/* * Copyright (C) 1999 Lars Knoll (knoll@kde.org) * (C) 1999 Antti Koivisto (koivisto@kde.org) * (C) 2007 David Smith (catfish.man@gmail.com) * Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Apple Inc. All rights reserved. * Copyright (C) Research In Motion Limited 2010. All rights reserved. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public License * along with this library; see the file COPYING.LIB. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, * Boston, MA 02110-1301, USA. */ #include "config.h" #include "RenderBlock.h" #include "ColumnInfo.h" #include "Document.h" #include "Element.h" #include "FloatQuad.h" #include "Frame.h" #include "FrameView.h" #include "GraphicsContext.h" #include "HTMLFormElement.h" #include "HTMLNames.h" #include "HitTestResult.h" #include "InlineIterator.h" #include "InlineTextBox.h" #include "PaintInfo.h" #include "RenderCombineText.h" #include "RenderFlexibleBox.h" #include "RenderImage.h" #include "RenderInline.h" #include "RenderLayer.h" #include "RenderMarquee.h" #include "RenderReplica.h" #include "RenderTableCell.h" #include "RenderTextFragment.h" #include "RenderTheme.h" #include "RenderView.h" #include "SelectionController.h" #include "Settings.h" #include "TextRun.h" #include "TransformState.h" #include #ifdef ANDROID_LAYOUT #include "Settings.h" #endif using namespace std; using namespace WTF; using namespace Unicode; namespace WebCore { using namespace HTMLNames; typedef WTF::HashMap ColumnInfoMap; static ColumnInfoMap* gColumnInfoMap = 0; typedef WTF::HashMap*> PercentHeightDescendantsMap; static PercentHeightDescendantsMap* gPercentHeightDescendantsMap = 0; typedef WTF::HashMap*> PercentHeightContainerMap; static PercentHeightContainerMap* gPercentHeightContainerMap = 0; typedef WTF::HashMap*> ContinuationOutlineTableMap; typedef WTF::HashSet DelayedUpdateScrollInfoSet; static int gDelayUpdateScrollInfo = 0; static DelayedUpdateScrollInfoSet* gDelayedUpdateScrollInfoSet = 0; bool RenderBlock::s_canPropagateFloatIntoSibling = false; // Our MarginInfo state used when laying out block children. RenderBlock::MarginInfo::MarginInfo(RenderBlock* block, int beforeBorderPadding, int afterBorderPadding) : m_atBeforeSideOfBlock(true) , m_atAfterSideOfBlock(false) , m_marginBeforeQuirk(false) , m_marginAfterQuirk(false) , m_determinedMarginBeforeQuirk(false) { // Whether or not we can collapse our own margins with our children. We don't do this // if we had any border/padding (obviously), if we're the root or HTML elements, or if // we're positioned, floating, a table cell. m_canCollapseWithChildren = !block->isRenderView() && !block->isRoot() && !block->isPositioned() && !block->isFloating() && !block->isTableCell() && !block->hasOverflowClip() && !block->isInlineBlockOrInlineTable() && !block->isWritingModeRoot(); m_canCollapseMarginBeforeWithChildren = m_canCollapseWithChildren && (beforeBorderPadding == 0) && block->style()->marginBeforeCollapse() != MSEPARATE; // If any height other than auto is specified in CSS, then we don't collapse our bottom // margins with our children's margins. To do otherwise would be to risk odd visual // effects when the children overflow out of the parent block and yet still collapse // with it. We also don't collapse if we have any bottom border/padding. m_canCollapseMarginAfterWithChildren = m_canCollapseWithChildren && (afterBorderPadding == 0) && (block->style()->logicalHeight().isAuto() && block->style()->logicalHeight().value() == 0) && block->style()->marginAfterCollapse() != MSEPARATE; m_quirkContainer = block->isTableCell() || block->isBody() || block->style()->marginBeforeCollapse() == MDISCARD || block->style()->marginAfterCollapse() == MDISCARD; m_positiveMargin = m_canCollapseMarginBeforeWithChildren ? block->maxPositiveMarginBefore() : 0; m_negativeMargin = m_canCollapseMarginBeforeWithChildren ? block->maxNegativeMarginBefore() : 0; } // ------------------------------------------------------------------------------------------------------- RenderBlock::RenderBlock(Node* node) : RenderBox(node) , m_floatingObjects(0) , m_positionedObjects(0) , m_rareData(0) , m_lineHeight(-1) , m_beingDestroyed(false) { setChildrenInline(true); } RenderBlock::~RenderBlock() { if (m_floatingObjects) deleteAllValues(m_floatingObjects->set()); if (hasColumns()) delete gColumnInfoMap->take(this); if (gPercentHeightDescendantsMap) { if (HashSet* descendantSet = gPercentHeightDescendantsMap->take(this)) { HashSet::iterator end = descendantSet->end(); for (HashSet::iterator descendant = descendantSet->begin(); descendant != end; ++descendant) { HashSet* containerSet = gPercentHeightContainerMap->get(*descendant); ASSERT(containerSet); if (!containerSet) continue; ASSERT(containerSet->contains(this)); containerSet->remove(this); if (containerSet->isEmpty()) { gPercentHeightContainerMap->remove(*descendant); delete containerSet; } } delete descendantSet; } } } void RenderBlock::destroy() { // Mark as being destroyed to avoid trouble with merges in removeChild(). m_beingDestroyed = true; // Make sure to destroy anonymous children first while they are still connected to the rest of the tree, so that they will // properly dirty line boxes that they are removed from. Effects that do :before/:after only on hover could crash otherwise. children()->destroyLeftoverChildren(); // Destroy our continuation before anything other than anonymous children. // The reason we don't destroy it before anonymous children is that they may // have continuations of their own that are anonymous children of our continuation. RenderBoxModelObject* continuation = this->continuation(); if (continuation) { continuation->destroy(); setContinuation(0); } if (!documentBeingDestroyed()) { if (firstLineBox()) { // We can't wait for RenderBox::destroy to clear the selection, // because by then we will have nuked the line boxes. // FIXME: The SelectionController should be responsible for this when it // is notified of DOM mutations. if (isSelectionBorder()) view()->clearSelection(); // If we are an anonymous block, then our line boxes might have children // that will outlast this block. In the non-anonymous block case those // children will be destroyed by the time we return from this function. if (isAnonymousBlock()) { for (InlineFlowBox* box = firstLineBox(); box; box = box->nextLineBox()) { while (InlineBox* childBox = box->firstChild()) childBox->remove(); } } } else if (parent()) parent()->dirtyLinesFromChangedChild(this); } m_lineBoxes.deleteLineBoxes(renderArena()); RenderBox::destroy(); } void RenderBlock::styleWillChange(StyleDifference diff, const RenderStyle* newStyle) { s_canPropagateFloatIntoSibling = style() ? !isFloatingOrPositioned() && !avoidsFloats() : false; setReplaced(newStyle->isDisplayInlineType()); if (style() && parent() && diff == StyleDifferenceLayout && style()->position() != newStyle->position()) { if (newStyle->position() == StaticPosition) // Clear our positioned objects list. Our absolutely positioned descendants will be // inserted into our containing block's positioned objects list during layout. removePositionedObjects(0); else if (style()->position() == StaticPosition) { // Remove our absolutely positioned descendants from their current containing block. // They will be inserted into our positioned objects list during layout. RenderObject* cb = parent(); while (cb && (cb->style()->position() == StaticPosition || (cb->isInline() && !cb->isReplaced())) && !cb->isRenderView()) { if (cb->style()->position() == RelativePosition && cb->isInline() && !cb->isReplaced()) { cb = cb->containingBlock(); break; } cb = cb->parent(); } if (cb->isRenderBlock()) toRenderBlock(cb)->removePositionedObjects(this); } if (containsFloats() && !isFloating() && !isPositioned() && (newStyle->position() == AbsolutePosition || newStyle->position() == FixedPosition)) markAllDescendantsWithFloatsForLayout(); } RenderBox::styleWillChange(diff, newStyle); } void RenderBlock::styleDidChange(StyleDifference diff, const RenderStyle* oldStyle) { RenderBox::styleDidChange(diff, oldStyle); if (!isAnonymousBlock()) { // Ensure that all of our continuation blocks pick up the new style. for (RenderBlock* currCont = blockElementContinuation(); currCont; currCont = currCont->blockElementContinuation()) { RenderBoxModelObject* nextCont = currCont->continuation(); currCont->setContinuation(0); currCont->setStyle(style()); currCont->setContinuation(nextCont); } } // FIXME: We could save this call when the change only affected non-inherited properties for (RenderObject* child = firstChild(); child; child = child->nextSibling()) { if (child->isAnonymousBlock()) { RefPtr newStyle = RenderStyle::createAnonymousStyle(style()); if (style()->specifiesColumns()) { if (child->style()->specifiesColumns()) newStyle->inheritColumnPropertiesFrom(style()); if (child->style()->columnSpan()) newStyle->setColumnSpan(true); } newStyle->setDisplay(BLOCK); child->setStyle(newStyle.release()); } } m_lineHeight = -1; // Update pseudos for :before and :after now. if (!isAnonymous() && document()->usesBeforeAfterRules() && canHaveChildren()) { updateBeforeAfterContent(BEFORE); updateBeforeAfterContent(AFTER); } // After our style changed, if we lose our ability to propagate floats into next sibling // blocks, then we need to find the top most parent containing that overhanging float and // then mark its descendants with floats for layout and clear all floats from its next // sibling blocks that exist in our floating objects list. See bug 56299 and 62875. bool canPropagateFloatIntoSibling = !isFloatingOrPositioned() && !avoidsFloats(); if (diff == StyleDifferenceLayout && s_canPropagateFloatIntoSibling && !canPropagateFloatIntoSibling && hasOverhangingFloats()) { RenderBlock* parentBlock = this; FloatingObjectSet& floatingObjectSet = m_floatingObjects->set(); FloatingObjectSetIterator end = floatingObjectSet.end(); for (RenderObject* curr = parent(); curr && !curr->isRenderView(); curr = curr->parent()) { if (curr->isRenderBlock()) { RenderBlock* currBlock = toRenderBlock(curr); if (currBlock->hasOverhangingFloats()) { for (FloatingObjectSetIterator it = floatingObjectSet.begin(); it != end; ++it) { RenderBox* renderer = (*it)->renderer(); if (currBlock->hasOverhangingFloat(renderer)) { parentBlock = currBlock; break; } } } } } parentBlock->markAllDescendantsWithFloatsForLayout(); parentBlock->markSiblingsWithFloatsForLayout(); } } void RenderBlock::updateBeforeAfterContent(PseudoId pseudoId) { // If this is an anonymous wrapper, then the parent applies its own pseudo-element style to it. if (parent() && parent()->createsAnonymousWrapper()) return; return children()->updateBeforeAfterContent(this, pseudoId); } RenderBlock* RenderBlock::continuationBefore(RenderObject* beforeChild) { if (beforeChild && beforeChild->parent() == this) return this; RenderBlock* curr = toRenderBlock(continuation()); RenderBlock* nextToLast = this; RenderBlock* last = this; while (curr) { if (beforeChild && beforeChild->parent() == curr) { if (curr->firstChild() == beforeChild) return last; return curr; } nextToLast = last; last = curr; curr = toRenderBlock(curr->continuation()); } if (!beforeChild && !last->firstChild()) return nextToLast; return last; } void RenderBlock::addChildToContinuation(RenderObject* newChild, RenderObject* beforeChild) { RenderBlock* flow = continuationBefore(beforeChild); ASSERT(!beforeChild || beforeChild->parent()->isAnonymousColumnSpanBlock() || beforeChild->parent()->isRenderBlock()); RenderBoxModelObject* beforeChildParent = 0; if (beforeChild) beforeChildParent = toRenderBoxModelObject(beforeChild->parent()); else { RenderBoxModelObject* cont = flow->continuation(); if (cont) beforeChildParent = cont; else beforeChildParent = flow; } if (newChild->isFloatingOrPositioned()) return beforeChildParent->addChildIgnoringContinuation(newChild, beforeChild); // A continuation always consists of two potential candidates: a block or an anonymous // column span box holding column span children. bool childIsNormal = newChild->isInline() || !newChild->style()->columnSpan(); bool bcpIsNormal = beforeChildParent->isInline() || !beforeChildParent->style()->columnSpan(); bool flowIsNormal = flow->isInline() || !flow->style()->columnSpan(); if (flow == beforeChildParent) return flow->addChildIgnoringContinuation(newChild, beforeChild); // The goal here is to match up if we can, so that we can coalesce and create the // minimal # of continuations needed for the inline. if (childIsNormal == bcpIsNormal) return beforeChildParent->addChildIgnoringContinuation(newChild, beforeChild); if (flowIsNormal == childIsNormal) return flow->addChildIgnoringContinuation(newChild, 0); // Just treat like an append. return beforeChildParent->addChildIgnoringContinuation(newChild, beforeChild); } void RenderBlock::addChildToAnonymousColumnBlocks(RenderObject* newChild, RenderObject* beforeChild) { ASSERT(!continuation()); // We don't yet support column spans that aren't immediate children of the multi-column block. // The goal is to locate a suitable box in which to place our child. RenderBlock* beforeChildParent = toRenderBlock(beforeChild && beforeChild->parent()->isRenderBlock() ? beforeChild->parent() : lastChild()); // If the new child is floating or positioned it can just go in that block. if (newChild->isFloatingOrPositioned()) return beforeChildParent->addChildIgnoringAnonymousColumnBlocks(newChild, beforeChild); // See if the child can be placed in the box. bool newChildHasColumnSpan = newChild->style()->columnSpan() && !newChild->isInline(); bool beforeChildParentHoldsColumnSpans = beforeChildParent->isAnonymousColumnSpanBlock(); if (newChildHasColumnSpan == beforeChildParentHoldsColumnSpans) return beforeChildParent->addChildIgnoringAnonymousColumnBlocks(newChild, beforeChild); if (!beforeChild) { // Create a new block of the correct type. RenderBlock* newBox = newChildHasColumnSpan ? createAnonymousColumnSpanBlock() : createAnonymousColumnsBlock(); children()->appendChildNode(this, newBox); newBox->addChildIgnoringAnonymousColumnBlocks(newChild, 0); return; } RenderObject* immediateChild = beforeChild; bool isPreviousBlockViable = true; while (immediateChild->parent() != this) { if (isPreviousBlockViable) isPreviousBlockViable = !immediateChild->previousSibling(); immediateChild = immediateChild->parent(); } if (isPreviousBlockViable && immediateChild->previousSibling()) return toRenderBlock(immediateChild->previousSibling())->addChildIgnoringAnonymousColumnBlocks(newChild, 0); // Treat like an append. // Split our anonymous blocks. RenderObject* newBeforeChild = splitAnonymousBlocksAroundChild(beforeChild); // Create a new anonymous box of the appropriate type. RenderBlock* newBox = newChildHasColumnSpan ? createAnonymousColumnSpanBlock() : createAnonymousColumnsBlock(); children()->insertChildNode(this, newBox, newBeforeChild); newBox->addChildIgnoringAnonymousColumnBlocks(newChild, 0); return; } RenderBlock* RenderBlock::containingColumnsBlock(bool allowAnonymousColumnBlock) { RenderBlock* firstChildIgnoringAnonymousWrappers = 0; for (RenderObject* curr = this; curr; curr = curr->parent()) { if (!curr->isRenderBlock() || curr->isFloatingOrPositioned() || curr->isTableCell() || curr->isRoot() || curr->isRenderView() || curr->hasOverflowClip() || curr->isInlineBlockOrInlineTable()) return 0; RenderBlock* currBlock = toRenderBlock(curr); if (!currBlock->createsAnonymousWrapper()) firstChildIgnoringAnonymousWrappers = currBlock; if (currBlock->style()->specifiesColumns() && (allowAnonymousColumnBlock || !currBlock->isAnonymousColumnsBlock())) return firstChildIgnoringAnonymousWrappers; if (currBlock->isAnonymousColumnSpanBlock()) return 0; } return 0; } RenderBlock* RenderBlock::clone() const { RenderBlock* cloneBlock; if (isAnonymousBlock()) cloneBlock = createAnonymousBlock(); else { cloneBlock = new (renderArena()) RenderBlock(node()); cloneBlock->setStyle(style()); if (!childrenInline() && cloneBlock->firstChild() && cloneBlock->firstChild()->isInline()) cloneBlock->makeChildrenNonInline(); } cloneBlock->setChildrenInline(childrenInline()); return cloneBlock; } void RenderBlock::splitBlocks(RenderBlock* fromBlock, RenderBlock* toBlock, RenderBlock* middleBlock, RenderObject* beforeChild, RenderBoxModelObject* oldCont) { // Create a clone of this inline. RenderBlock* cloneBlock = clone(); if (!isAnonymousBlock()) cloneBlock->setContinuation(oldCont); // Now take all of the children from beforeChild to the end and remove // them from |this| and place them in the clone. if (!beforeChild && isAfterContent(lastChild())) beforeChild = lastChild(); moveChildrenTo(cloneBlock, beforeChild, 0); // Hook |clone| up as the continuation of the middle block. if (!cloneBlock->isAnonymousBlock()) middleBlock->setContinuation(cloneBlock); // We have been reparented and are now under the fromBlock. We need // to walk up our block parent chain until we hit the containing anonymous columns block. // Once we hit the anonymous columns block we're done. RenderBoxModelObject* curr = toRenderBoxModelObject(parent()); RenderBoxModelObject* currChild = this; while (curr && curr != fromBlock) { ASSERT(curr->isRenderBlock()); RenderBlock* blockCurr = toRenderBlock(curr); // Create a new clone. RenderBlock* cloneChild = cloneBlock; cloneBlock = blockCurr->clone(); // Insert our child clone as the first child. cloneBlock->children()->appendChildNode(cloneBlock, cloneChild); // Hook the clone up as a continuation of |curr|. Note we do encounter // anonymous blocks possibly as we walk up the block chain. When we split an // anonymous block, there's no need to do any continuation hookup, since we haven't // actually split a real element. if (!blockCurr->isAnonymousBlock()) { oldCont = blockCurr->continuation(); blockCurr->setContinuation(cloneBlock); cloneBlock->setContinuation(oldCont); } // Someone may have indirectly caused a to split. When this happens, the :after content // has to move into the inline continuation. Call updateBeforeAfterContent to ensure that the inline's :after // content gets properly destroyed. if (document()->usesBeforeAfterRules()) blockCurr->children()->updateBeforeAfterContent(blockCurr, AFTER); // Now we need to take all of the children starting from the first child // *after* currChild and append them all to the clone. RenderObject* afterContent = isAfterContent(cloneBlock->lastChild()) ? cloneBlock->lastChild() : 0; blockCurr->moveChildrenTo(cloneBlock, currChild->nextSibling(), 0, afterContent); // Keep walking up the chain. currChild = curr; curr = toRenderBoxModelObject(curr->parent()); } // Now we are at the columns block level. We need to put the clone into the toBlock. toBlock->children()->appendChildNode(toBlock, cloneBlock); // Now take all the children after currChild and remove them from the fromBlock // and put them in the toBlock. fromBlock->moveChildrenTo(toBlock, currChild->nextSibling(), 0); } void RenderBlock::splitFlow(RenderObject* beforeChild, RenderBlock* newBlockBox, RenderObject* newChild, RenderBoxModelObject* oldCont) { RenderBlock* pre = 0; RenderBlock* block = containingColumnsBlock(); // Delete our line boxes before we do the inline split into continuations. block->deleteLineBoxTree(); bool madeNewBeforeBlock = false; if (block->isAnonymousColumnsBlock()) { // We can reuse this block and make it the preBlock of the next continuation. pre = block; pre->removePositionedObjects(0); block = toRenderBlock(block->parent()); } else { // No anonymous block available for use. Make one. pre = block->createAnonymousColumnsBlock(); pre->setChildrenInline(false); madeNewBeforeBlock = true; } RenderBlock* post = block->createAnonymousColumnsBlock(); post->setChildrenInline(false); RenderObject* boxFirst = madeNewBeforeBlock ? block->firstChild() : pre->nextSibling(); if (madeNewBeforeBlock) block->children()->insertChildNode(block, pre, boxFirst); block->children()->insertChildNode(block, newBlockBox, boxFirst); block->children()->insertChildNode(block, post, boxFirst); block->setChildrenInline(false); if (madeNewBeforeBlock) block->moveChildrenTo(pre, boxFirst, 0); splitBlocks(pre, post, newBlockBox, beforeChild, oldCont); // We already know the newBlockBox isn't going to contain inline kids, so avoid wasting // time in makeChildrenNonInline by just setting this explicitly up front. newBlockBox->setChildrenInline(false); // We delayed adding the newChild until now so that the |newBlockBox| would be fully // connected, thus allowing newChild access to a renderArena should it need // to wrap itself in additional boxes (e.g., table construction). newBlockBox->addChild(newChild); // Always just do a full layout in order to ensure that line boxes (especially wrappers for images) // get deleted properly. Because objects moves from the pre block into the post block, we want to // make new line boxes instead of leaving the old line boxes around. pre->setNeedsLayoutAndPrefWidthsRecalc(); block->setNeedsLayoutAndPrefWidthsRecalc(); post->setNeedsLayoutAndPrefWidthsRecalc(); } RenderObject* RenderBlock::splitAnonymousBlocksAroundChild(RenderObject* beforeChild) { while (beforeChild->parent() != this) { RenderBlock* blockToSplit = toRenderBlock(beforeChild->parent()); if (blockToSplit->firstChild() != beforeChild) { // We have to split the parentBlock into two blocks. RenderBlock* post = createAnonymousBlockWithSameTypeAs(blockToSplit); post->setChildrenInline(blockToSplit->childrenInline()); RenderBlock* parentBlock = toRenderBlock(blockToSplit->parent()); parentBlock->children()->insertChildNode(parentBlock, post, blockToSplit->nextSibling()); blockToSplit->moveChildrenTo(post, beforeChild, 0, blockToSplit->hasLayer()); post->setNeedsLayoutAndPrefWidthsRecalc(); blockToSplit->setNeedsLayoutAndPrefWidthsRecalc(); beforeChild = post; } else beforeChild = blockToSplit; } return beforeChild; } void RenderBlock::makeChildrenAnonymousColumnBlocks(RenderObject* beforeChild, RenderBlock* newBlockBox, RenderObject* newChild) { RenderBlock* pre = 0; RenderBlock* post = 0; RenderBlock* block = this; // Eventually block will not just be |this|, but will also be a block nested inside |this|. Assign to a variable // so that we don't have to patch all of the rest of the code later on. // Delete the block's line boxes before we do the split. block->deleteLineBoxTree(); if (beforeChild && beforeChild->parent() != this) beforeChild = splitAnonymousBlocksAroundChild(beforeChild); if (beforeChild != firstChild()) { pre = block->createAnonymousColumnsBlock(); pre->setChildrenInline(block->childrenInline()); } if (beforeChild) { post = block->createAnonymousColumnsBlock(); post->setChildrenInline(block->childrenInline()); } RenderObject* boxFirst = block->firstChild(); if (pre) block->children()->insertChildNode(block, pre, boxFirst); block->children()->insertChildNode(block, newBlockBox, boxFirst); if (post) block->children()->insertChildNode(block, post, boxFirst); block->setChildrenInline(false); // The pre/post blocks always have layers, so we know to always do a full insert/remove (so we pass true as the last argument). block->moveChildrenTo(pre, boxFirst, beforeChild, true); block->moveChildrenTo(post, beforeChild, 0, true); // We already know the newBlockBox isn't going to contain inline kids, so avoid wasting // time in makeChildrenNonInline by just setting this explicitly up front. newBlockBox->setChildrenInline(false); // We delayed adding the newChild until now so that the |newBlockBox| would be fully // connected, thus allowing newChild access to a renderArena should it need // to wrap itself in additional boxes (e.g., table construction). newBlockBox->addChild(newChild); // Always just do a full layout in order to ensure that line boxes (especially wrappers for images) // get deleted properly. Because objects moved from the pre block into the post block, we want to // make new line boxes instead of leaving the old line boxes around. if (pre) pre->setNeedsLayoutAndPrefWidthsRecalc(); block->setNeedsLayoutAndPrefWidthsRecalc(); if (post) post->setNeedsLayoutAndPrefWidthsRecalc(); } RenderBlock* RenderBlock::columnsBlockForSpanningElement(RenderObject* newChild) { // FIXME: This function is the gateway for the addition of column-span support. It will // be added to in three stages: // (1) Immediate children of a multi-column block can span. // (2) Nested block-level children with only block-level ancestors between them and the multi-column block can span. // (3) Nested children with block or inline ancestors between them and the multi-column block can span (this is when we // cross the streams and have to cope with both types of continuations mixed together). // This function currently supports (1) and (2). RenderBlock* columnsBlockAncestor = 0; if (!newChild->isText() && newChild->style()->columnSpan() && !newChild->isBeforeOrAfterContent() && !newChild->isFloatingOrPositioned() && !newChild->isInline() && !isAnonymousColumnSpanBlock()) { columnsBlockAncestor = containingColumnsBlock(false); if (columnsBlockAncestor) { // Make sure that none of the parent ancestors have a continuation. // If yes, we do not want split the block into continuations. RenderObject* curr = this; while (curr && curr != columnsBlockAncestor) { if (curr->isRenderBlock() && toRenderBlock(curr)->continuation()) { columnsBlockAncestor = 0; break; } curr = curr->parent(); } } } return columnsBlockAncestor; } void RenderBlock::addChildIgnoringAnonymousColumnBlocks(RenderObject* newChild, RenderObject* beforeChild) { // Make sure we don't append things after :after-generated content if we have it. if (!beforeChild) { RenderObject* lastRenderer = lastChild(); if (isAfterContent(lastRenderer)) beforeChild = lastRenderer; else if (lastRenderer && lastRenderer->isAnonymousBlock() && isAfterContent(lastRenderer->lastChild())) beforeChild = lastRenderer->lastChild(); } // If the requested beforeChild is not one of our children, then this is because // there is an anonymous container within this object that contains the beforeChild. if (beforeChild && beforeChild->parent() != this) { RenderObject* anonymousChild = beforeChild->parent(); ASSERT(anonymousChild); while (anonymousChild->parent() != this) anonymousChild = anonymousChild->parent(); ASSERT(anonymousChild->isAnonymous()); if (anonymousChild->isAnonymousBlock()) { // Insert the child into the anonymous block box instead of here. if (newChild->isInline() || beforeChild->parent()->firstChild() != beforeChild) beforeChild->parent()->addChild(newChild, beforeChild); else addChild(newChild, beforeChild->parent()); return; } ASSERT(anonymousChild->isTable()); if ((newChild->isTableCol() && newChild->style()->display() == TABLE_COLUMN_GROUP) || (newChild->isRenderBlock() && newChild->style()->display() == TABLE_CAPTION) || newChild->isTableSection() || newChild->isTableRow() || newChild->isTableCell()) { // Insert into the anonymous table. anonymousChild->addChild(newChild, beforeChild); return; } // Go on to insert before the anonymous table. beforeChild = anonymousChild; } // Check for a spanning element in columns. RenderBlock* columnsBlockAncestor = columnsBlockForSpanningElement(newChild); if (columnsBlockAncestor) { // We are placing a column-span element inside a block. RenderBlock* newBox = createAnonymousColumnSpanBlock(); if (columnsBlockAncestor != this) { // We are nested inside a multi-column element and are being split by the span. We have to break up // our block into continuations. RenderBoxModelObject* oldContinuation = continuation(); setContinuation(newBox); // Someone may have put a

inside a , causing a split. When this happens, the :after content // has to move into the inline continuation. Call updateBeforeAfterContent to ensure that our :after // content gets properly destroyed. bool isLastChild = (beforeChild == lastChild()); if (document()->usesBeforeAfterRules()) children()->updateBeforeAfterContent(this, AFTER); if (isLastChild && beforeChild != lastChild()) beforeChild = 0; // We destroyed the last child, so now we need to update our insertion // point to be 0. It's just a straight append now. splitFlow(beforeChild, newBox, newChild, oldContinuation); return; } // We have to perform a split of this block's children. This involves creating an anonymous block box to hold // the column-spanning |newChild|. We take all of the children from before |newChild| and put them into // one anonymous columns block, and all of the children after |newChild| go into another anonymous block. makeChildrenAnonymousColumnBlocks(beforeChild, newBox, newChild); return; } bool madeBoxesNonInline = false; // A block has to either have all of its children inline, or all of its children as blocks. // So, if our children are currently inline and a block child has to be inserted, we move all our // inline children into anonymous block boxes. if (childrenInline() && !newChild->isInline() && !newChild->isFloatingOrPositioned()) { // This is a block with inline content. Wrap the inline content in anonymous blocks. makeChildrenNonInline(beforeChild); madeBoxesNonInline = true; if (beforeChild && beforeChild->parent() != this) { beforeChild = beforeChild->parent(); ASSERT(beforeChild->isAnonymousBlock()); ASSERT(beforeChild->parent() == this); } } else if (!childrenInline() && (newChild->isFloatingOrPositioned() || newChild->isInline())) { // If we're inserting an inline child but all of our children are blocks, then we have to make sure // it is put into an anomyous block box. We try to use an existing anonymous box if possible, otherwise // a new one is created and inserted into our list of children in the appropriate position. RenderObject* afterChild = beforeChild ? beforeChild->previousSibling() : lastChild(); if (afterChild && afterChild->isAnonymousBlock()) { afterChild->addChild(newChild); return; } if (newChild->isInline()) { // No suitable existing anonymous box - create a new one. RenderBlock* newBox = createAnonymousBlock(); RenderBox::addChild(newBox, beforeChild); newBox->addChild(newChild); return; } } RenderBox::addChild(newChild, beforeChild); if (madeBoxesNonInline && parent() && isAnonymousBlock() && parent()->isRenderBlock()) toRenderBlock(parent())->removeLeftoverAnonymousBlock(this); // this object may be dead here } void RenderBlock::addChild(RenderObject* newChild, RenderObject* beforeChild) { if (continuation() && !isAnonymousBlock()) return addChildToContinuation(newChild, beforeChild); return addChildIgnoringContinuation(newChild, beforeChild); } void RenderBlock::addChildIgnoringContinuation(RenderObject* newChild, RenderObject* beforeChild) { if (!isAnonymousBlock() && firstChild() && (firstChild()->isAnonymousColumnsBlock() || firstChild()->isAnonymousColumnSpanBlock())) return addChildToAnonymousColumnBlocks(newChild, beforeChild); return addChildIgnoringAnonymousColumnBlocks(newChild, beforeChild); } static void getInlineRun(RenderObject* start, RenderObject* boundary, RenderObject*& inlineRunStart, RenderObject*& inlineRunEnd) { // Beginning at |start| we find the largest contiguous run of inlines that // we can. We denote the run with start and end points, |inlineRunStart| // and |inlineRunEnd|. Note that these two values may be the same if // we encounter only one inline. // // We skip any non-inlines we encounter as long as we haven't found any // inlines yet. // // |boundary| indicates a non-inclusive boundary point. Regardless of whether |boundary| // is inline or not, we will not include it in a run with inlines before it. It's as though we encountered // a non-inline. // Start by skipping as many non-inlines as we can. RenderObject * curr = start; bool sawInline; do { while (curr && !(curr->isInline() || curr->isFloatingOrPositioned())) curr = curr->nextSibling(); inlineRunStart = inlineRunEnd = curr; if (!curr) return; // No more inline children to be found. sawInline = curr->isInline(); curr = curr->nextSibling(); while (curr && (curr->isInline() || curr->isFloatingOrPositioned()) && (curr != boundary)) { inlineRunEnd = curr; if (curr->isInline()) sawInline = true; curr = curr->nextSibling(); } } while (!sawInline); } void RenderBlock::deleteLineBoxTree() { m_lineBoxes.deleteLineBoxTree(renderArena()); } RootInlineBox* RenderBlock::createRootInlineBox() { return new (renderArena()) RootInlineBox(this); } RootInlineBox* RenderBlock::createAndAppendRootInlineBox() { RootInlineBox* rootBox = createRootInlineBox(); m_lineBoxes.appendLineBox(rootBox); return rootBox; } void RenderBlock::moveChildTo(RenderBlock* to, RenderObject* child, RenderObject* beforeChild, bool fullRemoveInsert) { ASSERT(this == child->parent()); ASSERT(!beforeChild || to == beforeChild->parent()); to->children()->insertChildNode(to, children()->removeChildNode(this, child, fullRemoveInsert), beforeChild, fullRemoveInsert); } void RenderBlock::moveChildrenTo(RenderBlock* to, RenderObject* startChild, RenderObject* endChild, RenderObject* beforeChild, bool fullRemoveInsert) { ASSERT(!beforeChild || to == beforeChild->parent()); RenderObject* nextChild = startChild; while (nextChild && nextChild != endChild) { RenderObject* child = nextChild; nextChild = child->nextSibling(); to->children()->insertChildNode(to, children()->removeChildNode(this, child, fullRemoveInsert), beforeChild, fullRemoveInsert); if (child == endChild) return; } } void RenderBlock::makeChildrenNonInline(RenderObject *insertionPoint) { // makeChildrenNonInline takes a block whose children are *all* inline and it // makes sure that inline children are coalesced under anonymous // blocks. If |insertionPoint| is defined, then it represents the insertion point for // the new block child that is causing us to have to wrap all the inlines. This // means that we cannot coalesce inlines before |insertionPoint| with inlines following // |insertionPoint|, because the new child is going to be inserted in between the inlines, // splitting them. ASSERT(isInlineBlockOrInlineTable() || !isInline()); ASSERT(!insertionPoint || insertionPoint->parent() == this); setChildrenInline(false); RenderObject *child = firstChild(); if (!child) return; deleteLineBoxTree(); while (child) { RenderObject *inlineRunStart, *inlineRunEnd; getInlineRun(child, insertionPoint, inlineRunStart, inlineRunEnd); if (!inlineRunStart) break; child = inlineRunEnd->nextSibling(); RenderBlock* block = createAnonymousBlock(); children()->insertChildNode(this, block, inlineRunStart); moveChildrenTo(block, inlineRunStart, child); } #ifndef NDEBUG for (RenderObject *c = firstChild(); c; c = c->nextSibling()) ASSERT(!c->isInline()); #endif repaint(); } void RenderBlock::removeLeftoverAnonymousBlock(RenderBlock* child) { ASSERT(child->isAnonymousBlock()); ASSERT(!child->childrenInline()); if (child->continuation() || (child->firstChild() && (child->isAnonymousColumnSpanBlock() || child->isAnonymousColumnsBlock()))) return; RenderObject* firstAnChild = child->m_children.firstChild(); RenderObject* lastAnChild = child->m_children.lastChild(); if (firstAnChild) { RenderObject* o = firstAnChild; while (o) { o->setParent(this); o = o->nextSibling(); } firstAnChild->setPreviousSibling(child->previousSibling()); lastAnChild->setNextSibling(child->nextSibling()); if (child->previousSibling()) child->previousSibling()->setNextSibling(firstAnChild); if (child->nextSibling()) child->nextSibling()->setPreviousSibling(lastAnChild); if (child == m_children.firstChild()) m_children.setFirstChild(firstAnChild); if (child == m_children.lastChild()) m_children.setLastChild(lastAnChild); } else { if (child == m_children.firstChild()) m_children.setFirstChild(child->nextSibling()); if (child == m_children.lastChild()) m_children.setLastChild(child->previousSibling()); if (child->previousSibling()) child->previousSibling()->setNextSibling(child->nextSibling()); if (child->nextSibling()) child->nextSibling()->setPreviousSibling(child->previousSibling()); } child->setParent(0); child->setPreviousSibling(0); child->setNextSibling(0); child->children()->setFirstChild(0); child->m_next = 0; child->destroy(); } static bool canMergeContiguousAnonymousBlocks(RenderObject* oldChild, RenderObject* prev, RenderObject* next) { if (oldChild->documentBeingDestroyed() || oldChild->isInline() || oldChild->virtualContinuation()) return false; if (oldChild->parent() && oldChild->parent()->isDetails()) return false; if ((prev && (!prev->isAnonymousBlock() || toRenderBlock(prev)->continuation() || toRenderBlock(prev)->beingDestroyed())) || (next && (!next->isAnonymousBlock() || toRenderBlock(next)->continuation() || toRenderBlock(next)->beingDestroyed()))) return false; // FIXME: This check isn't required when inline run-ins can't be split into continuations. if (prev && prev->firstChild() && prev->firstChild()->isInline() && prev->firstChild()->isRunIn()) return false; if ((prev && (prev->isRubyRun() || prev->isRubyBase())) || (next && (next->isRubyRun() || next->isRubyBase()))) return false; if (!prev || !next) return true; // Make sure the types of the anonymous blocks match up. return prev->isAnonymousColumnsBlock() == next->isAnonymousColumnsBlock() && prev->isAnonymousColumnSpanBlock() == next->isAnonymousColumnSpanBlock(); } void RenderBlock::removeChild(RenderObject* oldChild) { // If this child is a block, and if our previous and next siblings are // both anonymous blocks with inline content, then we can go ahead and // fold the inline content back together. RenderObject* prev = oldChild->previousSibling(); RenderObject* next = oldChild->nextSibling(); bool canMergeAnonymousBlocks = canMergeContiguousAnonymousBlocks(oldChild, prev, next); if (canMergeAnonymousBlocks && prev && next) { prev->setNeedsLayoutAndPrefWidthsRecalc(); RenderBlock* nextBlock = toRenderBlock(next); RenderBlock* prevBlock = toRenderBlock(prev); if (prev->childrenInline() != next->childrenInline()) { RenderBlock* inlineChildrenBlock = prev->childrenInline() ? prevBlock : nextBlock; RenderBlock* blockChildrenBlock = prev->childrenInline() ? nextBlock : prevBlock; // Place the inline children block inside of the block children block instead of deleting it. // In order to reuse it, we have to reset it to just be a generic anonymous block. Make sure // to clear out inherited column properties by just making a new style, and to also clear the // column span flag if it is set. ASSERT(!inlineChildrenBlock->continuation()); RefPtr newStyle = RenderStyle::createAnonymousStyle(style()); children()->removeChildNode(this, inlineChildrenBlock, inlineChildrenBlock->hasLayer()); inlineChildrenBlock->setStyle(newStyle); // Now just put the inlineChildrenBlock inside the blockChildrenBlock. blockChildrenBlock->children()->insertChildNode(blockChildrenBlock, inlineChildrenBlock, prev == inlineChildrenBlock ? blockChildrenBlock->firstChild() : 0, inlineChildrenBlock->hasLayer() || blockChildrenBlock->hasLayer()); next->setNeedsLayoutAndPrefWidthsRecalc(); // inlineChildrenBlock got reparented to blockChildrenBlock, so it is no longer a child // of "this". we null out prev or next so that is not used later in the function. if (inlineChildrenBlock == prevBlock) prev = 0; else next = 0; } else { // Take all the children out of the |next| block and put them in // the |prev| block. nextBlock->moveAllChildrenTo(prevBlock, nextBlock->hasLayer() || prevBlock->hasLayer()); // Delete the now-empty block's lines and nuke it. nextBlock->deleteLineBoxTree(); nextBlock->destroy(); next = 0; } } RenderBox::removeChild(oldChild); RenderObject* child = prev ? prev : next; if (canMergeAnonymousBlocks && child && !child->previousSibling() && !child->nextSibling() && !isFlexibleBox()) { // The removal has knocked us down to containing only a single anonymous // box. We can go ahead and pull the content right back up into our // box. setNeedsLayoutAndPrefWidthsRecalc(); setChildrenInline(child->childrenInline()); RenderBlock* anonBlock = toRenderBlock(children()->removeChildNode(this, child, child->hasLayer())); anonBlock->moveAllChildrenTo(this, child->hasLayer()); // Delete the now-empty block's lines and nuke it. anonBlock->deleteLineBoxTree(); anonBlock->destroy(); } if (!firstChild() && !documentBeingDestroyed()) { // If this was our last child be sure to clear out our line boxes. if (childrenInline()) lineBoxes()->deleteLineBoxes(renderArena()); } } bool RenderBlock::isSelfCollapsingBlock() const { // We are not self-collapsing if we // (a) have a non-zero height according to layout (an optimization to avoid wasting time) // (b) are a table, // (c) have border/padding, // (d) have a min-height // (e) have specified that one of our margins can't collapse using a CSS extension if (logicalHeight() > 0 || isTable() || borderAndPaddingLogicalHeight() || style()->logicalMinHeight().isPositive() || style()->marginBeforeCollapse() == MSEPARATE || style()->marginAfterCollapse() == MSEPARATE) return false; Length logicalHeightLength = style()->logicalHeight(); bool hasAutoHeight = logicalHeightLength.isAuto(); if (logicalHeightLength.isPercent() && !document()->inQuirksMode()) { hasAutoHeight = true; for (RenderBlock* cb = containingBlock(); !cb->isRenderView(); cb = cb->containingBlock()) { if (cb->style()->logicalHeight().isFixed() || cb->isTableCell()) hasAutoHeight = false; } } // If the height is 0 or auto, then whether or not we are a self-collapsing block depends // on whether we have content that is all self-collapsing or not. if (hasAutoHeight || ((logicalHeightLength.isFixed() || logicalHeightLength.isPercent()) && logicalHeightLength.isZero())) { // If the block has inline children, see if we generated any line boxes. If we have any // line boxes, then we can't be self-collapsing, since we have content. if (childrenInline()) return !firstLineBox(); // Whether or not we collapse is dependent on whether all our normal flow children // are also self-collapsing. for (RenderBox* child = firstChildBox(); child; child = child->nextSiblingBox()) { if (child->isFloatingOrPositioned()) continue; if (!child->isSelfCollapsingBlock()) return false; } return true; } return false; } void RenderBlock::startDelayUpdateScrollInfo() { if (gDelayUpdateScrollInfo == 0) { ASSERT(!gDelayedUpdateScrollInfoSet); gDelayedUpdateScrollInfoSet = new DelayedUpdateScrollInfoSet; } ASSERT(gDelayedUpdateScrollInfoSet); ++gDelayUpdateScrollInfo; } void RenderBlock::finishDelayUpdateScrollInfo() { --gDelayUpdateScrollInfo; ASSERT(gDelayUpdateScrollInfo >= 0); if (gDelayUpdateScrollInfo == 0) { ASSERT(gDelayedUpdateScrollInfoSet); OwnPtr infoSet(gDelayedUpdateScrollInfoSet); gDelayedUpdateScrollInfoSet = 0; for (DelayedUpdateScrollInfoSet::iterator it = infoSet->begin(); it != infoSet->end(); ++it) { RenderBlock* block = *it; if (block->hasOverflowClip()) { block->layer()->updateScrollInfoAfterLayout(); } } } } void RenderBlock::updateScrollInfoAfterLayout() { if (hasOverflowClip()) { if (gDelayUpdateScrollInfo) gDelayedUpdateScrollInfoSet->add(this); else layer()->updateScrollInfoAfterLayout(); } } void RenderBlock::layout() { // Update our first letter info now. updateFirstLetter(); // Table cells call layoutBlock directly, so don't add any logic here. Put code into // layoutBlock(). layoutBlock(false); // It's safe to check for control clip here, since controls can never be table cells. // If we have a lightweight clip, there can never be any overflow from children. if (hasControlClip() && m_overflow) clearLayoutOverflow(); } void RenderBlock::layoutBlock(bool relayoutChildren, int pageLogicalHeight) { ASSERT(needsLayout()); if (isInline() && !isInlineBlockOrInlineTable()) // Inline

