (!frameIndex) { // This is the first frame, so we're not relying on any previous data. if (!buffer->setSize(scaledSize().width(), scaledSize().height())) return setFailed(); } else { // The starting state for this frame depends on the previous frame's // disposal method. // // Frames that use the DisposeOverwritePrevious method are effectively // no-ops in terms of changing the starting state of a frame compared to // the starting state of the previous frame, so skip over them. (If the // first frame specifies this method, it will get treated like // DisposeOverwriteBgcolor below and reset to a completely empty image.) const ImageFrame* prevBuffer = &m_frameBufferCache[--frameIndex]; ImageFrame::FrameDisposalMethod prevMethod = prevBuffer->disposalMethod(); while (frameIndex && (prevMethod == ImageFrame::DisposeOverwritePrevious)) { prevBuffer = &m_frameBufferCache[--frameIndex]; prevMethod = prevBuffer->disposalMethod(); } ASSERT(prevBuffer->status() == ImageFrame::FrameComplete); if ((prevMethod == ImageFrame::DisposeNotSpecified) || (prevMethod == ImageFrame::DisposeKeep)) { // Preserve the last frame as the starting state for this frame. if (!buffer->copyBitmapData(*prevBuffer)) return setFailed(); } else { // We want to clear the previous frame to transparent, without // affecting pixels in the image outside of the frame. const IntRect& prevRect = prevBuffer->rect(); const IntSize& bufferSize = scaledSize(); if (!frameIndex || prevRect.contains(IntRect(IntPoint(), scaledSize()))) { // Clearing the first frame, or a frame the size of the whole // image, results in a completely empty image. if (!buffer->setSize(bufferSize.width(), bufferSize.height())) return setFailed(); } else { // Copy the whole previous buffer, then clear just its frame. if (!buffer->copyBitmapData(*prevBuffer)) return setFailed(); for (int y = prevRect.y(); y < prevRect.bottom(); ++y) { for (int x = prevRect.x(); x < prevRect.right(); ++x) buffer->setRGBA(x, y, 0, 0, 0, 0); } if ((prevRect.width() > 0) && (prevRect.height() > 0)) buffer->setHasAlpha(true); } } } // Update our status to be partially complete. buffer->setStatus(ImageFrame::FramePartial); // Reset the alpha pixel tracker for this frame. m_currentBufferSawAlpha = false; return true; } } // namespace WebCore