/* * Copyright (C) 2002 Lars Knoll (knoll@kde.org) * (C) 2002 Dirk Mueller (mueller@kde.org) * Copyright (C) 2003, 2006, 2008, 2010 Apple Inc. All rights reserved. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public License * along with this library; see the file COPYING.LIB. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, * Boston, MA 02110-1301, USA. */ #include "config.h" #include "AutoTableLayout.h" #include "RenderTable.h" #include "RenderTableCell.h" #include "RenderTableCol.h" #include "RenderTableSection.h" using namespace std; namespace WebCore { AutoTableLayout::AutoTableLayout(RenderTable* table) : TableLayout(table) , m_hasPercent(false) , m_effectiveLogicalWidthDirty(true) { } AutoTableLayout::~AutoTableLayout() { } void AutoTableLayout::recalcColumn(int effCol) { Layout& columnLayout = m_layoutStruct[effCol]; RenderTableCell* fixedContributor = 0; RenderTableCell* maxContributor = 0; for (RenderObject* child = m_table->firstChild(); child; child = child->nextSibling()) { if (child->isTableCol()) toRenderTableCol(child)->computePreferredLogicalWidths(); else if (child->isTableSection()) { RenderTableSection* section = toRenderTableSection(child); int numRows = section->numRows(); for (int i = 0; i < numRows; i++) { RenderTableSection::CellStruct current = section->cellAt(i, effCol); RenderTableCell* cell = current.primaryCell(); bool cellHasContent = cell && !current.inColSpan && (cell->firstChild() || cell->style()->hasBorder() || cell->style()->hasPadding()); if (cellHasContent) columnLayout.emptyCellsOnly = false; if (current.inColSpan || !cell) continue; if (cell->colSpan() == 1) { // A cell originates in this column. Ensure we have // a min/max width of at least 1px for this column now. columnLayout.minLogicalWidth = max(columnLayout.minLogicalWidth, cellHasContent ? 1 : 0); columnLayout.maxLogicalWidth = max(columnLayout.maxLogicalWidth, 1); if (cell->preferredLogicalWidthsDirty()) cell->computePreferredLogicalWidths(); columnLayout.minLogicalWidth = max(cell->minPreferredLogicalWidth(), columnLayout.minLogicalWidth); if (cell->maxPreferredLogicalWidth() > columnLayout.maxLogicalWidth) { columnLayout.maxLogicalWidth = cell->maxPreferredLogicalWidth(); maxContributor = cell; } Length cellLogicalWidth = cell->styleOrColLogicalWidth(); // FIXME: What is this arbitrary value? if (cellLogicalWidth.value() > 32760) cellLogicalWidth.setValue(32760); if (cellLogicalWidth.isNegative()) cellLogicalWidth.setValue(0); switch (cellLogicalWidth.type()) { case Fixed: // ignore width=0 if (cellLogicalWidth.value() > 0 && columnLayout.logicalWidth.type() != Percent) { int logicalWidth = cell->computeBorderBoxLogicalWidth(cellLogicalWidth.value()); if (columnLayout.logicalWidth.isFixed()) { // Nav/IE weirdness if ((logicalWidth > columnLayout.logicalWidth.value()) || ((columnLayout.logicalWidth.value() == logicalWidth) && (maxContributor == cell))) { columnLayout.logicalWidth.setValue(logicalWidth); fixedContributor = cell; } } else { columnLayout.logicalWidth.setValue(Fixed, logicalWidth); fixedContributor = cell; } } break; case Percent: m_hasPercent = true; if (cellLogicalWidth.isPositive() && (!columnLayout.logicalWidth.isPercent() || cellLogicalWidth.value() > columnLayout.logicalWidth.value())) columnLayout.logicalWidth = cellLogicalWidth; break; case Relative: // FIXME: Need to understand this case and whether it makes sense to compare values // which are not necessarily of the same type. if (cellLogicalWidth.isAuto() || (cellLogicalWidth.isRelative() && cellLogicalWidth.value() > columnLayout.logicalWidth.value())) columnLayout.logicalWidth = cellLogicalWidth; default: break; } } else if (!effCol || section->primaryCellAt(i, effCol - 1) != cell) { // This spanning cell originates in this column. Ensure we have // a min/max width of at least 1px for this column now. columnLayout.minLogicalWidth = max(columnLayout.minLogicalWidth, cellHasContent ? 1 : 0); columnLayout.maxLogicalWidth = max(columnLayout.maxLogicalWidth, 1); insertSpanCell(cell); } } } } // Nav/IE weirdness if (columnLayout.logicalWidth.isFixed()) { if (m_table->document()->inQuirksMode() && columnLayout.maxLogicalWidth > columnLayout.logicalWidth.value() && fixedContributor != maxContributor) { columnLayout.logicalWidth = Length(); fixedContributor = 0; } } columnLayout.maxLogicalWidth = max(columnLayout.maxLogicalWidth, columnLayout.minLogicalWidth); } void AutoTableLayout::fullRecalc() { m_hasPercent = false; m_effectiveLogicalWidthDirty = true; int nEffCols = m_table->numEffCols(); m_layoutStruct.resize(nEffCols); m_layoutStruct.fill(Layout()); m_spanCells.fill(0); RenderObject* child = m_table->firstChild(); Length groupLogicalWidth; int currentColumn = 0; while (child && child->isTableCol()) { RenderTableCol* col = toRenderTableCol(child); int span = col->span(); if (col->firstChild()) groupLogicalWidth = col->style()->logicalWidth(); else { Length colLogicalWidth = col->style()->logicalWidth(); if (colLogicalWidth.isAuto()) colLogicalWidth = groupLogicalWidth; if ((colLogicalWidth.isFixed() || colLogicalWidth.isPercent()) && colLogicalWidth.isZero()) colLogicalWidth = Length(); int effCol = m_table->colToEffCol(currentColumn); if (!colLogicalWidth.isAuto() && span == 1 && effCol < nEffCols && m_table->spanOfEffCol(effCol) == 1) { m_layoutStruct[effCol].logicalWidth = colLogicalWidth; if (colLogicalWidth.isFixed() && m_layoutStruct[effCol].maxLogicalWidth < colLogicalWidth.value()) m_layoutStruct[effCol].maxLogicalWidth = colLogicalWidth.value(); } currentColumn += span; } RenderObject* next = child->firstChild(); if (!next) next = child->nextSibling(); if (!next && child->parent()->isTableCol()) { next = child->parent()->nextSibling(); groupLogicalWidth = Length(); } child = next; } for (int i = 0; i < nEffCols; i++) recalcColumn(i); } // FIXME: This needs to be adapted for vertical writing modes. static bool shouldScaleColumns(RenderTable* table) { // A special case. If this table is not fixed width and contained inside // a cell, then don't bloat the maxwidth by examining percentage growth. bool scale = true; while (table) { Length tw = table->style()->width(); if ((tw.isAuto() || tw.isPercent()) && !table->isPositioned()) { RenderBlock* cb = table->containingBlock(); while (cb && !cb->isRenderView() && !cb->isTableCell() && cb->style()->width().isAuto() && !cb->isPositioned()) cb = cb->containingBlock(); table = 0; if (cb && cb->isTableCell() && (cb->style()->width().isAuto() || cb->style()->width().isPercent())) { if (tw.isPercent()) scale = false; else { RenderTableCell* cell = toRenderTableCell(cb); if (cell->colSpan() > 1 || cell->table()->style()->width().isAuto()) scale = false; else table = cell->table(); } } } else table = 0; } return scale; } void AutoTableLayout::computePreferredLogicalWidths(int& minWidth, int& maxWidth) { fullRecalc(); int spanMaxLogicalWidth = calcEffectiveLogicalWidth(); minWidth = 0; maxWidth = 0; float maxPercent = 0; float maxNonPercent = 0; bool scaleColumns = shouldScaleColumns(m_table); // We substitute 0 percent by (epsilon / percentScaleFactor) percent in two places below to avoid division by zero. // FIXME: Handle the 0% cases properly. const float epsilon = 1 / 128.0f; float remainingPercent = 100; for (size_t i = 0; i < m_layoutStruct.size(); ++i) { minWidth += m_layoutStruct[i].effectiveMinLogicalWidth; maxWidth += m_layoutStruct[i].effectiveMaxLogicalWidth; if (scaleColumns) { if (m_layoutStruct[i].effectiveLogicalWidth.isPercent()) { float percent = min(static_cast(m_layoutStruct[i].effectiveLogicalWidth.percent()), remainingPercent); float logicalWidth = static_cast(m_layoutStruct[i].effectiveMaxLogicalWidth) * 100 / max(percent, epsilon); maxPercent = max(logicalWidth, maxPercent); remainingPercent -= percent; } else maxNonPercent += m_layoutStruct[i].effectiveMaxLogicalWidth; } } if (scaleColumns) { maxNonPercent = maxNonPercent * 100 / max(remainingPercent, epsilon); maxWidth = max(maxWidth, static_cast(min(maxNonPercent, INT_MAX / 2.0f))); maxWidth = max(maxWidth, static_cast(min(maxPercent, INT_MAX / 2.0f))); } maxWidth = max(maxWidth, spanMaxLogicalWidth); int bordersPaddingAndSpacing = m_table->bordersPaddingAndSpacingInRowDirection(); minWidth += bordersPaddingAndSpacing; maxWidth += bordersPaddingAndSpacing; Length tableLogicalWidth = m_table->style()->logicalWidth(); if (tableLogicalWidth.isFixed() && tableLogicalWidth.value() > 0) { minWidth = max(minWidth, tableLogicalWidth.value()); maxWidth = minWidth; } else if (!remainingPercent && maxNonPercent) { // if there was no remaining percent, maxWidth is invalid. maxWidth = intMaxForLength; } } /* This method takes care of colspans. effWidth is the same as width for cells without colspans. If we have colspans, they get modified. */ int AutoTableLayout::calcEffectiveLogicalWidth() { float maxLogicalWidth = 0; size_t nEffCols = m_layoutStruct.size(); int spacingInRowDirection = m_table->hBorderSpacing(); for (size_t i = 0; i < nEffCols; ++i) { m_layoutStruct[i].effectiveLogicalWidth = m_layoutStruct[i].logicalWidth; m_layoutStruct[i].effectiveMinLogicalWidth = m_layoutStruct[i].minLogicalWidth; m_layoutStruct[i].effectiveMaxLogicalWidth = m_layoutStruct[i].maxLogicalWidth; } for (size_t i = 0; i < m_spanCells.size(); ++i) { RenderTableCell* cell = m_spanCells[i]; if (!cell) break; int span = cell->colSpan(); Length cellLogicalWidth = cell->styleOrColLogicalWidth(); if (!cellLogicalWidth.isRelative() && cellLogicalWidth.isZero()) cellLogicalWidth = Length(); // make it Auto int effCol = m_table->colToEffCol(cell->col()); size_t lastCol = effCol; int cellMinLogicalWidth = cell->minPreferredLogicalWidth() + spacingInRowDirection; float cellMaxLogicalWidth = cell->maxPreferredLogicalWidth() + spacingInRowDirection; float totalPercent = 0; int spanMinLogicalWidth = 0; float spanMaxLogicalWidth = 0; bool allColsArePercent = true; bool allColsAreFixed = true; bool haveAuto = false; bool spanHasEmptyCellsOnly = true; int fixedWidth = 0; while (lastCol < nEffCols && span > 0) { Layout& columnLayout = m_layoutStruct[lastCol]; switch (columnLayout.logicalWidth.type()) { case Percent: totalPercent += columnLayout.logicalWidth.percent(); allColsAreFixed = false; break; case Fixed: if (columnLayout.logicalWidth.value() > 0) { fixedWidth += columnLayout.logicalWidth.value(); allColsArePercent = false; // IE resets effWidth to Auto here, but this breaks the konqueror about page and seems to be some bad // legacy behaviour anyway. mozilla doesn't do this so I decided we don't neither. break; } // fall through case Auto: haveAuto = true; // fall through default: // If the column is a percentage width, do not let the spanning cell overwrite the // width value. This caused a mis-rendering on amazon.com. // Sample snippet: // < // // //
12-3
12-3
if (!columnLayout.effectiveLogicalWidth.isPercent()) { columnLayout.effectiveLogicalWidth = Length(); allColsArePercent = false; } else totalPercent += columnLayout.effectiveLogicalWidth.percent(); allColsAreFixed = false; } if (!columnLayout.emptyCellsOnly) spanHasEmptyCellsOnly = false; span -= m_table->spanOfEffCol(lastCol); spanMinLogicalWidth += columnLayout.effectiveMinLogicalWidth; spanMaxLogicalWidth += columnLayout.effectiveMaxLogicalWidth; lastCol++; cellMinLogicalWidth -= spacingInRowDirection; cellMaxLogicalWidth -= spacingInRowDirection; } // adjust table max width if needed if (cellLogicalWidth.isPercent()) { if (totalPercent > cellLogicalWidth.percent() || allColsArePercent) { // can't satify this condition, treat as variable cellLogicalWidth = Length(); } else { maxLogicalWidth = max(maxLogicalWidth, static_cast(max(spanMaxLogicalWidth, cellMaxLogicalWidth) * 100 / cellLogicalWidth.percent())); // all non percent columns in the span get percent values to sum up correctly. float percentMissing = cellLogicalWidth.percent() - totalPercent; float totalWidth = 0; for (unsigned pos = effCol; pos < lastCol; ++pos) { if (!m_layoutStruct[pos].effectiveLogicalWidth.isPercent()) totalWidth += m_layoutStruct[pos].effectiveMaxLogicalWidth; } for (unsigned pos = effCol; pos < lastCol && totalWidth > 0; ++pos) { if (!m_layoutStruct[pos].effectiveLogicalWidth.isPercent()) { float percent = percentMissing * static_cast(m_layoutStruct[pos].effectiveMaxLogicalWidth) / totalWidth; totalWidth -= m_layoutStruct[pos].effectiveMaxLogicalWidth; percentMissing -= percent; if (percent > 0) m_layoutStruct[pos].effectiveLogicalWidth.setValue(Percent, percent); else m_layoutStruct[pos].effectiveLogicalWidth = Length(); } } } } // make sure minWidth and maxWidth of the spanning cell are honoured if (cellMinLogicalWidth > spanMinLogicalWidth) { if (allColsAreFixed) { for (unsigned pos = effCol; fixedWidth > 0 && pos < lastCol; ++pos) { int cellLogicalWidth = max(m_layoutStruct[pos].effectiveMinLogicalWidth, cellMinLogicalWidth * m_layoutStruct[pos].logicalWidth.value() / fixedWidth); fixedWidth -= m_layoutStruct[pos].logicalWidth.value(); cellMinLogicalWidth -= cellLogicalWidth; m_layoutStruct[pos].effectiveMinLogicalWidth = cellLogicalWidth; } } else { float remainingMaxLogicalWidth = spanMaxLogicalWidth; int remainingMinLogicalWidth = spanMinLogicalWidth; // Give min to variable first, to fixed second, and to others third. for (unsigned pos = effCol; remainingMaxLogicalWidth >= 0 && pos < lastCol; ++pos) { if (m_layoutStruct[pos].logicalWidth.isFixed() && haveAuto && fixedWidth <= cellMinLogicalWidth) { int colMinLogicalWidth = max(m_layoutStruct[pos].effectiveMinLogicalWidth, m_layoutStruct[pos].logicalWidth.value()); fixedWidth -= m_layoutStruct[pos].logicalWidth.value(); remainingMinLogicalWidth -= m_layoutStruct[pos].effectiveMinLogicalWidth; remainingMaxLogicalWidth -= m_layoutStruct[pos].effectiveMaxLogicalWidth; cellMinLogicalWidth -= colMinLogicalWidth; m_layoutStruct[pos].effectiveMinLogicalWidth = colMinLogicalWidth; } } for (unsigned pos = effCol; remainingMaxLogicalWidth >= 0 && pos < lastCol && remainingMinLogicalWidth < cellMinLogicalWidth; ++pos) { if (!(m_layoutStruct[pos].logicalWidth.isFixed() && haveAuto && fixedWidth <= cellMinLogicalWidth)) { int colMinLogicalWidth = max(m_layoutStruct[pos].effectiveMinLogicalWidth, static_cast(remainingMaxLogicalWidth ? cellMinLogicalWidth * static_cast(m_layoutStruct[pos].effectiveMaxLogicalWidth) / remainingMaxLogicalWidth : cellMinLogicalWidth)); colMinLogicalWidth = min(m_layoutStruct[pos].effectiveMinLogicalWidth + (cellMinLogicalWidth - remainingMinLogicalWidth), colMinLogicalWidth); remainingMaxLogicalWidth -= m_layoutStruct[pos].effectiveMaxLogicalWidth; remainingMinLogicalWidth -= m_layoutStruct[pos].effectiveMinLogicalWidth; cellMinLogicalWidth -= colMinLogicalWidth; m_layoutStruct[pos].effectiveMinLogicalWidth = colMinLogicalWidth; } } } } if (!cellLogicalWidth.isPercent()) { if (cellMaxLogicalWidth > spanMaxLogicalWidth) { for (unsigned pos = effCol; spanMaxLogicalWidth >= 0 && pos < lastCol; ++pos) { int colMaxLogicalWidth = max(m_layoutStruct[pos].effectiveMaxLogicalWidth, static_cast(spanMaxLogicalWidth ? cellMaxLogicalWidth * static_cast(m_layoutStruct[pos].effectiveMaxLogicalWidth) / spanMaxLogicalWidth : cellMaxLogicalWidth)); spanMaxLogicalWidth -= m_layoutStruct[pos].effectiveMaxLogicalWidth; cellMaxLogicalWidth -= colMaxLogicalWidth; m_layoutStruct[pos].effectiveMaxLogicalWidth = colMaxLogicalWidth; } } } else { for (unsigned pos = effCol; pos < lastCol; ++pos) m_layoutStruct[pos].maxLogicalWidth = max(m_layoutStruct[pos].maxLogicalWidth, m_layoutStruct[pos].minLogicalWidth); } // treat span ranges consisting of empty cells only as if they had content if (spanHasEmptyCellsOnly) { for (unsigned pos = effCol; pos < lastCol; ++pos) m_layoutStruct[pos].emptyCellsOnly = false; } } m_effectiveLogicalWidthDirty = false; return static_cast(min(maxLogicalWidth, INT_MAX / 2.0f)); } /* gets all cells that originate in a column and have a cellspan > 1 Sorts them by increasing cellspan */ void AutoTableLayout::insertSpanCell(RenderTableCell *cell) { ASSERT_ARG(cell, cell && cell->colSpan() != 1); if (!cell || cell->colSpan() == 1) return; int size = m_spanCells.size(); if (!size || m_spanCells[size-1] != 0) { m_spanCells.grow(size + 10); for (int i = 0; i < 10; i++) m_spanCells[size+i] = 0; size += 10; } // add them in sort. This is a slow algorithm, and a binary search or a fast sorting after collection would be better unsigned int pos = 0; int span = cell->colSpan(); while (pos < m_spanCells.size() && m_spanCells[pos] && span > m_spanCells[pos]->colSpan()) pos++; memmove(m_spanCells.data()+pos+1, m_spanCells.data()+pos, (size-pos-1)*sizeof(RenderTableCell *)); m_spanCells[pos] = cell; } void AutoTableLayout::layout() { #ifdef ANDROID_LAYOUT if (m_table->isSingleColumn()) return; #endif // table layout based on the values collected in the layout structure. int tableLogicalWidth = m_table->logicalWidth() - m_table->bordersPaddingAndSpacingInRowDirection(); int available = tableLogicalWidth; size_t nEffCols = m_table->numEffCols(); if (nEffCols != m_layoutStruct.size()) { fullRecalc(); nEffCols = m_table->numEffCols(); } if (m_effectiveLogicalWidthDirty) calcEffectiveLogicalWidth(); bool havePercent = false; int totalRelative = 0; int numAuto = 0; int numFixed = 0; float totalAuto = 0; float totalFixed = 0; float totalPercent = 0; int allocAuto = 0; unsigned numAutoEmptyCellsOnly = 0; // fill up every cell with its minWidth for (size_t i = 0; i < nEffCols; ++i) { int cellLogicalWidth = m_layoutStruct[i].effectiveMinLogicalWidth; m_layoutStruct[i].computedLogicalWidth = cellLogicalWidth; available -= cellLogicalWidth; Length& logicalWidth = m_layoutStruct[i].effectiveLogicalWidth; switch (logicalWidth.type()) { case Percent: havePercent = true; totalPercent += logicalWidth.percent(); break; case Relative: totalRelative += logicalWidth.value(); break; case Fixed: numFixed++; totalFixed += m_layoutStruct[i].effectiveMaxLogicalWidth; // fall through break; case Auto: if (m_layoutStruct[i].emptyCellsOnly) numAutoEmptyCellsOnly++; else { numAuto++; totalAuto += m_layoutStruct[i].effectiveMaxLogicalWidth; allocAuto += cellLogicalWidth; } break; default: break; } } // allocate width to percent cols if (available > 0 && havePercent) { for (size_t i = 0; i < nEffCols; ++i) { Length& logicalWidth = m_layoutStruct[i].effectiveLogicalWidth; if (logicalWidth.isPercent()) { int cellLogicalWidth = max(m_layoutStruct[i].effectiveMinLogicalWidth, logicalWidth.calcMinValue(tableLogicalWidth)); available += m_layoutStruct[i].computedLogicalWidth - cellLogicalWidth; m_layoutStruct[i].computedLogicalWidth = cellLogicalWidth; } } if (totalPercent > 100) { // remove overallocated space from the last columns int excess = tableLogicalWidth * (totalPercent - 100) / 100; for (int i = nEffCols - 1; i >= 0; --i) { if (m_layoutStruct[i].effectiveLogicalWidth.isPercent()) { int cellLogicalWidth = m_layoutStruct[i].computedLogicalWidth; int reduction = min(cellLogicalWidth, excess); // the lines below might look inconsistent, but that's the way it's handled in mozilla excess -= reduction; int newLogicalWidth = max(m_layoutStruct[i].effectiveMinLogicalWidth, cellLogicalWidth - reduction); available += cellLogicalWidth - newLogicalWidth; m_layoutStruct[i].computedLogicalWidth = newLogicalWidth; } } } } // then allocate width to fixed cols if (available > 0) { for (size_t i = 0; i < nEffCols; ++i) { Length& logicalWidth = m_layoutStruct[i].effectiveLogicalWidth; if (logicalWidth.isFixed() && logicalWidth.value() > m_layoutStruct[i].computedLogicalWidth) { available += m_layoutStruct[i].computedLogicalWidth - logicalWidth.value(); m_layoutStruct[i].computedLogicalWidth = logicalWidth.value(); } } } // now satisfy relative if (available > 0) { for (size_t i = 0; i < nEffCols; ++i) { Length& logicalWidth = m_layoutStruct[i].effectiveLogicalWidth; if (logicalWidth.isRelative() && logicalWidth.value() != 0) { // width=0* gets effMinWidth. int cellLogicalWidth = logicalWidth.value() * tableLogicalWidth / totalRelative; available += m_layoutStruct[i].computedLogicalWidth - cellLogicalWidth; m_layoutStruct[i].computedLogicalWidth = cellLogicalWidth; } } } // now satisfy variable if (available > 0 && numAuto) { available += allocAuto; // this gets redistributed for (size_t i = 0; i < nEffCols; ++i) { Length& logicalWidth = m_layoutStruct[i].effectiveLogicalWidth; if (logicalWidth.isAuto() && totalAuto && !m_layoutStruct[i].emptyCellsOnly) { int cellLogicalWidth = max(m_layoutStruct[i].computedLogicalWidth, static_cast(available * static_cast(m_layoutStruct[i].effectiveMaxLogicalWidth) / totalAuto)); available -= cellLogicalWidth; totalAuto -= m_layoutStruct[i].effectiveMaxLogicalWidth; m_layoutStruct[i].computedLogicalWidth = cellLogicalWidth; } } } // spread over fixed columns if (available > 0 && numFixed) { for (size_t i = 0; i < nEffCols; ++i) { Length& logicalWidth = m_layoutStruct[i].effectiveLogicalWidth; if (logicalWidth.isFixed()) { int cellLogicalWidth = static_cast(available * static_cast(m_layoutStruct[i].effectiveMaxLogicalWidth) / totalFixed); available -= cellLogicalWidth; totalFixed -= m_layoutStruct[i].effectiveMaxLogicalWidth; m_layoutStruct[i].computedLogicalWidth += cellLogicalWidth; } } } // spread over percent colums if (available > 0 && m_hasPercent && totalPercent < 100) { for (size_t i = 0; i < nEffCols; ++i) { Length& logicalWidth = m_layoutStruct[i].effectiveLogicalWidth; if (logicalWidth.isPercent()) { int cellLogicalWidth = available * logicalWidth.percent() / totalPercent; available -= cellLogicalWidth; totalPercent -= logicalWidth.percent(); m_layoutStruct[i].computedLogicalWidth += cellLogicalWidth; if (!available || !totalPercent) break; } } } // spread over the rest if (available > 0 && nEffCols > numAutoEmptyCellsOnly) { int total = nEffCols - numAutoEmptyCellsOnly; // still have some width to spread for (int i = nEffCols - 1; i >= 0; --i) { // variable columns with empty cells only don't get any width if (m_layoutStruct[i].effectiveLogicalWidth.isAuto() && m_layoutStruct[i].emptyCellsOnly) continue; int cellLogicalWidth = available / total; available -= cellLogicalWidth; total--; m_layoutStruct[i].computedLogicalWidth += cellLogicalWidth; } } // If we have overallocated, reduce every cell according to the difference between desired width and minwidth // this seems to produce to the pixel exact results with IE. Wonder is some of this also holds for width distributing. if (available < 0) { // Need to reduce cells with the following prioritization: // (1) Auto // (2) Relative // (3) Fixed // (4) Percent // This is basically the reverse of how we grew the cells. if (available < 0) { int logicalWidthBeyondMin = 0; for (int i = nEffCols - 1; i >= 0; --i) { Length& logicalWidth = m_layoutStruct[i].effectiveLogicalWidth; if (logicalWidth.isAuto()) logicalWidthBeyondMin += m_layoutStruct[i].computedLogicalWidth - m_layoutStruct[i].effectiveMinLogicalWidth; } for (int i = nEffCols - 1; i >= 0 && logicalWidthBeyondMin > 0; --i) { Length& logicalWidth = m_layoutStruct[i].effectiveLogicalWidth; if (logicalWidth.isAuto()) { int minMaxDiff = m_layoutStruct[i].computedLogicalWidth - m_layoutStruct[i].effectiveMinLogicalWidth; int reduce = available * minMaxDiff / logicalWidthBeyondMin; m_layoutStruct[i].computedLogicalWidth += reduce; available -= reduce; logicalWidthBeyondMin -= minMaxDiff; if (available >= 0) break; } } } if (available < 0) { int logicalWidthBeyondMin = 0; for (int i = nEffCols - 1; i >= 0; --i) { Length& logicalWidth = m_layoutStruct[i].effectiveLogicalWidth; if (logicalWidth.isRelative()) logicalWidthBeyondMin += m_layoutStruct[i].computedLogicalWidth - m_layoutStruct[i].effectiveMinLogicalWidth; } for (int i = nEffCols - 1; i >= 0 && logicalWidthBeyondMin > 0; --i) { Length& logicalWidth = m_layoutStruct[i].effectiveLogicalWidth; if (logicalWidth.isRelative()) { int minMaxDiff = m_layoutStruct[i].computedLogicalWidth - m_layoutStruct[i].effectiveMinLogicalWidth; int reduce = available * minMaxDiff / logicalWidthBeyondMin; m_layoutStruct[i].computedLogicalWidth += reduce; available -= reduce; logicalWidthBeyondMin -= minMaxDiff; if (available >= 0) break; } } } if (available < 0) { int logicalWidthBeyondMin = 0; for (int i = nEffCols - 1; i >= 0; --i) { Length& logicalWidth = m_layoutStruct[i].effectiveLogicalWidth; if (logicalWidth.isFixed()) logicalWidthBeyondMin += m_layoutStruct[i].computedLogicalWidth - m_layoutStruct[i].effectiveMinLogicalWidth; } for (int i = nEffCols - 1; i >= 0 && logicalWidthBeyondMin > 0; --i) { Length& logicalWidth = m_layoutStruct[i].effectiveLogicalWidth; if (logicalWidth.isFixed()) { int minMaxDiff = m_layoutStruct[i].computedLogicalWidth - m_layoutStruct[i].effectiveMinLogicalWidth; int reduce = available * minMaxDiff / logicalWidthBeyondMin; m_layoutStruct[i].computedLogicalWidth += reduce; available -= reduce; logicalWidthBeyondMin -= minMaxDiff; if (available >= 0) break; } } } if (available < 0) { int logicalWidthBeyondMin = 0; for (int i = nEffCols - 1; i >= 0; --i) { Length& logicalWidth = m_layoutStruct[i].effectiveLogicalWidth; if (logicalWidth.isPercent()) logicalWidthBeyondMin += m_layoutStruct[i].computedLogicalWidth - m_layoutStruct[i].effectiveMinLogicalWidth; } for (int i = nEffCols-1; i >= 0 && logicalWidthBeyondMin > 0; i--) { Length& logicalWidth = m_layoutStruct[i].effectiveLogicalWidth; if (logicalWidth.isPercent()) { int minMaxDiff = m_layoutStruct[i].computedLogicalWidth - m_layoutStruct[i].effectiveMinLogicalWidth; int reduce = available * minMaxDiff / logicalWidthBeyondMin; m_layoutStruct[i].computedLogicalWidth += reduce; available -= reduce; logicalWidthBeyondMin -= minMaxDiff; if (available >= 0) break; } } } } int pos = 0; for (size_t i = 0; i < nEffCols; ++i) { m_table->columnPositions()[i] = pos; pos += m_layoutStruct[i].computedLogicalWidth + m_table->hBorderSpacing(); } m_table->columnPositions()[m_table->columnPositions().size() - 1] = pos; } }