s inside various table elements can return; // cause us to come in here. Just bail. if (!relayoutChildren && simplifiedLayout()) return; LayoutRepainter repainter(*this, m_everHadLayout && checkForRepaintDuringLayout()); int oldWidth = logicalWidth(); int oldColumnWidth = desiredColumnWidth(); computeLogicalWidth(); calcColumnWidth(); m_overflow.clear(); if (oldWidth != logicalWidth() || oldColumnWidth != desiredColumnWidth()) relayoutChildren = true; #ifdef ANDROID_LAYOUT checkAndSetRelayoutChildren(&relayoutChildren); #endif clearFloats(); int previousHeight = logicalHeight(); setLogicalHeight(0); bool hasSpecifiedPageLogicalHeight = false; bool pageLogicalHeightChanged = false; ColumnInfo* colInfo = columnInfo(); if (hasColumns()) { if (!pageLogicalHeight) { // We need to go ahead and set our explicit page height if one exists, so that we can // avoid doing two layout passes. computeLogicalHeight(); int columnHeight = contentLogicalHeight(); if (columnHeight > 0) { pageLogicalHeight = columnHeight; hasSpecifiedPageLogicalHeight = true; } setLogicalHeight(0); } if (colInfo->columnHeight() != pageLogicalHeight && m_everHadLayout) { colInfo->setColumnHeight(pageLogicalHeight); pageLogicalHeightChanged = true; } if (!hasSpecifiedPageLogicalHeight && !pageLogicalHeight) colInfo->clearForcedBreaks(); } LayoutStateMaintainer statePusher(view(), this, IntSize(x(), y()), hasColumns() || hasTransform() || hasReflection() || style()->isFlippedBlocksWritingMode(), pageLogicalHeight, pageLogicalHeightChanged, colInfo); // We use four values, maxTopPos, maxTopNeg, maxBottomPos, and maxBottomNeg, to track // our current maximal positive and negative margins. These values are used when we // are collapsed with adjacent blocks, so for example, if you have block A and B // collapsing together, then you'd take the maximal positive margin from both A and B // and subtract it from the maximal negative margin from both A and B to get the // true collapsed margin. This algorithm is recursive, so when we finish layout() // our block knows its current maximal positive/negative values. // // Start out by setting our margin values to our current margins. Table cells have // no margins, so we don't fill in the values for table cells. bool isCell = isTableCell(); if (!isCell) { initMaxMarginValues(); setMarginBeforeQuirk(style()->marginBefore().quirk()); setMarginAfterQuirk(style()->marginAfter().quirk()); Node* n = node(); if (n && n->hasTagName(formTag) && static_cast(n)->isMalformed()) { // See if this form is malformed (i.e., unclosed). If so, don't give the form // a bottom margin. setMaxMarginAfterValues(0, 0); } setPaginationStrut(0); } // For overflow:scroll blocks, ensure we have both scrollbars in place always. if (scrollsOverflow()) { if (style()->overflowX() == OSCROLL) layer()->setHasHorizontalScrollbar(true); if (style()->overflowY() == OSCROLL) layer()->setHasVerticalScrollbar(true); } int repaintLogicalTop = 0; int repaintLogicalBottom = 0; int maxFloatLogicalBottom = 0; if (!firstChild() && !isAnonymousBlock()) setChildrenInline(true); if (childrenInline()) layoutInlineChildren(relayoutChildren, repaintLogicalTop, repaintLogicalBottom); else layoutBlockChildren(relayoutChildren, maxFloatLogicalBottom); // Expand our intrinsic height to encompass floats. int toAdd = borderAfter() + paddingAfter() + scrollbarLogicalHeight(); if (lowestFloatLogicalBottom() > (logicalHeight() - toAdd) && expandsToEncloseOverhangingFloats()) setLogicalHeight(lowestFloatLogicalBottom() + toAdd); if (layoutColumns(hasSpecifiedPageLogicalHeight, pageLogicalHeight, statePusher)) return; // Calculate our new height. int oldHeight = logicalHeight(); int oldClientAfterEdge = clientLogicalBottom(); computeLogicalHeight(); int newHeight = logicalHeight(); if (oldHeight != newHeight) { if (oldHeight > newHeight && maxFloatLogicalBottom > newHeight && !childrenInline()) { // One of our children's floats may have become an overhanging float for us. We need to look for it. for (RenderObject* child = firstChild(); child; child = child->nextSibling()) { if (child->isBlockFlow() && !child->isFloatingOrPositioned()) { RenderBlock* block = toRenderBlock(child); if (block->lowestFloatLogicalBottom() + block->logicalTop() > newHeight) addOverhangingFloats(block, -block->logicalLeft(), -block->logicalTop(), false); } } } } if (previousHeight != newHeight) relayoutChildren = true; layoutPositionedObjects(relayoutChildren || isRoot()); // Add overflow from children (unless we're multi-column, since in that case all our child overflow is clipped anyway). computeOverflow(oldClientAfterEdge); statePusher.pop(); if (view()->layoutState()->m_pageLogicalHeight) setPageLogicalOffset(view()->layoutState()->pageLogicalOffset(logicalTop())); updateLayerTransform(); // Update our scroll information if we're overflow:auto/scroll/hidden now that we know if // we overflow or not. updateScrollInfoAfterLayout(); // Repaint with our new bounds if they are different from our old bounds. bool didFullRepaint = repainter.repaintAfterLayout(); if (!didFullRepaint && repaintLogicalTop != repaintLogicalBottom && (style()->visibility() == VISIBLE || enclosingLayer()->hasVisibleContent())) { // FIXME: We could tighten up the left and right invalidation points if we let layoutInlineChildren fill them in based off the particular lines // it had to lay out. We wouldn't need the hasOverflowClip() hack in that case either. int repaintLogicalLeft = logicalLeftVisualOverflow(); int repaintLogicalRight = logicalRightVisualOverflow(); if (hasOverflowClip()) { // If we have clipped overflow, we should use layout overflow as well, since visual overflow from lines didn't propagate to our block's overflow. // Note the old code did this as well but even for overflow:visible. The addition of hasOverflowClip() at least tightens up the hack a bit. // layoutInlineChildren should be patched to compute the entire repaint rect. repaintLogicalLeft = min(repaintLogicalLeft, logicalLeftLayoutOverflow()); repaintLogicalRight = max(repaintLogicalRight, logicalRightLayoutOverflow()); } IntRect repaintRect; if (isHorizontalWritingMode()) repaintRect = IntRect(repaintLogicalLeft, repaintLogicalTop, repaintLogicalRight - repaintLogicalLeft, repaintLogicalBottom - repaintLogicalTop); else repaintRect = IntRect(repaintLogicalTop, repaintLogicalLeft, repaintLogicalBottom - repaintLogicalTop, repaintLogicalRight - repaintLogicalLeft); // The repaint rect may be split across columns, in which case adjustRectForColumns() will return the union. adjustRectForColumns(repaintRect); repaintRect.inflate(maximalOutlineSize(PaintPhaseOutline)); if (hasOverflowClip()) { // Adjust repaint rect for scroll offset repaintRect.move(-layer()->scrolledContentOffset()); // Don't allow this rect to spill out of our overflow box. repaintRect.intersect(IntRect(0, 0, width(), height())); } // Make sure the rect is still non-empty after intersecting for overflow above if (!repaintRect.isEmpty()) { repaintRectangle(repaintRect); // We need to do a partial repaint of our content. if (hasReflection()) repaintRectangle(reflectedRect(repaintRect)); } } setNeedsLayout(false); } void RenderBlock::addOverflowFromChildren() { if (!hasColumns()) { if (childrenInline()) addOverflowFromInlineChildren(); else addOverflowFromBlockChildren(); } else { ColumnInfo* colInfo = columnInfo(); if (columnCount(colInfo)) { IntRect lastRect = columnRectAt(colInfo, columnCount(colInfo) - 1); if (isHorizontalWritingMode()) { int overflowLeft = !style()->isLeftToRightDirection() ? min(0, lastRect.x()) : 0; int overflowRight = style()->isLeftToRightDirection() ? max(width(), lastRect.maxX()) : 0; int overflowHeight = borderBefore() + paddingBefore() + colInfo->columnHeight(); addLayoutOverflow(IntRect(overflowLeft, 0, overflowRight - overflowLeft, overflowHeight)); if (!hasOverflowClip()) addVisualOverflow(IntRect(overflowLeft, 0, overflowRight - overflowLeft, overflowHeight)); } else { IntRect lastRect = columnRectAt(colInfo, columnCount(colInfo) - 1); int overflowTop = !style()->isLeftToRightDirection() ? min(0, lastRect.y()) : 0; int overflowBottom = style()->isLeftToRightDirection() ? max(height(), lastRect.maxY()) : 0; int overflowWidth = borderBefore() + paddingBefore() + colInfo->columnHeight(); addLayoutOverflow(IntRect(0, overflowTop, overflowWidth, overflowBottom - overflowTop)); if (!hasOverflowClip()) addVisualOverflow(IntRect(0, overflowTop, overflowWidth, overflowBottom - overflowTop)); } } } } void RenderBlock::computeOverflow(int oldClientAfterEdge, bool recomputeFloats) { // Add overflow from children. addOverflowFromChildren(); if (!hasColumns() && (recomputeFloats || isRoot() || expandsToEncloseOverhangingFloats() || hasSelfPaintingLayer())) addOverflowFromFloats(); // Add in the overflow from positioned objects. addOverflowFromPositionedObjects(); if (hasOverflowClip()) { // When we have overflow clip, propagate the original spillout since it will include collapsed bottom margins // and bottom padding. Set the axis we don't care about to be 1, since we want this overflow to always // be considered reachable. IntRect clientRect(clientBoxRect()); IntRect rectToApply; if (isHorizontalWritingMode()) rectToApply = IntRect(clientRect.x(), clientRect.y(), 1, max(0, oldClientAfterEdge - clientRect.y())); else rectToApply = IntRect(clientRect.x(), clientRect.y(), max(0, oldClientAfterEdge - clientRect.x()), 1); addLayoutOverflow(rectToApply); } // Add visual overflow from box-shadow and reflections. addShadowOverflow(); } void RenderBlock::addOverflowFromBlockChildren() { for (RenderBox* child = firstChildBox(); child; child = child->nextSiblingBox()) { if (!child->isFloatingOrPositioned()) addOverflowFromChild(child); } } void RenderBlock::addOverflowFromFloats() { if (!m_floatingObjects) return; FloatingObjectSet& floatingObjectSet = m_floatingObjects->set(); FloatingObjectSetIterator end = floatingObjectSet.end(); for (FloatingObjectSetIterator it = floatingObjectSet.begin(); it != end; ++it) { FloatingObject* r = *it; if (r->m_isDescendant) addOverflowFromChild(r->m_renderer, IntSize(xPositionForFloatIncludingMargin(r), yPositionForFloatIncludingMargin(r))); } return; } void RenderBlock::addOverflowFromPositionedObjects() { if (!m_positionedObjects) return; RenderBox* positionedObject; Iterator end = m_positionedObjects->end(); for (Iterator it = m_positionedObjects->begin(); it != end; ++it) { positionedObject = *it; // Fixed positioned elements don't contribute to layout overflow, since they don't scroll with the content. if (positionedObject->style()->position() != FixedPosition) addOverflowFromChild(positionedObject); } } bool RenderBlock::expandsToEncloseOverhangingFloats() const { return isInlineBlockOrInlineTable() || isFloatingOrPositioned() || hasOverflowClip() || (parent() && parent()->isFlexibleBox()) || hasColumns() || isTableCell() || isFieldset() || isWritingModeRoot(); } void RenderBlock::adjustPositionedBlock(RenderBox* child, const MarginInfo& marginInfo) { bool isHorizontal = isHorizontalWritingMode(); bool hasStaticBlockPosition = child->style()->hasStaticBlockPosition(isHorizontal); RenderLayer* childLayer = child->layer(); childLayer->setStaticInlinePosition(borderAndPaddingStart()); int logicalTop = logicalHeight(); if (!marginInfo.canCollapseWithMarginBefore()) { child->computeBlockDirectionMargins(this); int marginBefore = marginBeforeForChild(child); int collapsedBeforePos = marginInfo.positiveMargin(); int collapsedBeforeNeg = marginInfo.negativeMargin(); if (marginBefore > 0) { if (marginBefore > collapsedBeforePos) collapsedBeforePos = marginBefore; } else { if (-marginBefore > collapsedBeforeNeg) collapsedBeforeNeg = -marginBefore; } logicalTop += (collapsedBeforePos - collapsedBeforeNeg) - marginBefore; } if (childLayer->staticBlockPosition() != logicalTop) { childLayer->setStaticBlockPosition(logicalTop); if (hasStaticBlockPosition) child->setChildNeedsLayout(true, false); } } void RenderBlock::adjustFloatingBlock(const MarginInfo& marginInfo) { // The float should be positioned taking into account the bottom margin // of the previous flow. We add that margin into the height, get the // float positioned properly, and then subtract the margin out of the // height again. In the case of self-collapsing blocks, we always just // use the top margins, since the self-collapsing block collapsed its // own bottom margin into its top margin. // // Note also that the previous flow may collapse its margin into the top of // our block. If this is the case, then we do not add the margin in to our // height when computing the position of the float. This condition can be tested // for by simply calling canCollapseWithMarginBefore. See // http://www.hixie.ch/tests/adhoc/css/box/block/margin-collapse/046.html for // an example of this scenario. int marginOffset = marginInfo.canCollapseWithMarginBefore() ? 0 : marginInfo.margin(); setLogicalHeight(logicalHeight() + marginOffset); positionNewFloats(); setLogicalHeight(logicalHeight() - marginOffset); } bool RenderBlock::handleSpecialChild(RenderBox* child, const MarginInfo& marginInfo) { // Handle in the given order return handlePositionedChild(child, marginInfo) || handleFloatingChild(child, marginInfo) || handleRunInChild(child); } bool RenderBlock::handlePositionedChild(RenderBox* child, const MarginInfo& marginInfo) { if (child->isPositioned()) { child->containingBlock()->insertPositionedObject(child); adjustPositionedBlock(child, marginInfo); return true; } return false; } bool RenderBlock::handleFloatingChild(RenderBox* child, const MarginInfo& marginInfo) { if (child->isFloating()) { insertFloatingObject(child); adjustFloatingBlock(marginInfo); return true; } return false; } bool RenderBlock::handleRunInChild(RenderBox* child) { // See if we have a run-in element with inline children. If the // children aren't inline, then just treat the run-in as a normal // block. if (!child->isRunIn() || !child->childrenInline()) return false; // FIXME: We don't handle non-block elements with run-in for now. if (!child->isRenderBlock()) return false; RenderBlock* blockRunIn = toRenderBlock(child); RenderObject* curr = blockRunIn->nextSibling(); if (!curr || !curr->isRenderBlock() || !curr->childrenInline() || curr->isRunIn() || curr->isAnonymous() || curr->isFloatingOrPositioned()) return false; RenderBlock* currBlock = toRenderBlock(curr); // First we destroy any :before/:after content. It will be regenerated by the new inline. // Exception is if the run-in itself is generated. if (child->style()->styleType() != BEFORE && child->style()->styleType() != AFTER) { RenderObject* generatedContent; if (child->getCachedPseudoStyle(BEFORE) && (generatedContent = child->beforePseudoElementRenderer())) generatedContent->destroy(); if (child->getCachedPseudoStyle(AFTER) && (generatedContent = child->afterPseudoElementRenderer())) generatedContent->destroy(); } // Remove the old child. children()->removeChildNode(this, blockRunIn); // Create an inline. Node* runInNode = blockRunIn->node(); RenderInline* inlineRunIn = new (renderArena()) RenderInline(runInNode ? runInNode : document()); inlineRunIn->setStyle(blockRunIn->style()); // Move the nodes from the old child to the new child for (RenderObject* runInChild = blockRunIn->firstChild(); runInChild;) { RenderObject* nextSibling = runInChild->nextSibling(); blockRunIn->children()->removeChildNode(blockRunIn, runInChild, false); inlineRunIn->addChild(runInChild); // Use addChild instead of appendChildNode since it handles correct placement of the children relative to :after-generated content. runInChild = nextSibling; } // Now insert the new child under |currBlock|. Use addChild instead of insertChildNode since it handles correct placement of the children, esp where we cannot insert // anything before the first child. e.g. details tag. See https://bugs.webkit.org/show_bug.cgi?id=58228. currBlock->addChild(inlineRunIn, currBlock->firstChild()); // If the run-in had an element, we need to set the new renderer. if (runInNode) runInNode->setRenderer(inlineRunIn); // Destroy the block run-in, which includes deleting its line box tree. blockRunIn->deleteLineBoxTree(); blockRunIn->destroy(); // The block acts like an inline, so just null out its // position. return true; } int RenderBlock::collapseMargins(RenderBox* child, MarginInfo& marginInfo) { // Get the four margin values for the child and cache them. const MarginValues childMargins = marginValuesForChild(child); // Get our max pos and neg top margins. int posTop = childMargins.positiveMarginBefore(); int negTop = childMargins.negativeMarginBefore(); // For self-collapsing blocks, collapse our bottom margins into our // top to get new posTop and negTop values. if (child->isSelfCollapsingBlock()) { posTop = max(posTop, childMargins.positiveMarginAfter()); negTop = max(negTop, childMargins.negativeMarginAfter()); } // See if the top margin is quirky. We only care if this child has // margins that will collapse with us. bool topQuirk = child->isMarginBeforeQuirk() || style()->marginBeforeCollapse() == MDISCARD; if (marginInfo.canCollapseWithMarginBefore()) { // This child is collapsing with the top of the // block. If it has larger margin values, then we need to update // our own maximal values. if (!document()->inQuirksMode() || !marginInfo.quirkContainer() || !topQuirk) setMaxMarginBeforeValues(max(posTop, maxPositiveMarginBefore()), max(negTop, maxNegativeMarginBefore())); // The minute any of the margins involved isn't a quirk, don't // collapse it away, even if the margin is smaller (www.webreference.com // has an example of this, a
with 0.8em author-specified inside // a
inside a . if (!marginInfo.determinedMarginBeforeQuirk() && !topQuirk && (posTop - negTop)) { setMarginBeforeQuirk(false); marginInfo.setDeterminedMarginBeforeQuirk(true); } if (!marginInfo.determinedMarginBeforeQuirk() && topQuirk && !marginBefore()) // We have no top margin and our top child has a quirky margin. // We will pick up this quirky margin and pass it through. // This deals with the

case. // Don't do this for a block that split two inlines though. You do // still apply margins in this case. setMarginBeforeQuirk(true); } if (marginInfo.quirkContainer() && marginInfo.atBeforeSideOfBlock() && (posTop - negTop)) marginInfo.setMarginBeforeQuirk(topQuirk); int beforeCollapseLogicalTop = logicalHeight(); int logicalTop = beforeCollapseLogicalTop; if (child->isSelfCollapsingBlock()) { // This child has no height. We need to compute our // position before we collapse the child's margins together, // so that we can get an accurate position for the zero-height block. int collapsedBeforePos = max(marginInfo.positiveMargin(), childMargins.positiveMarginBefore()); int collapsedBeforeNeg = max(marginInfo.negativeMargin(), childMargins.negativeMarginBefore()); marginInfo.setMargin(collapsedBeforePos, collapsedBeforeNeg); // Now collapse the child's margins together, which means examining our // bottom margin values as well. marginInfo.setPositiveMarginIfLarger(childMargins.positiveMarginAfter()); marginInfo.setNegativeMarginIfLarger(childMargins.negativeMarginAfter()); if (!marginInfo.canCollapseWithMarginBefore()) // We need to make sure that the position of the self-collapsing block // is correct, since it could have overflowing content // that needs to be positioned correctly (e.g., a block that // had a specified height of 0 but that actually had subcontent). logicalTop = logicalHeight() + collapsedBeforePos - collapsedBeforeNeg; } else { if (child->style()->marginBeforeCollapse() == MSEPARATE) { setLogicalHeight(logicalHeight() + marginInfo.margin() + marginBeforeForChild(child)); logicalTop = logicalHeight(); } else if (!marginInfo.atBeforeSideOfBlock() || (!marginInfo.canCollapseMarginBeforeWithChildren() && (!document()->inQuirksMode() || !marginInfo.quirkContainer() || !marginInfo.marginBeforeQuirk()))) { // We're collapsing with a previous sibling's margins and not // with the top of the block. setLogicalHeight(logicalHeight() + max(marginInfo.positiveMargin(), posTop) - max(marginInfo.negativeMargin(), negTop)); logicalTop = logicalHeight(); } marginInfo.setPositiveMargin(childMargins.positiveMarginAfter()); marginInfo.setNegativeMargin(childMargins.negativeMarginAfter()); if (marginInfo.margin()) marginInfo.setMarginAfterQuirk(child->isMarginAfterQuirk() || style()->marginAfterCollapse() == MDISCARD); } // If margins would pull us past the top of the next page, then we need to pull back and pretend like the margins // collapsed into the page edge. bool paginated = view()->layoutState()->isPaginated(); if (paginated && logicalTop > beforeCollapseLogicalTop) { int oldLogicalTop = logicalTop; logicalTop = min(logicalTop, nextPageLogicalTop(beforeCollapseLogicalTop)); setLogicalHeight(logicalHeight() + (logicalTop - oldLogicalTop)); } return logicalTop; } int RenderBlock::clearFloatsIfNeeded(RenderBox* child, MarginInfo& marginInfo, int oldTopPosMargin, int oldTopNegMargin, int yPos) { int heightIncrease = getClearDelta(child, yPos); if (!heightIncrease) return yPos; if (child->isSelfCollapsingBlock()) { // For self-collapsing blocks that clear, they can still collapse their // margins with following siblings. Reset the current margins to represent // the self-collapsing block's margins only. // CSS2.1 states: // "An element that has had clearance applied to it never collapses its top margin with its parent block's bottom margin. // Therefore if we are at the bottom of the block, let's go ahead and reset margins to only include the // self-collapsing block's bottom margin. bool atBottomOfBlock = true; for (RenderBox* curr = child->nextSiblingBox(); curr && atBottomOfBlock; curr = curr->nextSiblingBox()) { if (!curr->isFloatingOrPositioned()) atBottomOfBlock = false; } MarginValues childMargins = marginValuesForChild(child); if (atBottomOfBlock) { marginInfo.setPositiveMargin(childMargins.positiveMarginAfter()); marginInfo.setNegativeMargin(childMargins.negativeMarginAfter()); } else { marginInfo.setPositiveMargin(max(childMargins.positiveMarginBefore(), childMargins.positiveMarginAfter())); marginInfo.setNegativeMargin(max(childMargins.negativeMarginBefore(), childMargins.negativeMarginAfter())); } // Adjust our height such that we are ready to be collapsed with subsequent siblings (or the bottom // of the parent block). setLogicalHeight(child->y() - max(0, marginInfo.margin())); } else // Increase our height by the amount we had to clear. setLogicalHeight(height() + heightIncrease); if (marginInfo.canCollapseWithMarginBefore()) { // We can no longer collapse with the top of the block since a clear // occurred. The empty blocks collapse into the cleared block. // FIXME: This isn't quite correct. Need clarification for what to do // if the height the cleared block is offset by is smaller than the // margins involved. setMaxMarginBeforeValues(oldTopPosMargin, oldTopNegMargin); marginInfo.setAtBeforeSideOfBlock(false); } return yPos + heightIncrease; } int RenderBlock::estimateLogicalTopPosition(RenderBox* child, const MarginInfo& marginInfo) { // FIXME: We need to eliminate the estimation of vertical position, because when it's wrong we sometimes trigger a pathological // relayout if there are intruding floats. int logicalTopEstimate = logicalHeight(); if (!marginInfo.canCollapseWithMarginBefore()) { int childMarginBefore = child->selfNeedsLayout() ? marginBeforeForChild(child) : collapsedMarginBeforeForChild(child); logicalTopEstimate += max(marginInfo.margin(), childMarginBefore); } bool paginated = view()->layoutState()->isPaginated(); // Adjust logicalTopEstimate down to the next page if the margins are so large that we don't fit on the current // page. if (paginated && logicalTopEstimate > logicalHeight()) logicalTopEstimate = min(logicalTopEstimate, nextPageLogicalTop(logicalHeight())); logicalTopEstimate += getClearDelta(child, logicalTopEstimate); if (paginated) { // If the object has a page or column break value of "before", then we should shift to the top of the next page. logicalTopEstimate = applyBeforeBreak(child, logicalTopEstimate); // For replaced elements and scrolled elements, we want to shift them to the next page if they don't fit on the current one. logicalTopEstimate = adjustForUnsplittableChild(child, logicalTopEstimate); if (!child->selfNeedsLayout() && child->isRenderBlock()) logicalTopEstimate += toRenderBlock(child)->paginationStrut(); } return logicalTopEstimate; } void RenderBlock::determineLogicalLeftPositionForChild(RenderBox* child) { int startPosition = borderStart() + paddingStart(); int totalAvailableLogicalWidth = borderAndPaddingLogicalWidth() + availableLogicalWidth(); // Add in our start margin. int childMarginStart = marginStartForChild(child); int newPosition = startPosition + childMarginStart; // Some objects (e.g., tables, horizontal rules, overflow:auto blocks) avoid floats. They need // to shift over as necessary to dodge any floats that might get in the way. if (child->avoidsFloats()) { int startOff = style()->isLeftToRightDirection() ? logicalLeftOffsetForLine(logicalHeight(), false) : totalAvailableLogicalWidth - logicalRightOffsetForLine(logicalHeight(), false); if (style()->textAlign() != WEBKIT_CENTER && !child->style()->marginStartUsing(style()).isAuto()) { if (childMarginStart < 0) startOff += childMarginStart; newPosition = max(newPosition, startOff); // Let the float sit in the child's margin if it can fit. } else if (startOff != startPosition) { // The object is shifting to the "end" side of the block. The object might be centered, so we need to // recalculate our inline direction margins. Note that the containing block content // width computation will take into account the delta between |startOff| and |startPosition| // so that we can just pass the content width in directly to the |computeMarginsInContainingBlockInlineDirection| // function. child->computeInlineDirectionMargins(this, availableLogicalWidthForLine(logicalTopForChild(child), false), logicalWidthForChild(child)); newPosition = startOff + marginStartForChild(child); } } setLogicalLeftForChild(child, style()->isLeftToRightDirection() ? newPosition : totalAvailableLogicalWidth - newPosition - logicalWidthForChild(child), ApplyLayoutDelta); } void RenderBlock::setCollapsedBottomMargin(const MarginInfo& marginInfo) { if (marginInfo.canCollapseWithMarginAfter() && !marginInfo.canCollapseWithMarginBefore()) { // Update our max pos/neg bottom margins, since we collapsed our bottom margins // with our children. setMaxMarginAfterValues(max(maxPositiveMarginAfter(), marginInfo.positiveMargin()), max(maxNegativeMarginAfter(), marginInfo.negativeMargin())); if (!marginInfo.marginAfterQuirk()) setMarginAfterQuirk(false); if (marginInfo.marginAfterQuirk() && marginAfter() == 0) // We have no bottom margin and our last child has a quirky margin. // We will pick up this quirky margin and pass it through. // This deals with the

case. setMarginAfterQuirk(true); } } void RenderBlock::handleAfterSideOfBlock(int beforeSide, int afterSide, MarginInfo& marginInfo) { marginInfo.setAtAfterSideOfBlock(true); // If we can't collapse with children then go ahead and add in the bottom margin. if (!marginInfo.canCollapseWithMarginAfter() && !marginInfo.canCollapseWithMarginBefore() && (!document()->inQuirksMode() || !marginInfo.quirkContainer() || !marginInfo.marginAfterQuirk())) setLogicalHeight(logicalHeight() + marginInfo.margin()); // Now add in our bottom border/padding. setLogicalHeight(logicalHeight() + afterSide); // Negative margins can cause our height to shrink below our minimal height (border/padding). // If this happens, ensure that the computed height is increased to the minimal height. setLogicalHeight(max(logicalHeight(), beforeSide + afterSide)); // Update our bottom collapsed margin info. setCollapsedBottomMargin(marginInfo); } void RenderBlock::setLogicalLeftForChild(RenderBox* child, int logicalLeft, ApplyLayoutDeltaMode applyDelta) { if (isHorizontalWritingMode()) { if (applyDelta == ApplyLayoutDelta) view()->addLayoutDelta(IntSize(child->x() - logicalLeft, 0)); child->setX(logicalLeft); } else { if (applyDelta == ApplyLayoutDelta) view()->addLayoutDelta(IntSize(0, child->y() - logicalLeft)); child->setY(logicalLeft); } } void RenderBlock::setLogicalTopForChild(RenderBox* child, int logicalTop, ApplyLayoutDeltaMode applyDelta) { if (isHorizontalWritingMode()) { if (applyDelta == ApplyLayoutDelta) view()->addLayoutDelta(IntSize(0, child->y() - logicalTop)); child->setY(logicalTop); } else { if (applyDelta == ApplyLayoutDelta) view()->addLayoutDelta(IntSize(child->x() - logicalTop, 0)); child->setX(logicalTop); } } void RenderBlock::layoutBlockChildren(bool relayoutChildren, int& maxFloatLogicalBottom) { if (gPercentHeightDescendantsMap) { if (HashSet* descendants = gPercentHeightDescendantsMap->get(this)) { HashSet::iterator end = descendants->end(); for (HashSet::iterator it = descendants->begin(); it != end; ++it) { RenderBox* box = *it; while (box != this) { if (box->normalChildNeedsLayout()) break; box->setChildNeedsLayout(true, false); box = box->containingBlock(); ASSERT(box); if (!box) break; } } } } int beforeEdge = borderBefore() + paddingBefore(); int afterEdge = borderAfter() + paddingAfter() + scrollbarLogicalHeight(); setLogicalHeight(beforeEdge); // The margin struct caches all our current margin collapsing state. The compact struct caches state when we encounter compacts, MarginInfo marginInfo(this, beforeEdge, afterEdge); // Fieldsets need to find their legend and position it inside the border of the object. // The legend then gets skipped during normal layout. The same is true for ruby text. // It doesn't get included in the normal layout process but is instead skipped. RenderObject* childToExclude = layoutSpecialExcludedChild(relayoutChildren); int previousFloatLogicalBottom = 0; maxFloatLogicalBottom = 0; RenderBox* next = firstChildBox(); while (next) { RenderBox* child = next; next = child->nextSiblingBox(); if (childToExclude == child) continue; // Skip this child, since it will be positioned by the specialized subclass (fieldsets and ruby runs). // Make sure we layout children if they need it. // FIXME: Technically percentage height objects only need a relayout if their percentage isn't going to be turned into // an auto value. Add a method to determine this, so that we can avoid the relayout. if (relayoutChildren || ((child->style()->logicalHeight().isPercent() || child->style()->logicalMinHeight().isPercent() || child->style()->logicalMaxHeight().isPercent()) && !isRenderView())) child->setChildNeedsLayout(true, false); // If relayoutChildren is set and the child has percentage padding, we also need to invalidate the child's pref widths. if (relayoutChildren && (child->style()->paddingStart().isPercent() || child->style()->paddingEnd().isPercent())) child->setPreferredLogicalWidthsDirty(true, false); // Handle the four types of special elements first. These include positioned content, floating content, compacts and // run-ins. When we encounter these four types of objects, we don't actually lay them out as normal flow blocks. if (handleSpecialChild(child, marginInfo)) continue; // Lay out the child. layoutBlockChild(child, marginInfo, previousFloatLogicalBottom, maxFloatLogicalBottom); } // Now do the handling of the bottom of the block, adding in our bottom border/padding and // determining the correct collapsed bottom margin information. handleAfterSideOfBlock(beforeEdge, afterEdge, marginInfo); } void RenderBlock::layoutBlockChild(RenderBox* child, MarginInfo& marginInfo, int& previousFloatLogicalBottom, int& maxFloatLogicalBottom) { int oldPosMarginBefore = maxPositiveMarginBefore(); int oldNegMarginBefore = maxNegativeMarginBefore(); // The child is a normal flow object. Compute the margins we will use for collapsing now. child->computeBlockDirectionMargins(this); // Do not allow a collapse if the margin-before-collapse style is set to SEPARATE. if (child->style()->marginBeforeCollapse() == MSEPARATE) { marginInfo.setAtBeforeSideOfBlock(false); marginInfo.clearMargin(); } // Try to guess our correct logical top position. In most cases this guess will // be correct. Only if we're wrong (when we compute the real logical top position) // will we have to potentially relayout. int logicalTopEstimate = estimateLogicalTopPosition(child, marginInfo); // Cache our old rect so that we can dirty the proper repaint rects if the child moves. IntRect oldRect(child->x(), child->y() , child->width(), child->height()); int oldLogicalTop = logicalTopForChild(child); #ifndef NDEBUG IntSize oldLayoutDelta = view()->layoutDelta(); #endif // Go ahead and position the child as though it didn't collapse with the top. setLogicalTopForChild(child, logicalTopEstimate, ApplyLayoutDelta); RenderBlock* childRenderBlock = child->isRenderBlock() ? toRenderBlock(child) : 0; bool markDescendantsWithFloats = false; if (logicalTopEstimate != oldLogicalTop && !child->avoidsFloats() && childRenderBlock && childRenderBlock->containsFloats()) markDescendantsWithFloats = true; else if (!child->avoidsFloats() || child->shrinkToAvoidFloats()) { // If an element might be affected by the presence of floats, then always mark it for // layout. int fb = max(previousFloatLogicalBottom, lowestFloatLogicalBottom()); if (fb > logicalTopEstimate) markDescendantsWithFloats = true; } if (childRenderBlock) { if (markDescendantsWithFloats) childRenderBlock->markAllDescendantsWithFloatsForLayout(); if (!child->isWritingModeRoot()) previousFloatLogicalBottom = max(previousFloatLogicalBottom, oldLogicalTop + childRenderBlock->lowestFloatLogicalBottom()); } if (!child->needsLayout()) child->markForPaginationRelayoutIfNeeded(); bool childHadLayout = child->m_everHadLayout; bool childNeededLayout = child->needsLayout(); if (childNeededLayout) child->layout(); // Cache if we are at the top of the block right now. bool atBeforeSideOfBlock = marginInfo.atBeforeSideOfBlock(); // Now determine the correct ypos based off examination of collapsing margin // values. int logicalTopBeforeClear = collapseMargins(child, marginInfo); // Now check for clear. int logicalTopAfterClear = clearFloatsIfNeeded(child, marginInfo, oldPosMarginBefore, oldNegMarginBefore, logicalTopBeforeClear); bool paginated = view()->layoutState()->isPaginated(); if (paginated) { int oldTop = logicalTopAfterClear; // If the object has a page or column break value of "before", then we should shift to the top of the next page. logicalTopAfterClear = applyBeforeBreak(child, logicalTopAfterClear); // For replaced elements and scrolled elements, we want to shift them to the next page if they don't fit on the current one. int logicalTopBeforeUnsplittableAdjustment = logicalTopAfterClear; int logicalTopAfterUnsplittableAdjustment = adjustForUnsplittableChild(child, logicalTopAfterClear); int paginationStrut = 0; int unsplittableAdjustmentDelta = logicalTopAfterUnsplittableAdjustment - logicalTopBeforeUnsplittableAdjustment; if (unsplittableAdjustmentDelta) paginationStrut = unsplittableAdjustmentDelta; else if (childRenderBlock && childRenderBlock->paginationStrut()) paginationStrut = childRenderBlock->paginationStrut(); if (paginationStrut) { // We are willing to propagate out to our parent block as long as we were at the top of the block prior // to collapsing our margins, and as long as we didn't clear or move as a result of other pagination. if (atBeforeSideOfBlock && oldTop == logicalTopBeforeClear && !isPositioned() && !isTableCell()) { // FIXME: Should really check if we're exceeding the page height before propagating the strut, but we don't // have all the information to do so (the strut only has the remaining amount to push). Gecko gets this wrong too // and pushes to the next page anyway, so not too concerned about it. setPaginationStrut(logicalTopAfterClear + paginationStrut); if (childRenderBlock) childRenderBlock->setPaginationStrut(0); } else logicalTopAfterClear += paginationStrut; } // Similar to how we apply clearance. Go ahead and boost height() to be the place where we're going to position the child. setLogicalHeight(logicalHeight() + (logicalTopAfterClear - oldTop)); } setLogicalTopForChild(child, logicalTopAfterClear, ApplyLayoutDelta); // Now we have a final top position. See if it really does end up being different from our estimate. if (logicalTopAfterClear != logicalTopEstimate) { if (child->shrinkToAvoidFloats()) { // The child's width depends on the line width. // When the child shifts to clear an item, its width can // change (because it has more available line width). // So go ahead and mark the item as dirty. child->setChildNeedsLayout(true, false); } if (childRenderBlock) { if (!child->avoidsFloats() && childRenderBlock->containsFloats()) childRenderBlock->markAllDescendantsWithFloatsForLayout(); if (!child->needsLayout()) child->markForPaginationRelayoutIfNeeded(); } // Our guess was wrong. Make the child lay itself out again. child->layoutIfNeeded(); } // We are no longer at the top of the block if we encounter a non-empty child. // This has to be done after checking for clear, so that margins can be reset if a clear occurred. if (marginInfo.atBeforeSideOfBlock() && !child->isSelfCollapsingBlock()) marginInfo.setAtBeforeSideOfBlock(false); // Now place the child in the correct left position determineLogicalLeftPositionForChild(child); // Update our height now that the child has been placed in the correct position. setLogicalHeight(logicalHeight() + logicalHeightForChild(child)); if (child->style()->marginAfterCollapse() == MSEPARATE) { setLogicalHeight(logicalHeight() + marginAfterForChild(child)); marginInfo.clearMargin(); } // If the child has overhanging floats that intrude into following siblings (or possibly out // of this block), then the parent gets notified of the floats now. if (childRenderBlock && childRenderBlock->containsFloats()) maxFloatLogicalBottom = max(maxFloatLogicalBottom, addOverhangingFloats(toRenderBlock(child), -child->logicalLeft(), -child->logicalTop(), !childNeededLayout)); IntSize childOffset(child->x() - oldRect.x(), child->y() - oldRect.y()); if (childOffset.width() || childOffset.height()) { view()->addLayoutDelta(childOffset); // If the child moved, we have to repaint it as well as any floating/positioned // descendants. An exception is if we need a layout. In this case, we know we're going to // repaint ourselves (and the child) anyway. if (childHadLayout && !selfNeedsLayout() && child->checkForRepaintDuringLayout()) child->repaintDuringLayoutIfMoved(oldRect); } if (!childHadLayout && child->checkForRepaintDuringLayout()) { child->repaint(); child->repaintOverhangingFloats(true); } if (paginated) { // Check for an after page/column break. int newHeight = applyAfterBreak(child, logicalHeight(), marginInfo); if (newHeight != height()) setLogicalHeight(newHeight); } ASSERT(oldLayoutDelta == view()->layoutDelta()); } void RenderBlock::simplifiedNormalFlowLayout() { if (childrenInline()) { ListHashSet lineBoxes; bool endOfInline = false; RenderObject* o = bidiFirst(this, 0, false); while (o) { if (!o->isPositioned() && (o->isReplaced() || o->isFloating())) { o->layoutIfNeeded(); if (toRenderBox(o)->inlineBoxWrapper()) { RootInlineBox* box = toRenderBox(o)->inlineBoxWrapper()->root(); lineBoxes.add(box); } } else if (o->isText() || (o->isRenderInline() && !endOfInline)) o->setNeedsLayout(false); o = bidiNext(this, o, 0, false, &endOfInline); } // FIXME: Glyph overflow will get lost in this case, but not really a big deal. GlyphOverflowAndFallbackFontsMap textBoxDataMap; for (ListHashSet::const_iterator it = lineBoxes.begin(); it != lineBoxes.end(); ++it) { RootInlineBox* box = *it; box->computeOverflow(box->lineTop(), box->lineBottom(), textBoxDataMap); } } else { for (RenderBox* box = firstChildBox(); box; box = box->nextSiblingBox()) { if (!box->isPositioned()) box->layoutIfNeeded(); } } } bool RenderBlock::simplifiedLayout() { if ((!posChildNeedsLayout() && !needsSimplifiedNormalFlowLayout()) || normalChildNeedsLayout() || selfNeedsLayout()) return false; LayoutStateMaintainer statePusher(view(), this, IntSize(x(), y()), hasColumns() || hasTransform() || hasReflection() || style()->isFlippedBlocksWritingMode()); if (needsPositionedMovementLayout() && !tryLayoutDoingPositionedMovementOnly()) return false; // Lay out positioned descendants or objects that just need to recompute overflow. if (needsSimplifiedNormalFlowLayout()) simplifiedNormalFlowLayout(); // Lay out our positioned objects if our positioned child bit is set. if (posChildNeedsLayout()) layoutPositionedObjects(false); // Recompute our overflow information. // FIXME: We could do better here by computing a temporary overflow object from layoutPositionedObjects and only // updating our overflow if we either used to have overflow or if the new temporary object has overflow. // For now just always recompute overflow. This is no worse performance-wise than the old code that called rightmostPosition and // lowestPosition on every relayout so it's not a regression. m_overflow.clear(); computeOverflow(clientLogicalBottom(), true); statePusher.pop(); updateLayerTransform(); updateScrollInfoAfterLayout(); setNeedsLayout(false); return true; } void RenderBlock::layoutPositionedObjects(bool relayoutChildren) { if (!m_positionedObjects) return; if (hasColumns()) view()->layoutState()->clearPaginationInformation(); // Positioned objects are not part of the column flow, so they don't paginate with the columns. RenderBox* r; Iterator end = m_positionedObjects->end(); for (Iterator it = m_positionedObjects->begin(); it != end; ++it) { r = *it; // When a non-positioned block element moves, it may have positioned children that are implicitly positioned relative to the // non-positioned block. Rather than trying to detect all of these movement cases, we just always lay out positioned // objects that are positioned implicitly like this. Such objects are rare, and so in typical DHTML menu usage (where everything is // positioned explicitly) this should not incur a performance penalty. if (relayoutChildren || (r->style()->hasStaticBlockPosition(isHorizontalWritingMode()) && r->parent() != this && r->parent()->isBlockFlow())) r->setChildNeedsLayout(true, false); // If relayoutChildren is set and we have percentage padding, we also need to invalidate the child's pref widths. if (relayoutChildren && (r->style()->paddingStart().isPercent() || r->style()->paddingEnd().isPercent())) r->setPreferredLogicalWidthsDirty(true, false); if (!r->needsLayout()) r->markForPaginationRelayoutIfNeeded(); // We don't have to do a full layout. We just have to update our position. Try that first. If we have shrink-to-fit width // and we hit the available width constraint, the layoutIfNeeded() will catch it and do a full layout. if (r->needsPositionedMovementLayoutOnly() && r->tryLayoutDoingPositionedMovementOnly()) r->setNeedsLayout(false); r->layoutIfNeeded(); } if (hasColumns()) view()->layoutState()->m_columnInfo = columnInfo(); // FIXME: Kind of gross. We just put this back into the layout state so that pop() will work. } void RenderBlock::markPositionedObjectsForLayout() { if (m_positionedObjects) { RenderBox* r; Iterator end = m_positionedObjects->end(); for (Iterator it = m_positionedObjects->begin(); it != end; ++it) { r = *it; r->setChildNeedsLayout(true); } } } void RenderBlock::markForPaginationRelayoutIfNeeded() { ASSERT(!needsLayout()); if (needsLayout()) return; if (view()->layoutState()->pageLogicalHeightChanged() || (view()->layoutState()->pageLogicalHeight() && view()->layoutState()->pageLogicalOffset(logicalTop()) != pageLogicalOffset())) setChildNeedsLayout(true, false); } void RenderBlock::repaintOverhangingFloats(bool paintAllDescendants) { // Repaint any overhanging floats (if we know we're the one to paint them). // Otherwise, bail out. if (!hasOverhangingFloats()) return; // FIXME: Avoid disabling LayoutState. At the very least, don't disable it for floats originating // in this block. Better yet would be to push extra state for the containers of other floats. view()->disableLayoutState(); FloatingObjectSet& floatingObjectSet = m_floatingObjects->set(); FloatingObjectSetIterator end = floatingObjectSet.end(); for (FloatingObjectSetIterator it = floatingObjectSet.begin(); it != end; ++it) { FloatingObject* r = *it; // Only repaint the object if it is overhanging, is not in its own layer, and // is our responsibility to paint (m_shouldPaint is set). When paintAllDescendants is true, the latter // condition is replaced with being a descendant of us. if (logicalBottomForFloat(r) > logicalHeight() && ((paintAllDescendants && r->m_renderer->isDescendantOf(this)) || r->m_shouldPaint) && !r->m_renderer->hasSelfPaintingLayer()) { r->m_renderer->repaint(); r->m_renderer->repaintOverhangingFloats(); } } view()->enableLayoutState(); } void RenderBlock::paint(PaintInfo& paintInfo, int tx, int ty) { tx += x(); ty += y(); PaintPhase phase = paintInfo.phase; // Check if we need to do anything at all. // FIXME: Could eliminate the isRoot() check if we fix background painting so that the RenderView // paints the root's background. if (!isRoot()) { IntRect overflowBox = visualOverflowRect(); flipForWritingMode(overflowBox); overflowBox.inflate(maximalOutlineSize(paintInfo.phase)); overflowBox.move(tx, ty); if (!overflowBox.intersects(paintInfo.rect)) return; } bool pushedClip = pushContentsClip(paintInfo, tx, ty); paintObject(paintInfo, tx, ty); if (pushedClip) popContentsClip(paintInfo, phase, tx, ty); // Our scrollbar widgets paint exactly when we tell them to, so that they work properly with // z-index. We paint after we painted the background/border, so that the scrollbars will // sit above the background/border. if (hasOverflowClip() && style()->visibility() == VISIBLE && (phase == PaintPhaseBlockBackground || phase == PaintPhaseChildBlockBackground) && paintInfo.shouldPaintWithinRoot(this)) layer()->paintOverflowControls(paintInfo.context, tx, ty, paintInfo.rect); } void RenderBlock::paintColumnRules(PaintInfo& paintInfo, int tx, int ty) { const Color& ruleColor = style()->visitedDependentColor(CSSPropertyWebkitColumnRuleColor); bool ruleTransparent = style()->columnRuleIsTransparent(); EBorderStyle ruleStyle = style()->columnRuleStyle(); int ruleWidth = style()->columnRuleWidth(); int colGap = columnGap(); bool renderRule = ruleStyle > BHIDDEN && !ruleTransparent && ruleWidth <= colGap; if (!renderRule) return; // We need to do multiple passes, breaking up our child painting into strips. ColumnInfo* colInfo = columnInfo(); unsigned colCount = columnCount(colInfo); int currLogicalLeftOffset = style()->isLeftToRightDirection() ? 0 : contentLogicalWidth(); int ruleAdd = logicalLeftOffsetForContent(); int ruleLogicalLeft = style()->isLeftToRightDirection() ? 0 : contentLogicalWidth(); for (unsigned i = 0; i < colCount; i++) { IntRect colRect = columnRectAt(colInfo, i); int inlineDirectionSize = isHorizontalWritingMode() ? colRect.width() : colRect.height(); // Move to the next position. if (style()->isLeftToRightDirection()) { ruleLogicalLeft += inlineDirectionSize + colGap / 2; currLogicalLeftOffset += inlineDirectionSize + colGap; } else { ruleLogicalLeft -= (inlineDirectionSize + colGap / 2); currLogicalLeftOffset -= (inlineDirectionSize + colGap); } // Now paint the column rule. if (i < colCount - 1) { int ruleLeft = isHorizontalWritingMode() ? tx + ruleLogicalLeft - ruleWidth / 2 + ruleAdd : tx + borderBefore() + paddingBefore(); int ruleRight = isHorizontalWritingMode() ? ruleLeft + ruleWidth : ruleLeft + contentWidth(); int ruleTop = isHorizontalWritingMode() ? ty + borderTop() + paddingTop() : ty + ruleLogicalLeft - ruleWidth / 2 + ruleAdd; int ruleBottom = isHorizontalWritingMode() ? ruleTop + contentHeight() : ruleTop + ruleWidth; drawLineForBoxSide(paintInfo.context, ruleLeft, ruleTop, ruleRight, ruleBottom, style()->isLeftToRightDirection() ? BSLeft : BSRight, ruleColor, ruleStyle, 0, 0); } ruleLogicalLeft = currLogicalLeftOffset; } } void RenderBlock::paintColumnContents(PaintInfo& paintInfo, int tx, int ty, bool paintingFloats) { // We need to do multiple passes, breaking up our child painting into strips. GraphicsContext* context = paintInfo.context; ColumnInfo* colInfo = columnInfo(); unsigned colCount = columnCount(colInfo); if (!colCount) return; int currLogicalTopOffset = 0; for (unsigned i = 0; i < colCount; i++) { // For each rect, we clip to the rect, and then we adjust our coords. IntRect colRect = columnRectAt(colInfo, i); flipForWritingMode(colRect); int logicalLeftOffset = (isHorizontalWritingMode() ? colRect.x() : colRect.y()) - logicalLeftOffsetForContent(); IntSize offset = isHorizontalWritingMode() ? IntSize(logicalLeftOffset, currLogicalTopOffset) : IntSize(currLogicalTopOffset, logicalLeftOffset); colRect.move(tx, ty); PaintInfo info(paintInfo); info.rect.intersect(colRect); if (!info.rect.isEmpty()) { context->save(); // Each strip pushes a clip, since column boxes are specified as being // like overflow:hidden. context->clip(colRect); // Adjust our x and y when painting. int finalX = tx + offset.width(); int finalY = ty + offset.height(); if (paintingFloats) paintFloats(info, finalX, finalY, paintInfo.phase == PaintPhaseSelection || paintInfo.phase == PaintPhaseTextClip); else paintContents(info, finalX, finalY); context->restore(); } int blockDelta = (isHorizontalWritingMode() ? colRect.height() : colRect.width()); if (style()->isFlippedBlocksWritingMode()) currLogicalTopOffset += blockDelta; else currLogicalTopOffset -= blockDelta; } } void RenderBlock::paintContents(PaintInfo& paintInfo, int tx, int ty) { // Avoid painting descendants of the root element when stylesheets haven't loaded. This eliminates FOUC. // It's ok not to draw, because later on, when all the stylesheets do load, updateStyleSelector on the Document // will do a full repaint(). if (document()->didLayoutWithPendingStylesheets() && !isRenderView()) return; if (childrenInline()) m_lineBoxes.paint(this, paintInfo, tx, ty); else paintChildren(paintInfo, tx, ty); } void RenderBlock::paintChildren(PaintInfo& paintInfo, int tx, int ty) { PaintPhase newPhase = (paintInfo.phase == PaintPhaseChildOutlines) ? PaintPhaseOutline : paintInfo.phase; newPhase = (newPhase == PaintPhaseChildBlockBackgrounds) ? PaintPhaseChildBlockBackground : newPhase; // We don't paint our own background, but we do let the kids paint their backgrounds. PaintInfo info(paintInfo); info.phase = newPhase; info.updatePaintingRootForChildren(this); // FIXME: Paint-time pagination is obsolete and is now only used by embedded WebViews inside AppKit // NSViews. Do not add any more code for this. RenderView* renderView = view(); bool usePrintRect = !renderView->printRect().isEmpty(); for (RenderBox* child = firstChildBox(); child; child = child->nextSiblingBox()) { // Check for page-break-before: always, and if it's set, break and bail. bool checkBeforeAlways = !childrenInline() && (usePrintRect && child->style()->pageBreakBefore() == PBALWAYS); if (checkBeforeAlways && (ty + child->y()) > paintInfo.rect.y() && (ty + child->y()) < paintInfo.rect.maxY()) { view()->setBestTruncatedAt(ty + child->y(), this, true); return; } if (!child->isFloating() && child->isReplaced() && usePrintRect && child->height() <= renderView->printRect().height()) { // Paginate block-level replaced elements. if (ty + child->y() + child->height() > renderView->printRect().maxY()) { if (ty + child->y() < renderView->truncatedAt()) renderView->setBestTruncatedAt(ty + child->y(), child); // If we were able to truncate, don't paint. if (ty + child->y() >= renderView->truncatedAt()) break; } } IntPoint childPoint = flipForWritingMode(child, IntPoint(tx, ty), ParentToChildFlippingAdjustment); if (!child->hasSelfPaintingLayer() && !child->isFloating()) child->paint(info, childPoint.x(), childPoint.y()); // Check for page-break-after: always, and if it's set, break and bail. bool checkAfterAlways = !childrenInline() && (usePrintRect && child->style()->pageBreakAfter() == PBALWAYS); if (checkAfterAlways && (ty + child->y() + child->height()) > paintInfo.rect.y() && (ty + child->y() + child->height()) < paintInfo.rect.maxY()) { view()->setBestTruncatedAt(ty + child->y() + child->height() + max(0, child->collapsedMarginAfter()), this, true); return; } } } void RenderBlock::paintCaret(PaintInfo& paintInfo, int tx, int ty, CaretType type) { SelectionController* selection = type == CursorCaret ? frame()->selection() : frame()->page()->dragCaretController(); // Paint the caret if the SelectionController says so or if caret browsing is enabled bool caretBrowsing = frame()->settings() && frame()->settings()->caretBrowsingEnabled(); RenderObject* caretPainter = selection->caretRenderer(); if (caretPainter == this && (selection->isContentEditable() || caretBrowsing)) { // Convert the painting offset into the local coordinate system of this renderer, // to match the localCaretRect computed by the SelectionController offsetForContents(tx, ty); if (type == CursorCaret) frame()->selection()->paintCaret(paintInfo.context, tx, ty, paintInfo.rect); else frame()->selection()->paintDragCaret(paintInfo.context, tx, ty, paintInfo.rect); } } void RenderBlock::paintObject(PaintInfo& paintInfo, int tx, int ty) { PaintPhase paintPhase = paintInfo.phase; // 1. paint background, borders etc if ((paintPhase == PaintPhaseBlockBackground || paintPhase == PaintPhaseChildBlockBackground #if PLATFORM(ANDROID) || paintPhase == PaintPhaseBlockBackgroundDecorations #endif ) && style()->visibility() == VISIBLE) { if (hasBoxDecorations()) paintBoxDecorations(paintInfo, tx, ty); if (hasColumns()) paintColumnRules(paintInfo, tx, ty); } if (paintPhase == PaintPhaseMask && style()->visibility() == VISIBLE) { paintMask(paintInfo, tx, ty); return; } // We're done. We don't bother painting any children. if (paintPhase == PaintPhaseBlockBackground) return; // Adjust our painting position if we're inside a scrolled layer (e.g., an overflow:auto div). int scrolledX = tx; int scrolledY = ty; if (hasOverflowClip()) { IntSize offset = layer()->scrolledContentOffset(); scrolledX -= offset.width(); scrolledY -= offset.height(); } // 2. paint contents if (paintPhase != PaintPhaseSelfOutline) { if (hasColumns()) paintColumnContents(paintInfo, scrolledX, scrolledY); else paintContents(paintInfo, scrolledX, scrolledY); } // 3. paint selection // FIXME: Make this work with multi column layouts. For now don't fill gaps. bool isPrinting = document()->printing(); if (!isPrinting && !hasColumns()) paintSelection(paintInfo, scrolledX, scrolledY); // Fill in gaps in selection on lines and between blocks. // 4. paint floats. if (paintPhase == PaintPhaseFloat || paintPhase == PaintPhaseSelection || paintPhase == PaintPhaseTextClip) { if (hasColumns()) paintColumnContents(paintInfo, scrolledX, scrolledY, true); else paintFloats(paintInfo, scrolledX, scrolledY, paintPhase == PaintPhaseSelection || paintPhase == PaintPhaseTextClip); } // 5. paint outline. if ((paintPhase == PaintPhaseOutline || paintPhase == PaintPhaseSelfOutline) && hasOutline() && style()->visibility() == VISIBLE) paintOutline(paintInfo.context, tx, ty, width(), height()); // 6. paint continuation outlines. if ((paintPhase == PaintPhaseOutline || paintPhase == PaintPhaseChildOutlines)) { RenderInline* inlineCont = inlineElementContinuation(); if (inlineCont && inlineCont->hasOutline() && inlineCont->style()->visibility() == VISIBLE) { RenderInline* inlineRenderer = toRenderInline(inlineCont->node()->renderer()); RenderBlock* cb = containingBlock(); bool inlineEnclosedInSelfPaintingLayer = false; for (RenderBoxModelObject* box = inlineRenderer; box != cb; box = box->parent()->enclosingBoxModelObject()) { if (box->hasSelfPaintingLayer()) { inlineEnclosedInSelfPaintingLayer = true; break; } } if (!inlineEnclosedInSelfPaintingLayer) cb->addContinuationWithOutline(inlineRenderer); else if (!inlineRenderer->firstLineBox()) inlineRenderer->paintOutline(paintInfo.context, tx - x() + inlineRenderer->containingBlock()->x(), ty - y() + inlineRenderer->containingBlock()->y()); } paintContinuationOutlines(paintInfo, tx, ty); } // 7. paint caret. // If the caret's node's render object's containing block is this block, and the paint action is PaintPhaseForeground, // then paint the caret. if (paintPhase == PaintPhaseForeground) { paintCaret(paintInfo, scrolledX, scrolledY, CursorCaret); paintCaret(paintInfo, scrolledX, scrolledY, DragCaret); } } IntPoint RenderBlock::flipFloatForWritingMode(const FloatingObject* child, const IntPoint& point) const { if (!style()->isFlippedBlocksWritingMode()) return point; // This is similar to the ParentToChildFlippingAdjustment in RenderBox::flipForWritingMode. We have to subtract out our left/top offsets twice, since // it's going to get added back in. We hide this complication here so that the calling code looks normal for the unflipped // case. if (isHorizontalWritingMode()) return IntPoint(point.x(), point.y() + height() - child->renderer()->height() - 2 * yPositionForFloatIncludingMargin(child)); return IntPoint(point.x() + width() - child->width() - 2 * xPositionForFloatIncludingMargin(child), point.y()); } void RenderBlock::paintFloats(PaintInfo& paintInfo, int tx, int ty, bool preservePhase) { if (!m_floatingObjects) return; FloatingObjectSet& floatingObjectSet = m_floatingObjects->set(); FloatingObjectSetIterator end = floatingObjectSet.end(); for (FloatingObjectSetIterator it = floatingObjectSet.begin(); it != end; ++it) { FloatingObject* r = *it; // Only paint the object if our m_shouldPaint flag is set. if (r->m_shouldPaint && !r->m_renderer->hasSelfPaintingLayer()) { PaintInfo currentPaintInfo(paintInfo); currentPaintInfo.phase = preservePhase ? paintInfo.phase : PaintPhaseBlockBackground; IntPoint childPoint = flipFloatForWritingMode(r, IntPoint(tx + xPositionForFloatIncludingMargin(r) - r->m_renderer->x(), ty + yPositionForFloatIncludingMargin(r) - r->m_renderer->y())); r->m_renderer->paint(currentPaintInfo, childPoint.x(), childPoint.y()); if (!preservePhase) { currentPaintInfo.phase = PaintPhaseChildBlockBackgrounds; r->m_renderer->paint(currentPaintInfo, childPoint.x(), childPoint.y()); currentPaintInfo.phase = PaintPhaseFloat; r->m_renderer->paint(currentPaintInfo, childPoint.x(), childPoint.y()); currentPaintInfo.phase = PaintPhaseForeground; r->m_renderer->paint(currentPaintInfo, childPoint.x(), childPoint.y()); currentPaintInfo.phase = PaintPhaseOutline; r->m_renderer->paint(currentPaintInfo, childPoint.x(), childPoint.y()); } } } } void RenderBlock::paintEllipsisBoxes(PaintInfo& paintInfo, int tx, int ty) { if (!paintInfo.shouldPaintWithinRoot(this) || !firstLineBox()) return; if (style()->visibility() == VISIBLE && paintInfo.phase == PaintPhaseForeground) { // We can check the first box and last box and avoid painting if we don't // intersect. int yPos = ty + firstLineBox()->y(); int h = lastLineBox()->y() + lastLineBox()->logicalHeight() - firstLineBox()->y(); if (yPos >= paintInfo.rect.maxY() || yPos + h <= paintInfo.rect.y()) return; // See if our boxes intersect with the dirty rect. If so, then we paint // them. Note that boxes can easily overlap, so we can't make any assumptions // based off positions of our first line box or our last line box. for (RootInlineBox* curr = firstRootBox(); curr; curr = curr->nextRootBox()) { yPos = ty + curr->y(); h = curr->logicalHeight(); if (curr->ellipsisBox() && yPos < paintInfo.rect.maxY() && yPos + h > paintInfo.rect.y()) curr->paintEllipsisBox(paintInfo, tx, ty, curr->lineTop(), curr->lineBottom()); } } } RenderInline* RenderBlock::inlineElementContinuation() const { RenderBoxModelObject* continuation = this->continuation(); return continuation && continuation->isInline() ? toRenderInline(continuation) : 0; } RenderBlock* RenderBlock::blockElementContinuation() const { RenderBoxModelObject* currentContinuation = continuation(); if (!currentContinuation || currentContinuation->isInline()) return 0; RenderBlock* nextContinuation = toRenderBlock(currentContinuation); if (nextContinuation->isAnonymousBlock()) return nextContinuation->blockElementContinuation(); return nextContinuation; } static ContinuationOutlineTableMap* continuationOutlineTable() { DEFINE_STATIC_LOCAL(ContinuationOutlineTableMap, table, ()); return &table; } void RenderBlock::addContinuationWithOutline(RenderInline* flow) { // We can't make this work if the inline is in a layer. We'll just rely on the broken // way of painting. ASSERT(!flow->layer() && !flow->isInlineElementContinuation()); ContinuationOutlineTableMap* table = continuationOutlineTable(); ListHashSet* continuations = table->get(this); if (!continuations) { continuations = new ListHashSet; table->set(this, continuations); } continuations->add(flow); } bool RenderBlock::paintsContinuationOutline(RenderInline* flow) { ContinuationOutlineTableMap* table = continuationOutlineTable(); if (table->isEmpty()) return false; ListHashSet* continuations = table->get(this); if (!continuations) return false; return continuations->contains(flow); } void RenderBlock::paintContinuationOutlines(PaintInfo& info, int tx, int ty) { ContinuationOutlineTableMap* table = continuationOutlineTable(); if (table->isEmpty()) return; ListHashSet* continuations = table->get(this); if (!continuations) return; // Paint each continuation outline. ListHashSet::iterator end = continuations->end(); for (ListHashSet::iterator it = continuations->begin(); it != end; ++it) { // Need to add in the coordinates of the intervening blocks. RenderInline* flow = *it; RenderBlock* block = flow->containingBlock(); for ( ; block && block != this; block = block->containingBlock()) { tx += block->x(); ty += block->y(); } ASSERT(block); flow->paintOutline(info.context, tx, ty); } // Delete delete continuations; table->remove(this); } bool RenderBlock::shouldPaintSelectionGaps() const { return selectionState() != SelectionNone && style()->visibility() == VISIBLE && isSelectionRoot(); } bool RenderBlock::isSelectionRoot() const { if (!node()) return false; // FIXME: Eventually tables should have to learn how to fill gaps between cells, at least in simple non-spanning cases. if (isTable()) return false; if (isBody() || isRoot() || hasOverflowClip() || isRelPositioned() || isFloatingOrPositioned() || isTableCell() || isInlineBlockOrInlineTable() || hasTransform() || hasReflection() || hasMask() || isWritingModeRoot()) return true; if (view() && view()->selectionStart()) { Node* startElement = view()->selectionStart()->node(); if (startElement && startElement->rootEditableElement() == node()) return true; } return false; } GapRects RenderBlock::selectionGapRectsForRepaint(RenderBoxModelObject* repaintContainer) { ASSERT(!needsLayout()); if (!shouldPaintSelectionGaps()) return GapRects(); // FIXME: this is broken with transforms TransformState transformState(TransformState::ApplyTransformDirection, FloatPoint()); mapLocalToContainer(repaintContainer, false, false, transformState); IntPoint offsetFromRepaintContainer = roundedIntPoint(transformState.mappedPoint()); if (hasOverflowClip()) offsetFromRepaintContainer -= layer()->scrolledContentOffset(); int lastTop = 0; int lastLeft = logicalLeftSelectionOffset(this, lastTop); int lastRight = logicalRightSelectionOffset(this, lastTop); return selectionGaps(this, offsetFromRepaintContainer, IntSize(), lastTop, lastLeft, lastRight); } void RenderBlock::paintSelection(PaintInfo& paintInfo, int tx, int ty) { if (shouldPaintSelectionGaps() && paintInfo.phase == PaintPhaseForeground) { int lastTop = 0; int lastLeft = logicalLeftSelectionOffset(this, lastTop); int lastRight = logicalRightSelectionOffset(this, lastTop); paintInfo.context->save(); IntRect gapRectsBounds = selectionGaps(this, IntPoint(tx, ty), IntSize(), lastTop, lastLeft, lastRight, &paintInfo); if (!gapRectsBounds.isEmpty()) { if (RenderLayer* layer = enclosingLayer()) { gapRectsBounds.move(IntSize(-tx, -ty)); if (!hasLayer()) { IntRect localBounds(gapRectsBounds); flipForWritingMode(localBounds); gapRectsBounds = localToContainerQuad(FloatRect(localBounds), layer->renderer()).enclosingBoundingBox(); gapRectsBounds.move(layer->scrolledContentOffset()); } layer->addBlockSelectionGapsBounds(gapRectsBounds); } } paintInfo.context->restore(); } } static void clipOutPositionedObjects(const PaintInfo* paintInfo, const IntPoint& offset, RenderBlock::PositionedObjectsListHashSet* positionedObjects) { if (!positionedObjects) return; RenderBlock::PositionedObjectsListHashSet::const_iterator end = positionedObjects->end(); for (RenderBlock::PositionedObjectsListHashSet::const_iterator it = positionedObjects->begin(); it != end; ++it) { RenderBox* r = *it; paintInfo->context->clipOut(IntRect(offset.x() + r->x(), offset.y() + r->y(), r->width(), r->height())); } } static int blockDirectionOffset(RenderBlock* rootBlock, const IntSize& offsetFromRootBlock) { return rootBlock->isHorizontalWritingMode() ? offsetFromRootBlock.height() : offsetFromRootBlock.width(); } static int inlineDirectionOffset(RenderBlock* rootBlock, const IntSize& offsetFromRootBlock) { return rootBlock->isHorizontalWritingMode() ? offsetFromRootBlock.width() : offsetFromRootBlock.height(); } IntRect RenderBlock::logicalRectToPhysicalRect(const IntPoint& rootBlockPhysicalPosition, const IntRect& logicalRect) { IntRect result; if (isHorizontalWritingMode()) result = logicalRect; else result = IntRect(logicalRect.y(), logicalRect.x(), logicalRect.height(), logicalRect.width()); flipForWritingMode(result); result.move(rootBlockPhysicalPosition.x(), rootBlockPhysicalPosition.y()); return result; } GapRects RenderBlock::selectionGaps(RenderBlock* rootBlock, const IntPoint& rootBlockPhysicalPosition, const IntSize& offsetFromRootBlock, int& lastLogicalTop, int& lastLogicalLeft, int& lastLogicalRight, const PaintInfo* paintInfo) { // IMPORTANT: Callers of this method that intend for painting to happen need to do a save/restore. // Clip out floating and positioned objects when painting selection gaps. if (paintInfo) { // Note that we don't clip out overflow for positioned objects. We just stick to the border box. IntRect flippedBlockRect = IntRect(offsetFromRootBlock.width(), offsetFromRootBlock.height(), width(), height()); rootBlock->flipForWritingMode(flippedBlockRect); flippedBlockRect.move(rootBlockPhysicalPosition.x(), rootBlockPhysicalPosition.y()); clipOutPositionedObjects(paintInfo, flippedBlockRect.location(), m_positionedObjects.get()); if (isBody() || isRoot()) // The must make sure to examine its containingBlock's positioned objects. for (RenderBlock* cb = containingBlock(); cb && !cb->isRenderView(); cb = cb->containingBlock()) clipOutPositionedObjects(paintInfo, IntPoint(cb->x(), cb->y()), cb->m_positionedObjects.get()); // FIXME: Not right for flipped writing modes. if (m_floatingObjects) { FloatingObjectSet& floatingObjectSet = m_floatingObjects->set(); FloatingObjectSetIterator end = floatingObjectSet.end(); for (FloatingObjectSetIterator it = floatingObjectSet.begin(); it != end; ++it) { FloatingObject* r = *it; IntRect floatBox = IntRect(offsetFromRootBlock.width() + xPositionForFloatIncludingMargin(r), offsetFromRootBlock.height() + yPositionForFloatIncludingMargin(r), r->m_renderer->width(), r->m_renderer->height()); rootBlock->flipForWritingMode(floatBox); floatBox.move(rootBlockPhysicalPosition.x(), rootBlockPhysicalPosition.y()); paintInfo->context->clipOut(floatBox); } } } // FIXME: overflow: auto/scroll regions need more math here, since painting in the border box is different from painting in the padding box (one is scrolled, the other is // fixed). GapRects result; if (!isBlockFlow()) // FIXME: Make multi-column selection gap filling work someday. return result; if (hasColumns() || hasTransform() || style()->columnSpan()) { // FIXME: We should learn how to gap fill multiple columns and transforms eventually. lastLogicalTop = blockDirectionOffset(rootBlock, offsetFromRootBlock) + logicalHeight(); lastLogicalLeft = logicalLeftSelectionOffset(rootBlock, logicalHeight()); lastLogicalRight = logicalRightSelectionOffset(rootBlock, logicalHeight()); return result; } if (childrenInline()) result = inlineSelectionGaps(rootBlock, rootBlockPhysicalPosition, offsetFromRootBlock, lastLogicalTop, lastLogicalLeft, lastLogicalRight, paintInfo); else result = blockSelectionGaps(rootBlock, rootBlockPhysicalPosition, offsetFromRootBlock, lastLogicalTop, lastLogicalLeft, lastLogicalRight, paintInfo); // Go ahead and fill the vertical gap all the way to the bottom of our block if the selection extends past our block. if (rootBlock == this && (selectionState() != SelectionBoth && selectionState() != SelectionEnd)) result.uniteCenter(blockSelectionGap(rootBlock, rootBlockPhysicalPosition, offsetFromRootBlock, lastLogicalTop, lastLogicalLeft, lastLogicalRight, logicalHeight(), paintInfo)); return result; } GapRects RenderBlock::inlineSelectionGaps(RenderBlock* rootBlock, const IntPoint& rootBlockPhysicalPosition, const IntSize& offsetFromRootBlock, int& lastLogicalTop, int& lastLogicalLeft, int& lastLogicalRight, const PaintInfo* paintInfo) { GapRects result; bool containsStart = selectionState() == SelectionStart || selectionState() == SelectionBoth; if (!firstLineBox()) { if (containsStart) { // Go ahead and update our lastLogicalTop to be the bottom of the block.


s or empty blocks with height can trip this // case. lastLogicalTop = blockDirectionOffset(rootBlock, offsetFromRootBlock) + logicalHeight(); lastLogicalLeft = logicalLeftSelectionOffset(rootBlock, logicalHeight()); lastLogicalRight = logicalRightSelectionOffset(rootBlock, logicalHeight()); } return result; } RootInlineBox* lastSelectedLine = 0; RootInlineBox* curr; for (curr = firstRootBox(); curr && !curr->hasSelectedChildren(); curr = curr->nextRootBox()) { } // Now paint the gaps for the lines. for (; curr && curr->hasSelectedChildren(); curr = curr->nextRootBox()) { int selTop = curr->selectionTop(); int selHeight = curr->selectionHeight(); if (!containsStart && !lastSelectedLine && selectionState() != SelectionStart && selectionState() != SelectionBoth) result.uniteCenter(blockSelectionGap(rootBlock, rootBlockPhysicalPosition, offsetFromRootBlock, lastLogicalTop, lastLogicalLeft, lastLogicalRight, selTop, paintInfo)); IntRect logicalRect(curr->logicalLeft(), selTop, curr->logicalWidth(), selTop + selHeight); logicalRect.move(isHorizontalWritingMode() ? offsetFromRootBlock : IntSize(offsetFromRootBlock.height(), offsetFromRootBlock.width())); IntRect physicalRect = rootBlock->logicalRectToPhysicalRect(rootBlockPhysicalPosition, logicalRect); if (!paintInfo || (isHorizontalWritingMode() && physicalRect.y() < paintInfo->rect.maxY() && physicalRect.maxY() > paintInfo->rect.y()) || (!isHorizontalWritingMode() && physicalRect.x() < paintInfo->rect.maxX() && physicalRect.maxX() > paintInfo->rect.x())) result.unite(curr->lineSelectionGap(rootBlock, rootBlockPhysicalPosition, offsetFromRootBlock, selTop, selHeight, paintInfo)); lastSelectedLine = curr; } if (containsStart && !lastSelectedLine) // VisibleSelection must start just after our last line. lastSelectedLine = lastRootBox(); if (lastSelectedLine && selectionState() != SelectionEnd && selectionState() != SelectionBoth) { // Go ahead and update our lastY to be the bottom of the last selected line. lastLogicalTop = blockDirectionOffset(rootBlock, offsetFromRootBlock) + lastSelectedLine->selectionBottom(); lastLogicalLeft = logicalLeftSelectionOffset(rootBlock, lastSelectedLine->selectionBottom()); lastLogicalRight = logicalRightSelectionOffset(rootBlock, lastSelectedLine->selectionBottom()); } return result; } GapRects RenderBlock::blockSelectionGaps(RenderBlock* rootBlock, const IntPoint& rootBlockPhysicalPosition, const IntSize& offsetFromRootBlock, int& lastLogicalTop, int& lastLogicalLeft, int& lastLogicalRight, const PaintInfo* paintInfo) { GapRects result; // Go ahead and jump right to the first block child that contains some selected objects. RenderBox* curr; for (curr = firstChildBox(); curr && curr->selectionState() == SelectionNone; curr = curr->nextSiblingBox()) { } for (bool sawSelectionEnd = false; curr && !sawSelectionEnd; curr = curr->nextSiblingBox()) { SelectionState childState = curr->selectionState(); if (childState == SelectionBoth || childState == SelectionEnd) sawSelectionEnd = true; if (curr->isFloatingOrPositioned()) continue; // We must be a normal flow object in order to even be considered. if (curr->isRelPositioned() && curr->hasLayer()) { // If the relposition offset is anything other than 0, then treat this just like an absolute positioned element. // Just disregard it completely. IntSize relOffset = curr->layer()->relativePositionOffset(); if (relOffset.width() || relOffset.height()) continue; } bool paintsOwnSelection = curr->shouldPaintSelectionGaps() || curr->isTable(); // FIXME: Eventually we won't special-case table like this. bool fillBlockGaps = paintsOwnSelection || (curr->canBeSelectionLeaf() && childState != SelectionNone); if (fillBlockGaps) { // We need to fill the vertical gap above this object. if (childState == SelectionEnd || childState == SelectionInside) // Fill the gap above the object. result.uniteCenter(blockSelectionGap(rootBlock, rootBlockPhysicalPosition, offsetFromRootBlock, lastLogicalTop, lastLogicalLeft, lastLogicalRight, curr->logicalTop(), paintInfo)); // Only fill side gaps for objects that paint their own selection if we know for sure the selection is going to extend all the way *past* // our object. We know this if the selection did not end inside our object. if (paintsOwnSelection && (childState == SelectionStart || sawSelectionEnd)) childState = SelectionNone; // Fill side gaps on this object based off its state. bool leftGap, rightGap; getSelectionGapInfo(childState, leftGap, rightGap); if (leftGap) result.uniteLeft(logicalLeftSelectionGap(rootBlock, rootBlockPhysicalPosition, offsetFromRootBlock, this, curr->logicalLeft(), curr->logicalTop(), curr->logicalHeight(), paintInfo)); if (rightGap) result.uniteRight(logicalRightSelectionGap(rootBlock, rootBlockPhysicalPosition, offsetFromRootBlock, this, curr->logicalRight(), curr->logicalTop(), curr->logicalHeight(), paintInfo)); // Update lastLogicalTop to be just underneath the object. lastLogicalLeft and lastLogicalRight extend as far as // they can without bumping into floating or positioned objects. Ideally they will go right up // to the border of the root selection block. lastLogicalTop = blockDirectionOffset(rootBlock, offsetFromRootBlock) + curr->logicalBottom(); lastLogicalLeft = logicalLeftSelectionOffset(rootBlock, curr->logicalBottom()); lastLogicalRight = logicalRightSelectionOffset(rootBlock, curr->logicalBottom()); } else if (childState != SelectionNone) // We must be a block that has some selected object inside it. Go ahead and recur. result.unite(toRenderBlock(curr)->selectionGaps(rootBlock, rootBlockPhysicalPosition, IntSize(offsetFromRootBlock.width() + curr->x(), offsetFromRootBlock.height() + curr->y()), lastLogicalTop, lastLogicalLeft, lastLogicalRight, paintInfo)); } return result; } IntRect RenderBlock::blockSelectionGap(RenderBlock* rootBlock, const IntPoint& rootBlockPhysicalPosition, const IntSize& offsetFromRootBlock, int lastLogicalTop, int lastLogicalLeft, int lastLogicalRight, int logicalBottom, const PaintInfo* paintInfo) { int logicalTop = lastLogicalTop; int logicalHeight = blockDirectionOffset(rootBlock, offsetFromRootBlock) + logicalBottom - logicalTop; if (logicalHeight <= 0) return IntRect(); // Get the selection offsets for the bottom of the gap int logicalLeft = max(lastLogicalLeft, logicalLeftSelectionOffset(rootBlock, logicalBottom)); int logicalRight = min(lastLogicalRight, logicalRightSelectionOffset(rootBlock, logicalBottom)); int logicalWidth = logicalRight - logicalLeft; if (logicalWidth <= 0) return IntRect(); IntRect gapRect = rootBlock->logicalRectToPhysicalRect(rootBlockPhysicalPosition, IntRect(logicalLeft, logicalTop, logicalWidth, logicalHeight)); if (paintInfo) paintInfo->context->fillRect(gapRect, selectionBackgroundColor(), style()->colorSpace()); return gapRect; } IntRect RenderBlock::logicalLeftSelectionGap(RenderBlock* rootBlock, const IntPoint& rootBlockPhysicalPosition, const IntSize& offsetFromRootBlock, RenderObject* selObj, int logicalLeft, int logicalTop, int logicalHeight, const PaintInfo* paintInfo) { int rootBlockLogicalTop = blockDirectionOffset(rootBlock, offsetFromRootBlock) + logicalTop; int rootBlockLogicalLeft = max(logicalLeftSelectionOffset(rootBlock, logicalTop), logicalLeftSelectionOffset(rootBlock, logicalTop + logicalHeight)); int rootBlockLogicalRight = min(inlineDirectionOffset(rootBlock, offsetFromRootBlock) + logicalLeft, min(logicalRightSelectionOffset(rootBlock, logicalTop), logicalRightSelectionOffset(rootBlock, logicalTop + logicalHeight))); int rootBlockLogicalWidth = rootBlockLogicalRight - rootBlockLogicalLeft; if (rootBlockLogicalWidth <= 0) return IntRect(); IntRect gapRect = rootBlock->logicalRectToPhysicalRect(rootBlockPhysicalPosition, IntRect(rootBlockLogicalLeft, rootBlockLogicalTop, rootBlockLogicalWidth, logicalHeight)); if (paintInfo) paintInfo->context->fillRect(gapRect, selObj->selectionBackgroundColor(), selObj->style()->colorSpace()); return gapRect; } IntRect RenderBlock::logicalRightSelectionGap(RenderBlock* rootBlock, const IntPoint& rootBlockPhysicalPosition, const IntSize& offsetFromRootBlock, RenderObject* selObj, int logicalRight, int logicalTop, int logicalHeight, const PaintInfo* paintInfo) { int rootBlockLogicalTop = blockDirectionOffset(rootBlock, offsetFromRootBlock) + logicalTop; int rootBlockLogicalLeft = max(inlineDirectionOffset(rootBlock, offsetFromRootBlock) + logicalRight, max(logicalLeftSelectionOffset(rootBlock, logicalTop), logicalLeftSelectionOffset(rootBlock, logicalTop + logicalHeight))); int rootBlockLogicalRight = min(logicalRightSelectionOffset(rootBlock, logicalTop), logicalRightSelectionOffset(rootBlock, logicalTop + logicalHeight)); int rootBlockLogicalWidth = rootBlockLogicalRight - rootBlockLogicalLeft; if (rootBlockLogicalWidth <= 0) return IntRect(); IntRect gapRect = rootBlock->logicalRectToPhysicalRect(rootBlockPhysicalPosition, IntRect(rootBlockLogicalLeft, rootBlockLogicalTop, rootBlockLogicalWidth, logicalHeight)); if (paintInfo) paintInfo->context->fillRect(gapRect, selObj->selectionBackgroundColor(), selObj->style()->colorSpace()); return gapRect; } void RenderBlock::getSelectionGapInfo(SelectionState state, bool& leftGap, bool& rightGap) { bool ltr = style()->isLeftToRightDirection(); leftGap = (state == RenderObject::SelectionInside) || (state == RenderObject::SelectionEnd && ltr) || (state == RenderObject::SelectionStart && !ltr); rightGap = (state == RenderObject::SelectionInside) || (state == RenderObject::SelectionStart && ltr) || (state == RenderObject::SelectionEnd && !ltr); } int RenderBlock::logicalLeftSelectionOffset(RenderBlock* rootBlock, int position) { int logicalLeft = logicalLeftOffsetForLine(position, false); if (logicalLeft == logicalLeftOffsetForContent()) { if (rootBlock != this) // The border can potentially be further extended by our containingBlock(). return containingBlock()->logicalLeftSelectionOffset(rootBlock, position + logicalTop()); return logicalLeft; } else { RenderBlock* cb = this; while (cb != rootBlock) { logicalLeft += cb->logicalLeft(); cb = cb->containingBlock(); } } return logicalLeft; } int RenderBlock::logicalRightSelectionOffset(RenderBlock* rootBlock, int position) { int logicalRight = logicalRightOffsetForLine(position, false); if (logicalRight == logicalRightOffsetForContent()) { if (rootBlock != this) // The border can potentially be further extended by our containingBlock(). return containingBlock()->logicalRightSelectionOffset(rootBlock, position + logicalTop()); return logicalRight; } else { RenderBlock* cb = this; while (cb != rootBlock) { logicalRight += cb->logicalLeft(); cb = cb->containingBlock(); } } return logicalRight; } void RenderBlock::insertPositionedObject(RenderBox* o) { // Create the list of special objects if we don't aleady have one if (!m_positionedObjects) m_positionedObjects = adoptPtr(new PositionedObjectsListHashSet); m_positionedObjects->add(o); } void RenderBlock::removePositionedObject(RenderBox* o) { if (m_positionedObjects) m_positionedObjects->remove(o); } void RenderBlock::removePositionedObjects(RenderBlock* o) { if (!m_positionedObjects) return; RenderBox* r; Iterator end = m_positionedObjects->end(); Vector deadObjects; for (Iterator it = m_positionedObjects->begin(); it != end; ++it) { r = *it; if (!o || r->isDescendantOf(o)) { if (o) r->setChildNeedsLayout(true, false); // It is parent blocks job to add positioned child to positioned objects list of its containing block // Parent layout needs to be invalidated to ensure this happens. RenderObject* p = r->parent(); while (p && !p->isRenderBlock()) p = p->parent(); if (p) p->setChildNeedsLayout(true); deadObjects.append(r); } } for (unsigned i = 0; i < deadObjects.size(); i++) m_positionedObjects->remove(deadObjects.at(i)); } RenderBlock::FloatingObject* RenderBlock::insertFloatingObject(RenderBox* o) { ASSERT(o->isFloating()); // Create the list of special objects if we don't aleady have one if (!m_floatingObjects) m_floatingObjects = adoptPtr(new FloatingObjects); else { // Don't insert the object again if it's already in the list FloatingObjectSet& floatingObjectSet = m_floatingObjects->set(); FloatingObjectSetIterator it = floatingObjectSet.find(o); if (it != floatingObjectSet.end()) return *it; } // Create the special object entry & append it to the list FloatingObject* newObj = new FloatingObject(o->style()->floating() == FLEFT ? FloatingObject::FloatLeft : FloatingObject::FloatRight); // Our location is irrelevant if we're unsplittable or no pagination is in effect. // Just go ahead and lay out the float. bool isChildRenderBlock = o->isRenderBlock(); if (isChildRenderBlock && !o->needsLayout() && view()->layoutState()->pageLogicalHeightChanged()) o->setChildNeedsLayout(true, false); bool affectedByPagination = isChildRenderBlock && view()->layoutState()->m_pageLogicalHeight; if (!affectedByPagination || isWritingModeRoot()) // We are unsplittable if we're a block flow root. o->layoutIfNeeded(); else { o->computeLogicalWidth(); o->computeBlockDirectionMargins(this); } setLogicalWidthForFloat(newObj, logicalWidthForChild(o) + marginStartForChild(o) + marginEndForChild(o)); newObj->m_shouldPaint = !o->hasSelfPaintingLayer(); // If a layer exists, the float will paint itself. Otherwise someone else will. newObj->m_isDescendant = true; newObj->m_renderer = o; m_floatingObjects->increaseObjectsCount(newObj->type()); m_floatingObjects->set().add(newObj); return newObj; } void RenderBlock::removeFloatingObject(RenderBox* o) { if (m_floatingObjects) { FloatingObjectSet& floatingObjectSet = m_floatingObjects->set(); FloatingObjectSet::iterator it = floatingObjectSet.find(o); if (it != floatingObjectSet.end()) { FloatingObject* r = *it; if (childrenInline()) { int logicalTop = logicalTopForFloat(r); int logicalBottom = logicalBottomForFloat(r); // Fix for https://bugs.webkit.org/show_bug.cgi?id=54995. if (logicalBottom < 0 || logicalBottom < logicalTop || logicalTop == numeric_limits::max()) logicalBottom = numeric_limits::max(); else { // Special-case zero- and less-than-zero-height floats: those don't touch // the line that they're on, but it still needs to be dirtied. This is // accomplished by pretending they have a height of 1. logicalBottom = max(logicalBottom, logicalTop + 1); } if (r->m_originatingLine) { ASSERT(r->m_originatingLine->renderer() == this); r->m_originatingLine->markDirty(); #if !ASSERT_DISABLED r->m_originatingLine = 0; #endif } markLinesDirtyInBlockRange(0, logicalBottom); } m_floatingObjects->decreaseObjectsCount(r->type()); floatingObjectSet.remove(it); ASSERT(!r->m_originatingLine); delete r; } } } void RenderBlock::removeFloatingObjectsBelow(FloatingObject* lastFloat, int logicalOffset) { if (!m_floatingObjects) return; FloatingObjectSet& floatingObjectSet = m_floatingObjects->set(); FloatingObject* curr = floatingObjectSet.last(); while (curr != lastFloat && (!curr->isPlaced() || logicalTopForFloat(curr) >= logicalOffset)) { m_floatingObjects->decreaseObjectsCount(curr->type()); floatingObjectSet.removeLast(); ASSERT(!curr->m_originatingLine); delete curr; curr = floatingObjectSet.last(); } } bool RenderBlock::positionNewFloats() { if (!m_floatingObjects) return false; FloatingObjectSet& floatingObjectSet = m_floatingObjects->set(); if (floatingObjectSet.isEmpty()) return false; // If all floats have already been positioned, then we have no work to do. if (floatingObjectSet.last()->isPlaced()) return false; // Move backwards through our floating object list until we find a float that has // already been positioned. Then we'll be able to move forward, positioning all of // the new floats that need it. FloatingObjectSetIterator it = floatingObjectSet.end(); --it; // Go to last item. FloatingObjectSetIterator begin = floatingObjectSet.begin(); FloatingObject* lastPlacedFloatingObject = 0; while (it != begin) { --it; if ((*it)->isPlaced()) { lastPlacedFloatingObject = *it; ++it; break; } } int logicalTop = logicalHeight(); // The float cannot start above the top position of the last positioned float. if (lastPlacedFloatingObject) logicalTop = max(logicalTopForFloat(lastPlacedFloatingObject), logicalTop); FloatingObjectSetIterator end = floatingObjectSet.end(); // Now walk through the set of unpositioned floats and place them. for (; it != end; ++it) { FloatingObject* floatingObject = *it; // The containing block is responsible for positioning floats, so if we have floats in our // list that come from somewhere else, do not attempt to position them. if (floatingObject->renderer()->containingBlock() != this) continue; RenderBox* childBox = floatingObject->renderer(); int childLogicalLeftMargin = style()->isLeftToRightDirection() ? marginStartForChild(childBox) : marginEndForChild(childBox); int rightOffset = logicalRightOffsetForContent(); // Constant part of right offset. int leftOffset = logicalLeftOffsetForContent(); // Constant part of left offset. int floatLogicalWidth = logicalWidthForFloat(floatingObject); // The width we look for. if (rightOffset - leftOffset < floatLogicalWidth) floatLogicalWidth = rightOffset - leftOffset; // Never look for more than what will be available. IntRect oldRect(childBox->x(), childBox->y() , childBox->width(), childBox->height()); if (childBox->style()->clear() & CLEFT) logicalTop = max(lowestFloatLogicalBottom(FloatingObject::FloatLeft), logicalTop); if (childBox->style()->clear() & CRIGHT) logicalTop = max(lowestFloatLogicalBottom(FloatingObject::FloatRight), logicalTop); int floatLogicalLeft; if (childBox->style()->floating() == FLEFT) { int heightRemainingLeft = 1; int heightRemainingRight = 1; floatLogicalLeft = logicalLeftOffsetForLine(logicalTop, leftOffset, false, &heightRemainingLeft); while (logicalRightOffsetForLine(logicalTop, rightOffset, false, &heightRemainingRight) - floatLogicalLeft < floatLogicalWidth) { logicalTop += min(heightRemainingLeft, heightRemainingRight); floatLogicalLeft = logicalLeftOffsetForLine(logicalTop, leftOffset, false, &heightRemainingLeft); } floatLogicalLeft = max(0, floatLogicalLeft); } else { int heightRemainingLeft = 1; int heightRemainingRight = 1; floatLogicalLeft = logicalRightOffsetForLine(logicalTop, rightOffset, false, &heightRemainingRight); while (floatLogicalLeft - logicalLeftOffsetForLine(logicalTop, leftOffset, false, &heightRemainingLeft) < floatLogicalWidth) { logicalTop += min(heightRemainingLeft, heightRemainingRight); floatLogicalLeft = logicalRightOffsetForLine(logicalTop, rightOffset, false, &heightRemainingRight); } floatLogicalLeft -= logicalWidthForFloat(floatingObject); // Use the original width of the float here, since the local variable // |floatLogicalWidth| was capped to the available line width. // See fast/block/float/clamped-right-float.html. } setLogicalLeftForFloat(floatingObject, floatLogicalLeft); setLogicalLeftForChild(childBox, floatLogicalLeft + childLogicalLeftMargin); setLogicalTopForChild(childBox, logicalTop + marginBeforeForChild(childBox)); if (view()->layoutState()->isPaginated()) { RenderBlock* childBlock = childBox->isRenderBlock() ? toRenderBlock(childBox) : 0; if (!childBox->needsLayout()) childBox->markForPaginationRelayoutIfNeeded();; childBox->layoutIfNeeded(); // If we are unsplittable and don't fit, then we need to move down. // We include our margins as part of the unsplittable area. int newLogicalTop = adjustForUnsplittableChild(childBox, logicalTop, true); // See if we have a pagination strut that is making us move down further. // Note that an unsplittable child can't also have a pagination strut, so this is // exclusive with the case above. if (childBlock && childBlock->paginationStrut()) { newLogicalTop += childBlock->paginationStrut(); childBlock->setPaginationStrut(0); } if (newLogicalTop != logicalTop) { floatingObject->m_paginationStrut = newLogicalTop - logicalTop; logicalTop = newLogicalTop; setLogicalTopForChild(childBox, logicalTop + marginBeforeForChild(childBox)); if (childBlock) childBlock->setChildNeedsLayout(true, false); childBox->layoutIfNeeded(); } } setLogicalTopForFloat(floatingObject, logicalTop); setLogicalHeightForFloat(floatingObject, logicalHeightForChild(childBox) + marginBeforeForChild(childBox) + marginAfterForChild(childBox)); floatingObject->setIsPlaced(); // If the child moved, we have to repaint it. if (childBox->checkForRepaintDuringLayout()) childBox->repaintDuringLayoutIfMoved(oldRect); } return true; } void RenderBlock::newLine(EClear clear) { positionNewFloats(); // set y position int newY = 0; switch (clear) { case CLEFT: newY = lowestFloatLogicalBottom(FloatingObject::FloatLeft); break; case CRIGHT: newY = lowestFloatLogicalBottom(FloatingObject::FloatRight); break; case CBOTH: newY = lowestFloatLogicalBottom(); default: break; } if (height() < newY) setLogicalHeight(newY); } void RenderBlock::addPercentHeightDescendant(RenderBox* descendant) { if (!gPercentHeightDescendantsMap) { gPercentHeightDescendantsMap = new PercentHeightDescendantsMap; gPercentHeightContainerMap = new PercentHeightContainerMap; } HashSet* descendantSet = gPercentHeightDescendantsMap->get(this); if (!descendantSet) { descendantSet = new HashSet; gPercentHeightDescendantsMap->set(this, descendantSet); } bool added = descendantSet->add(descendant).second; if (!added) { ASSERT(gPercentHeightContainerMap->get(descendant)); ASSERT(gPercentHeightContainerMap->get(descendant)->contains(this)); return; } HashSet* containerSet = gPercentHeightContainerMap->get(descendant); if (!containerSet) { containerSet = new HashSet; gPercentHeightContainerMap->set(descendant, containerSet); } ASSERT(!containerSet->contains(this)); containerSet->add(this); } void RenderBlock::removePercentHeightDescendant(RenderBox* descendant) { if (!gPercentHeightContainerMap) return; HashSet* containerSet = gPercentHeightContainerMap->take(descendant); if (!containerSet) return; HashSet::iterator end = containerSet->end(); for (HashSet::iterator it = containerSet->begin(); it != end; ++it) { RenderBlock* container = *it; HashSet* descendantSet = gPercentHeightDescendantsMap->get(container); ASSERT(descendantSet); if (!descendantSet) continue; ASSERT(descendantSet->contains(descendant)); descendantSet->remove(descendant); if (descendantSet->isEmpty()) { gPercentHeightDescendantsMap->remove(container); delete descendantSet; } } delete containerSet; } HashSet* RenderBlock::percentHeightDescendants() const { return gPercentHeightDescendantsMap ? gPercentHeightDescendantsMap->get(this) : 0; } // FIXME: The logicalLeftOffsetForLine/logicalRightOffsetForLine functions are very slow if there are many floats // present. We need to add a structure to floating objects to represent "lines" of floats. Then instead of checking // each float individually, we'd just walk backwards through the "lines" and stop when we hit a line that is fully above // the vertical offset that we'd like to check. Computing the "lines" would be rather complicated, but could replace the left // objects and right objects count hack that is currently used here. int RenderBlock::logicalLeftOffsetForLine(int logicalTop, int fixedOffset, bool applyTextIndent, int* heightRemaining) const { int left = fixedOffset; if (m_floatingObjects && m_floatingObjects->hasLeftObjects()) { if (heightRemaining) *heightRemaining = 1; // We know the list is non-empty, since we have "left" objects to search for. // Therefore we can assume that begin != end, and that we can do at least one // decrement. FloatingObjectSet& floatingObjectSet = m_floatingObjects->set(); FloatingObjectSetIterator begin = floatingObjectSet.begin(); FloatingObjectSetIterator it = floatingObjectSet.end(); do { --it; FloatingObject* r = *it; if (r->isPlaced() && logicalTopForFloat(r) <= logicalTop && logicalBottomForFloat(r) > logicalTop && r->type() == FloatingObject::FloatLeft && logicalRightForFloat(r) > left) { left = max(left, logicalRightForFloat(r)); if (heightRemaining) *heightRemaining = logicalBottomForFloat(r) - logicalTop; } } while (it != begin); } if (applyTextIndent && style()->isLeftToRightDirection()) { int cw = 0; if (style()->textIndent().isPercent()) cw = containingBlock()->availableLogicalWidth(); left += style()->textIndent().calcMinValue(cw); } return left; } int RenderBlock::logicalRightOffsetForLine(int logicalTop, int fixedOffset, bool applyTextIndent, int* heightRemaining) const { int right = fixedOffset; if (m_floatingObjects && m_floatingObjects->hasRightObjects()) { if (heightRemaining) *heightRemaining = 1; // We know the list is non-empty, since we have "right" objects to search for. // Therefore we can assume that begin != end, and that we can do at least one // decrement. FloatingObjectSet& floatingObjectSet = m_floatingObjects->set(); FloatingObjectSetIterator begin = floatingObjectSet.begin(); FloatingObjectSetIterator it = floatingObjectSet.end(); do { --it; FloatingObject* r = *it; if (r->isPlaced() && logicalTopForFloat(r) <= logicalTop && logicalBottomForFloat(r) > logicalTop && r->type() == FloatingObject::FloatRight && logicalLeftForFloat(r) < right) { right = min(right, logicalLeftForFloat(r)); if (heightRemaining) *heightRemaining = logicalBottomForFloat(r) - logicalTop; } } while (it != begin); } if (applyTextIndent && !style()->isLeftToRightDirection()) { int cw = 0; if (style()->textIndent().isPercent()) cw = containingBlock()->availableLogicalWidth(); right -= style()->textIndent().calcMinValue(cw); } return right; } int RenderBlock::availableLogicalWidthForLine(int position, bool firstLine) const { int result = logicalRightOffsetForLine(position, firstLine) - logicalLeftOffsetForLine(position, firstLine); return (result < 0) ? 0 : result; } int RenderBlock::nextFloatLogicalBottomBelow(int logicalHeight) const { if (!m_floatingObjects) return 0; int bottom = INT_MAX; FloatingObjectSet& floatingObjectSet = m_floatingObjects->set(); FloatingObjectSetIterator end = floatingObjectSet.end(); for (FloatingObjectSetIterator it = floatingObjectSet.begin(); it != end; ++it) { FloatingObject* r = *it; int floatBottom = logicalBottomForFloat(r); if (floatBottom > logicalHeight) bottom = min(floatBottom, bottom); } return bottom == INT_MAX ? 0 : bottom; } int RenderBlock::lowestFloatLogicalBottom(FloatingObject::Type floatType) const { if (!m_floatingObjects) return 0; int lowestFloatBottom = 0; FloatingObjectSet& floatingObjectSet = m_floatingObjects->set(); FloatingObjectSetIterator end = floatingObjectSet.end(); for (FloatingObjectSetIterator it = floatingObjectSet.begin(); it != end; ++it) { FloatingObject* r = *it; if (r->isPlaced() && r->type() & floatType) lowestFloatBottom = max(lowestFloatBottom, logicalBottomForFloat(r)); } return lowestFloatBottom; } void RenderBlock::markLinesDirtyInBlockRange(int logicalTop, int logicalBottom, RootInlineBox* highest) { if (logicalTop >= logicalBottom) return; RootInlineBox* lowestDirtyLine = lastRootBox(); RootInlineBox* afterLowest = lowestDirtyLine; while (lowestDirtyLine && lowestDirtyLine->blockLogicalHeight() >= logicalBottom && logicalBottom < numeric_limits::max()) { afterLowest = lowestDirtyLine; lowestDirtyLine = lowestDirtyLine->prevRootBox(); } while (afterLowest && afterLowest != highest && (afterLowest->blockLogicalHeight() >= logicalTop || afterLowest->blockLogicalHeight() < 0)) { afterLowest->markDirty(); afterLowest = afterLowest->prevRootBox(); } } void RenderBlock::clearFloats() { // Inline blocks are covered by the isReplaced() check in the avoidFloats method. if (avoidsFloats() || isRoot() || isRenderView() || isFloatingOrPositioned() || isTableCell()) { if (m_floatingObjects) { deleteAllValues(m_floatingObjects->set()); m_floatingObjects->clear(); } return; } typedef HashMap RendererToFloatInfoMap; RendererToFloatInfoMap floatMap; if (m_floatingObjects) { FloatingObjectSet& floatingObjectSet = m_floatingObjects->set(); if (childrenInline()) { FloatingObjectSet::iterator end = floatingObjectSet.end(); for (FloatingObjectSet::iterator it = floatingObjectSet.begin(); it != end; ++it) { FloatingObject* f = *it; floatMap.add(f->m_renderer, f); } } else deleteAllValues(floatingObjectSet); m_floatingObjects->clear(); } // We should not process floats if the parent node is not a RenderBlock. Otherwise, we will add // floats in an invalid context. This will cause a crash arising from a bad cast on the parent. // See , where float property is applied on a text node in a SVG. if (!parent() || !parent()->isRenderBlock()) return; // Attempt to locate a previous sibling with overhanging floats. We skip any elements that are // out of flow (like floating/positioned elements), and we also skip over any objects that may have shifted // to avoid floats. bool parentHasFloats = false; RenderBlock* parentBlock = toRenderBlock(parent()); RenderObject* prev = previousSibling(); while (prev && (prev->isFloatingOrPositioned() || !prev->isBox() || !prev->isRenderBlock() || toRenderBlock(prev)->avoidsFloats())) { if (prev->isFloating()) parentHasFloats = true; prev = prev->previousSibling(); } // First add in floats from the parent. int logicalTopOffset = logicalTop(); if (parentHasFloats) addIntrudingFloats(parentBlock, parentBlock->logicalLeftOffsetForContent(), logicalTopOffset); int logicalLeftOffset = 0; if (prev) logicalTopOffset -= toRenderBox(prev)->logicalTop(); else { prev = parentBlock; logicalLeftOffset += parentBlock->logicalLeftOffsetForContent(); } // Add overhanging floats from the previous RenderBlock, but only if it has a float that intrudes into our space. if (!prev || !prev->isRenderBlock()) return; RenderBlock* block = toRenderBlock(prev); if (block->m_floatingObjects && block->lowestFloatLogicalBottom() > logicalTopOffset) addIntrudingFloats(block, logicalLeftOffset, logicalTopOffset); if (childrenInline()) { int changeLogicalTop = numeric_limits::max(); int changeLogicalBottom = numeric_limits::min(); if (m_floatingObjects) { FloatingObjectSet& floatingObjectSet = m_floatingObjects->set(); FloatingObjectSetIterator end = floatingObjectSet.end(); for (FloatingObjectSetIterator it = floatingObjectSet.begin(); it != end; ++it) { FloatingObject* f = *it; FloatingObject* oldFloatingObject = floatMap.get(f->m_renderer); int logicalBottom = logicalBottomForFloat(f); if (oldFloatingObject) { int oldLogicalBottom = logicalBottomForFloat(oldFloatingObject); if (logicalWidthForFloat(f) != logicalWidthForFloat(oldFloatingObject) || logicalLeftForFloat(f) != logicalLeftForFloat(oldFloatingObject)) { changeLogicalTop = 0; changeLogicalBottom = max(changeLogicalBottom, max(logicalBottom, oldLogicalBottom)); } else if (logicalBottom != oldLogicalBottom) { changeLogicalTop = min(changeLogicalTop, min(logicalBottom, oldLogicalBottom)); changeLogicalBottom = max(changeLogicalBottom, max(logicalBottom, oldLogicalBottom)); } floatMap.remove(f->m_renderer); if (oldFloatingObject->m_originatingLine) { ASSERT(oldFloatingObject->m_originatingLine->renderer() == this); oldFloatingObject->m_originatingLine->markDirty(); } delete oldFloatingObject; } else { changeLogicalTop = 0; changeLogicalBottom = max(changeLogicalBottom, logicalBottom); } } } RendererToFloatInfoMap::iterator end = floatMap.end(); for (RendererToFloatInfoMap::iterator it = floatMap.begin(); it != end; ++it) { FloatingObject* floatingObject = (*it).second; if (!floatingObject->m_isDescendant) { changeLogicalTop = 0; changeLogicalBottom = max(changeLogicalBottom, logicalBottomForFloat(floatingObject)); } } deleteAllValues(floatMap); markLinesDirtyInBlockRange(changeLogicalTop, changeLogicalBottom); } } int RenderBlock::addOverhangingFloats(RenderBlock* child, int logicalLeftOffset, int logicalTopOffset, bool makeChildPaintOtherFloats) { // Prevent floats from being added to the canvas by the root element, e.g., . if (child->hasOverflowClip() || !child->containsFloats() || child->isRoot() || child->hasColumns() || child->isWritingModeRoot()) return 0; int childLogicalTop = child->logicalTop(); int lowestFloatLogicalBottom = 0; // Floats that will remain the child's responsibility to paint should factor into its // overflow. FloatingObjectSetIterator childEnd = child->m_floatingObjects->set().end(); for (FloatingObjectSetIterator childIt = child->m_floatingObjects->set().begin(); childIt != childEnd; ++childIt) { FloatingObject* r = *childIt; int logicalBottomForFloat = min(this->logicalBottomForFloat(r), numeric_limits::max() - childLogicalTop); int logicalBottom = childLogicalTop + logicalBottomForFloat; lowestFloatLogicalBottom = max(lowestFloatLogicalBottom, logicalBottom); if (logicalBottom > logicalHeight()) { // If the object is not in the list, we add it now. if (!containsFloat(r->m_renderer)) { int leftOffset = isHorizontalWritingMode() ? logicalLeftOffset : logicalTopOffset; int topOffset = isHorizontalWritingMode() ? logicalTopOffset : logicalLeftOffset; FloatingObject* floatingObj = new FloatingObject(r->type(), IntRect(r->x() - leftOffset, r->y() - topOffset, r->width(), r->height())); floatingObj->m_renderer = r->m_renderer; // The nearest enclosing layer always paints the float (so that zindex and stacking // behaves properly). We always want to propagate the desire to paint the float as // far out as we can, to the outermost block that overlaps the float, stopping only // if we hit a self-painting layer boundary. if (r->m_renderer->enclosingFloatPaintingLayer() == enclosingFloatPaintingLayer()) r->m_shouldPaint = false; else floatingObj->m_shouldPaint = false; floatingObj->m_isDescendant = true; // We create the floating object list lazily. if (!m_floatingObjects) m_floatingObjects = adoptPtr(new FloatingObjects); m_floatingObjects->increaseObjectsCount(floatingObj->type()); m_floatingObjects->set().add(floatingObj); } } else { if (makeChildPaintOtherFloats && !r->m_shouldPaint && !r->m_renderer->hasSelfPaintingLayer() && r->m_renderer->isDescendantOf(child) && r->m_renderer->enclosingFloatPaintingLayer() == child->enclosingFloatPaintingLayer()) { // The float is not overhanging from this block, so if it is a descendant of the child, the child should // paint it (the other case is that it is intruding into the child), unless it has its own layer or enclosing // layer. // If makeChildPaintOtherFloats is false, it means that the child must already know about all the floats // it should paint. r->m_shouldPaint = true; } // Since the float doesn't overhang, it didn't get put into our list. We need to go ahead and add its overflow in to the // child now. if (r->m_isDescendant) child->addOverflowFromChild(r->m_renderer, IntSize(xPositionForFloatIncludingMargin(r), yPositionForFloatIncludingMargin(r))); } } return lowestFloatLogicalBottom; } bool RenderBlock::hasOverhangingFloat(RenderBox* renderer) { if (!m_floatingObjects || hasColumns() || !parent()) return false; FloatingObjectSet& floatingObjectSet = m_floatingObjects->set(); FloatingObjectSetIterator it = floatingObjectSet.find(renderer); if (it == floatingObjectSet.end()) return false; return logicalBottomForFloat(*it) > logicalHeight(); } void RenderBlock::addIntrudingFloats(RenderBlock* prev, int logicalLeftOffset, int logicalTopOffset) { // If the parent or previous sibling doesn't have any floats to add, don't bother. if (!prev->m_floatingObjects) return; logicalLeftOffset += (isHorizontalWritingMode() ? marginLeft() : marginTop()); FloatingObjectSet& prevSet = prev->m_floatingObjects->set(); FloatingObjectSetIterator prevEnd = prevSet.end(); for (FloatingObjectSetIterator prevIt = prevSet.begin(); prevIt != prevEnd; ++prevIt) { FloatingObject* r = *prevIt; if (logicalBottomForFloat(r) > logicalTopOffset) { if (!m_floatingObjects || !m_floatingObjects->set().contains(r)) { int leftOffset = isHorizontalWritingMode() ? logicalLeftOffset : logicalTopOffset; int topOffset = isHorizontalWritingMode() ? logicalTopOffset : logicalLeftOffset; FloatingObject* floatingObj = new FloatingObject(r->type(), IntRect(r->x() - leftOffset, r->y() - topOffset, r->width(), r->height())); // Applying the child's margin makes no sense in the case where the child was passed in. // since this margin was added already through the modification of the |logicalLeftOffset| variable // above. |logicalLeftOffset| will equal the margin in this case, so it's already been taken // into account. Only apply this code if prev is the parent, since otherwise the left margin // will get applied twice. if (prev != parent()) { if (isHorizontalWritingMode()) floatingObj->setX(floatingObj->x() + prev->marginLeft()); else floatingObj->setY(floatingObj->y() + prev->marginTop()); } floatingObj->m_shouldPaint = false; // We are not in the direct inheritance chain for this float. We will never paint it. floatingObj->m_renderer = r->m_renderer; // We create the floating object list lazily. if (!m_floatingObjects) m_floatingObjects = adoptPtr(new FloatingObjects); m_floatingObjects->increaseObjectsCount(floatingObj->type()); m_floatingObjects->set().add(floatingObj); } } } } bool RenderBlock::avoidsFloats() const { // Floats can't intrude into our box if we have a non-auto column count or width. return RenderBox::avoidsFloats() || !style()->hasAutoColumnCount() || !style()->hasAutoColumnWidth(); } bool RenderBlock::containsFloat(RenderBox* renderer) { return m_floatingObjects && m_floatingObjects->set().contains(renderer); } void RenderBlock::markAllDescendantsWithFloatsForLayout(RenderBox* floatToRemove, bool inLayout) { if (!m_everHadLayout) return; setChildNeedsLayout(true, !inLayout); if (floatToRemove) removeFloatingObject(floatToRemove); // Iterate over our children and mark them as needed. if (!childrenInline()) { for (RenderObject* child = firstChild(); child; child = child->nextSibling()) { if ((!floatToRemove && child->isFloatingOrPositioned()) || !child->isRenderBlock()) continue; RenderBlock* childBlock = toRenderBlock(child); if ((floatToRemove ? childBlock->containsFloat(floatToRemove) : childBlock->containsFloats()) || childBlock->shrinkToAvoidFloats()) childBlock->markAllDescendantsWithFloatsForLayout(floatToRemove, inLayout); } } } void RenderBlock::markSiblingsWithFloatsForLayout() { FloatingObjectSet& floatingObjectSet = m_floatingObjects->set(); FloatingObjectSetIterator end = floatingObjectSet.end(); for (FloatingObjectSetIterator it = floatingObjectSet.begin(); it != end; ++it) { if (logicalBottomForFloat(*it) > logicalHeight()) { RenderBox* floatingBox = (*it)->renderer(); RenderObject* next = nextSibling(); while (next) { if (next->isRenderBlock() && !next->isFloatingOrPositioned() && !toRenderBlock(next)->avoidsFloats()) { RenderBlock* nextBlock = toRenderBlock(next); if (nextBlock->containsFloat(floatingBox)) nextBlock->markAllDescendantsWithFloatsForLayout(floatingBox); else break; } next = next->nextSibling(); } } } } int RenderBlock::getClearDelta(RenderBox* child, int yPos) { // There is no need to compute clearance if we have no floats. if (!containsFloats()) return 0; // At least one float is present. We need to perform the clearance computation. bool clearSet = child->style()->clear() != CNONE; int bottom = 0; switch (child->style()->clear()) { case CNONE: break; case CLEFT: bottom = lowestFloatLogicalBottom(FloatingObject::FloatLeft); break; case CRIGHT: bottom = lowestFloatLogicalBottom(FloatingObject::FloatRight); break; case CBOTH: bottom = lowestFloatLogicalBottom(); break; } // We also clear floats if we are too big to sit on the same line as a float (and wish to avoid floats by default). int result = clearSet ? max(0, bottom - yPos) : 0; if (!result && child->avoidsFloats()) { int y = yPos; while (true) { int widthAtY = availableLogicalWidthForLine(y, false); if (widthAtY == availableLogicalWidth()) return y - yPos; int oldChildY = child->y(); int oldChildWidth = child->width(); child->setY(y); child->computeLogicalWidth(); int childWidthAtY = child->width(); child->setY(oldChildY); child->setWidth(oldChildWidth); if (childWidthAtY <= widthAtY) return y - yPos; y = nextFloatLogicalBottomBelow(y); ASSERT(y >= yPos); if (y < yPos) break; } ASSERT_NOT_REACHED(); } return result; } bool RenderBlock::isPointInOverflowControl(HitTestResult& result, int _x, int _y, int _tx, int _ty) { if (!scrollsOverflow()) return false; return layer()->hitTestOverflowControls(result, IntPoint(_x - _tx, _y - _ty)); } bool RenderBlock::nodeAtPoint(const HitTestRequest& request, HitTestResult& result, int _x, int _y, int _tx, int _ty, HitTestAction hitTestAction) { int tx = _tx + x(); int ty = _ty + y(); if (!isRenderView()) { // Check if we need to do anything at all. IntRect overflowBox = visualOverflowRect(); overflowBox.move(tx, ty); if (!overflowBox.intersects(result.rectForPoint(_x, _y))) return false; } if ((hitTestAction == HitTestBlockBackground || hitTestAction == HitTestChildBlockBackground) && isPointInOverflowControl(result, _x, _y, tx, ty)) { updateHitTestResult(result, IntPoint(_x - tx, _y - ty)); // FIXME: isPointInOverflowControl() doesn't handle rect-based tests yet. if (!result.addNodeToRectBasedTestResult(node(), _x, _y)) return true; } // If we have clipping, then we can't have any spillout. bool useOverflowClip = hasOverflowClip() && !hasSelfPaintingLayer(); bool useClip = (hasControlClip() || useOverflowClip); IntRect hitTestArea(result.rectForPoint(_x, _y)); bool checkChildren = !useClip || (hasControlClip() ? controlClipRect(tx, ty).intersects(hitTestArea) : overflowClipRect(tx, ty, IncludeOverlayScrollbarSize).intersects(hitTestArea)); if (checkChildren) { // Hit test descendants first. int scrolledX = tx; int scrolledY = ty; if (hasOverflowClip()) { IntSize offset = layer()->scrolledContentOffset(); scrolledX -= offset.width(); scrolledY -= offset.height(); } // Hit test contents if we don't have columns. if (!hasColumns()) { if (hitTestContents(request, result, _x, _y, scrolledX, scrolledY, hitTestAction)) { updateHitTestResult(result, IntPoint(_x - tx, _y - ty)); return true; } if (hitTestAction == HitTestFloat && hitTestFloats(request, result, _x, _y, scrolledX, scrolledY)) return true; } else if (hitTestColumns(request, result, _x, _y, scrolledX, scrolledY, hitTestAction)) { updateHitTestResult(result, IntPoint(_x - tx, _y - ty)); return true; } } // Now hit test our background if (hitTestAction == HitTestBlockBackground || hitTestAction == HitTestChildBlockBackground) { IntRect boundsRect(tx, ty, width(), height()); if (visibleToHitTesting() && boundsRect.intersects(result.rectForPoint(_x, _y))) { updateHitTestResult(result, flipForWritingMode(IntPoint(_x - tx, _y - ty))); if (!result.addNodeToRectBasedTestResult(node(), _x, _y, boundsRect)) return true; } } return false; } bool RenderBlock::hitTestFloats(const HitTestRequest& request, HitTestResult& result, int x, int y, int tx, int ty) { if (!m_floatingObjects) return false; if (isRenderView()) { tx += toRenderView(this)->frameView()->scrollX(); ty += toRenderView(this)->frameView()->scrollY(); } FloatingObjectSet& floatingObjectSet = m_floatingObjects->set(); FloatingObjectSetIterator begin = floatingObjectSet.begin(); for (FloatingObjectSetIterator it = floatingObjectSet.end(); it != begin;) { --it; FloatingObject* floatingObject = *it; if (floatingObject->m_shouldPaint && !floatingObject->m_renderer->hasSelfPaintingLayer()) { int xOffset = xPositionForFloatIncludingMargin(floatingObject) - floatingObject->m_renderer->x(); int yOffset = yPositionForFloatIncludingMargin(floatingObject) - floatingObject->m_renderer->y(); IntPoint childPoint = flipFloatForWritingMode(floatingObject, IntPoint(tx + xOffset, ty + yOffset)); if (floatingObject->m_renderer->hitTest(request, result, IntPoint(x, y), childPoint.x(), childPoint.y())) { updateHitTestResult(result, IntPoint(x - childPoint.x(), y - childPoint.y())); return true; } } } return false; } bool RenderBlock::hitTestColumns(const HitTestRequest& request, HitTestResult& result, int x, int y, int tx, int ty, HitTestAction hitTestAction) { // We need to do multiple passes, breaking up our hit testing into strips. ColumnInfo* colInfo = columnInfo(); int colCount = columnCount(colInfo); if (!colCount) return false; int logicalLeft = logicalLeftOffsetForContent(); int currLogicalTopOffset = 0; int i; bool isHorizontal = isHorizontalWritingMode(); for (i = 0; i < colCount; i++) { IntRect colRect = columnRectAt(colInfo, i); int blockDelta = (isHorizontal ? colRect.height() : colRect.width()); if (style()->isFlippedBlocksWritingMode()) currLogicalTopOffset += blockDelta; else currLogicalTopOffset -= blockDelta; } for (i = colCount - 1; i >= 0; i--) { IntRect colRect = columnRectAt(colInfo, i); flipForWritingMode(colRect); int currLogicalLeftOffset = (isHorizontal ? colRect.x() : colRect.y()) - logicalLeft; int blockDelta = (isHorizontal ? colRect.height() : colRect.width()); if (style()->isFlippedBlocksWritingMode()) currLogicalTopOffset -= blockDelta; else currLogicalTopOffset += blockDelta; colRect.move(tx, ty); if (colRect.intersects(result.rectForPoint(x, y))) { // The point is inside this column. // Adjust tx and ty to change where we hit test. IntSize offset = isHorizontal ? IntSize(currLogicalLeftOffset, currLogicalTopOffset) : IntSize(currLogicalTopOffset, currLogicalLeftOffset); int finalX = tx + offset.width(); int finalY = ty + offset.height(); if (result.isRectBasedTest() && !colRect.contains(result.rectForPoint(x, y))) hitTestContents(request, result, x, y, finalX, finalY, hitTestAction); else return hitTestContents(request, result, x, y, finalX, finalY, hitTestAction) || (hitTestAction == HitTestFloat && hitTestFloats(request, result, x, y, finalX, finalY)); } } return false; } bool RenderBlock::hitTestContents(const HitTestRequest& request, HitTestResult& result, int x, int y, int tx, int ty, HitTestAction hitTestAction) { if (childrenInline() && !isTable()) { // We have to hit-test our line boxes. if (m_lineBoxes.hitTest(this, request, result, x, y, tx, ty, hitTestAction)) return true; } else { // Hit test our children. HitTestAction childHitTest = hitTestAction; if (hitTestAction == HitTestChildBlockBackgrounds) childHitTest = HitTestChildBlockBackground; for (RenderBox* child = lastChildBox(); child; child = child->previousSiblingBox()) { IntPoint childPoint = flipForWritingMode(child, IntPoint(tx, ty), ParentToChildFlippingAdjustment); if (!child->hasSelfPaintingLayer() && !child->isFloating() && child->nodeAtPoint(request, result, x, y, childPoint.x(), childPoint.y(), childHitTest)) return true; } } return false; } Position RenderBlock::positionForBox(InlineBox *box, bool start) const { if (!box) return Position(); if (!box->renderer()->node()) return Position(node(), start ? caretMinOffset() : caretMaxOffset()); if (!box->isInlineTextBox()) return Position(box->renderer()->node(), start ? box->renderer()->caretMinOffset() : box->renderer()->caretMaxOffset()); InlineTextBox *textBox = static_cast(box); return Position(box->renderer()->node(), start ? textBox->start() : textBox->start() + textBox->len()); } // FIXME: This function should go on RenderObject as an instance method. Then // all cases in which positionForPoint recurs could call this instead to // prevent crossing editable boundaries. This would require many tests. static VisiblePosition positionForPointRespectingEditingBoundaries(RenderBlock* parent, RenderBox* child, const IntPoint& pointInParentCoordinates) { // FIXME: This is wrong if the child's writing-mode is different from the parent's. IntPoint pointInChildCoordinates(pointInParentCoordinates - child->location()); // If this is an anonymous renderer, we just recur normally Node* childNode = child->node(); if (!childNode) return child->positionForPoint(pointInChildCoordinates); // Otherwise, first make sure that the editability of the parent and child agree. // If they don't agree, then we return a visible position just before or after the child RenderObject* ancestor = parent; while (ancestor && !ancestor->node()) ancestor = ancestor->parent(); // If we can't find an ancestor to check editability on, or editability is unchanged, we recur like normal if (!ancestor || ancestor->node()->rendererIsEditable() == childNode->rendererIsEditable()) return child->positionForPoint(pointInChildCoordinates); // Otherwise return before or after the child, depending on if the click was to the logical left or logical right of the child int childMiddle = parent->logicalWidthForChild(child) / 2; int logicalLeft = parent->isHorizontalWritingMode() ? pointInChildCoordinates.x() : pointInChildCoordinates.y(); if (logicalLeft < childMiddle) return ancestor->createVisiblePosition(childNode->nodeIndex(), DOWNSTREAM); return ancestor->createVisiblePosition(childNode->nodeIndex() + 1, UPSTREAM); } VisiblePosition RenderBlock::positionForPointWithInlineChildren(const IntPoint& pointInLogicalContents) { ASSERT(childrenInline()); if (!firstRootBox()) return createVisiblePosition(0, DOWNSTREAM); // look for the closest line box in the root box which is at the passed-in y coordinate InlineBox* closestBox = 0; RootInlineBox* firstRootBoxWithChildren = 0; RootInlineBox* lastRootBoxWithChildren = 0; for (RootInlineBox* root = firstRootBox(); root; root = root->nextRootBox()) { if (!root->firstLeafChild()) continue; if (!firstRootBoxWithChildren) firstRootBoxWithChildren = root; lastRootBoxWithChildren = root; // check if this root line box is located at this y coordinate if (pointInLogicalContents.y() < root->selectionBottom()) { closestBox = root->closestLeafChildForLogicalLeftPosition(pointInLogicalContents.x()); if (closestBox) break; } } bool moveCaretToBoundary = document()->frame()->editor()->behavior().shouldMoveCaretToHorizontalBoundaryWhenPastTopOrBottom(); if (!moveCaretToBoundary && !closestBox && lastRootBoxWithChildren) { // y coordinate is below last root line box, pretend we hit it closestBox = lastRootBoxWithChildren->closestLeafChildForLogicalLeftPosition(pointInLogicalContents.x()); } if (closestBox) { if (moveCaretToBoundary && pointInLogicalContents.y() < firstRootBoxWithChildren->selectionTop()) { // y coordinate is above first root line box, so return the start of the first return VisiblePosition(positionForBox(firstRootBoxWithChildren->firstLeafChild(), true), DOWNSTREAM); } // pass the box a top position that is inside it IntPoint point(pointInLogicalContents.x(), closestBox->logicalTop()); if (!isHorizontalWritingMode()) point = point.transposedPoint(); if (closestBox->renderer()->isReplaced()) return positionForPointRespectingEditingBoundaries(this, toRenderBox(closestBox->renderer()), point); return closestBox->renderer()->positionForPoint(point); } if (lastRootBoxWithChildren) { // We hit this case for Mac behavior when the Y coordinate is below the last box. ASSERT(moveCaretToBoundary); InlineBox* logicallyLastBox; if (lastRootBoxWithChildren->getLogicalEndBoxWithNode(logicallyLastBox)) return VisiblePosition(positionForBox(logicallyLastBox, false), DOWNSTREAM); } // Can't reach this. We have a root line box, but it has no kids. // FIXME: This should ASSERT_NOT_REACHED(), but clicking on placeholder text // seems to hit this code path. return createVisiblePosition(0, DOWNSTREAM); } static inline bool isChildHitTestCandidate(RenderBox* box) { return box->height() && box->style()->visibility() == VISIBLE && !box->isFloatingOrPositioned(); } VisiblePosition RenderBlock::positionForPoint(const IntPoint& point) { if (isTable()) return RenderBox::positionForPoint(point); if (isReplaced()) { // FIXME: This seems wrong when the object's writing-mode doesn't match the line's writing-mode. int pointLogicalLeft = isHorizontalWritingMode() ? point.x() : point.y(); int pointLogicalTop = isHorizontalWritingMode() ? point.y() : point.x(); if (pointLogicalTop < 0 || (pointLogicalTop < logicalHeight() && pointLogicalLeft < 0)) return createVisiblePosition(caretMinOffset(), DOWNSTREAM); if (pointLogicalTop >= logicalHeight() || (pointLogicalTop >= 0 && pointLogicalLeft >= logicalWidth())) return createVisiblePosition(caretMaxOffset(), DOWNSTREAM); } int contentsX = point.x(); int contentsY = point.y(); offsetForContents(contentsX, contentsY); IntPoint pointInContents(contentsX, contentsY); IntPoint pointInLogicalContents(pointInContents); if (!isHorizontalWritingMode()) pointInLogicalContents = pointInLogicalContents.transposedPoint(); if (childrenInline()) return positionForPointWithInlineChildren(pointInLogicalContents); if (lastChildBox() && pointInContents.y() > lastChildBox()->logicalTop()) { for (RenderBox* childBox = lastChildBox(); childBox; childBox = childBox->previousSiblingBox()) { if (isChildHitTestCandidate(childBox)) return positionForPointRespectingEditingBoundaries(this, childBox, pointInContents); } } else { for (RenderBox* childBox = firstChildBox(); childBox; childBox = childBox->nextSiblingBox()) { // We hit child if our click is above the bottom of its padding box (like IE6/7 and FF3). if (isChildHitTestCandidate(childBox) && pointInContents.y() < childBox->logicalBottom()) return positionForPointRespectingEditingBoundaries(this, childBox, pointInContents); } } // We only get here if there are no hit test candidate children below the click. return RenderBox::positionForPoint(point); } void RenderBlock::offsetForContents(int& tx, int& ty) const { IntPoint contentsPoint(tx, ty); if (hasOverflowClip()) contentsPoint += layer()->scrolledContentOffset(); if (hasColumns()) adjustPointToColumnContents(contentsPoint); tx = contentsPoint.x(); ty = contentsPoint.y(); } int RenderBlock::availableLogicalWidth() const { // If we have multiple columns, then the available logical width is reduced to our column width. if (hasColumns()) return desiredColumnWidth(); return RenderBox::availableLogicalWidth(); } int RenderBlock::columnGap() const { if (style()->hasNormalColumnGap()) return style()->fontDescription().computedPixelSize(); // "1em" is recommended as the normal gap setting. Matches

margins. return static_cast(style()->columnGap()); } void RenderBlock::calcColumnWidth() { // Calculate our column width and column count. unsigned desiredColumnCount = 1; int desiredColumnWidth = contentLogicalWidth(); // For now, we don't support multi-column layouts when printing, since we have to do a lot of work for proper pagination. if (document()->paginated() || (style()->hasAutoColumnCount() && style()->hasAutoColumnWidth())) { setDesiredColumnCountAndWidth(desiredColumnCount, desiredColumnWidth); return; } int availWidth = desiredColumnWidth; int colGap = columnGap(); int colWidth = max(1, static_cast(style()->columnWidth())); int colCount = max(1, static_cast(style()->columnCount())); if (style()->hasAutoColumnWidth() && !style()->hasAutoColumnCount()) { desiredColumnCount = colCount; desiredColumnWidth = max(0, (availWidth - ((desiredColumnCount - 1) * colGap)) / desiredColumnCount); } else if (!style()->hasAutoColumnWidth() && style()->hasAutoColumnCount()) { desiredColumnCount = max(1, (float)(availWidth + colGap) / (colWidth + colGap)); desiredColumnWidth = ((availWidth + colGap) / desiredColumnCount) - colGap; } else { desiredColumnCount = max(min(colCount, (float)(availWidth + colGap) / (colWidth + colGap)), 1); desiredColumnWidth = ((availWidth + colGap) / desiredColumnCount) - colGap; } setDesiredColumnCountAndWidth(desiredColumnCount, desiredColumnWidth); } void RenderBlock::setDesiredColumnCountAndWidth(int count, int width) { bool destroyColumns = !firstChild() || (count == 1 && style()->hasAutoColumnWidth()) || firstChild()->isAnonymousColumnsBlock() || firstChild()->isAnonymousColumnSpanBlock(); if (destroyColumns) { if (hasColumns()) { delete gColumnInfoMap->take(this); setHasColumns(false); } } else { ColumnInfo* info; if (hasColumns()) info = gColumnInfoMap->get(this); else { if (!gColumnInfoMap) gColumnInfoMap = new ColumnInfoMap; info = new ColumnInfo; gColumnInfoMap->add(this, info); setHasColumns(true); } info->setDesiredColumnCount(count); info->setDesiredColumnWidth(width); } } int RenderBlock::desiredColumnWidth() const { if (!hasColumns()) return contentLogicalWidth(); return gColumnInfoMap->get(this)->desiredColumnWidth(); } unsigned RenderBlock::desiredColumnCount() const { if (!hasColumns()) return 1; return gColumnInfoMap->get(this)->desiredColumnCount(); } ColumnInfo* RenderBlock::columnInfo() const { if (!hasColumns()) return 0; return gColumnInfoMap->get(this); } unsigned RenderBlock::columnCount(ColumnInfo* colInfo) const { ASSERT(hasColumns() && gColumnInfoMap->get(this) == colInfo); return colInfo->columnCount(); } IntRect RenderBlock::columnRectAt(ColumnInfo* colInfo, unsigned index) const { ASSERT(hasColumns() && gColumnInfoMap->get(this) == colInfo); // Compute the appropriate rect based off our information. int colLogicalWidth = colInfo->desiredColumnWidth(); int colLogicalHeight = colInfo->columnHeight(); int colLogicalTop = borderBefore() + paddingBefore(); int colGap = columnGap(); int colLogicalLeft = style()->isLeftToRightDirection() ? logicalLeftOffsetForContent() + (index * (colLogicalWidth + colGap)) : logicalLeftOffsetForContent() + contentLogicalWidth() - colLogicalWidth - (index * (colLogicalWidth + colGap)); IntRect rect(colLogicalLeft, colLogicalTop, colLogicalWidth, colLogicalHeight); if (isHorizontalWritingMode()) return IntRect(colLogicalLeft, colLogicalTop, colLogicalWidth, colLogicalHeight); return IntRect(colLogicalTop, colLogicalLeft, colLogicalHeight, colLogicalWidth); } bool RenderBlock::layoutColumns(bool hasSpecifiedPageLogicalHeight, int pageLogicalHeight, LayoutStateMaintainer& statePusher) { if (!hasColumns()) return false; // FIXME: We don't balance properly at all in the presence of forced page breaks. We need to understand what // the distance between forced page breaks is so that we can avoid making the minimum column height too tall. ColumnInfo* colInfo = columnInfo(); int desiredColumnCount = colInfo->desiredColumnCount(); if (!hasSpecifiedPageLogicalHeight) { int columnHeight = pageLogicalHeight; int minColumnCount = colInfo->forcedBreaks() + 1; if (minColumnCount >= desiredColumnCount) { // The forced page breaks are in control of the balancing. Just set the column height to the // maximum page break distance. if (!pageLogicalHeight) { int distanceBetweenBreaks = max(colInfo->maximumDistanceBetweenForcedBreaks(), view()->layoutState()->pageLogicalOffset(borderBefore() + paddingBefore() + contentLogicalHeight()) - colInfo->forcedBreakOffset()); columnHeight = max(colInfo->minimumColumnHeight(), distanceBetweenBreaks); } } else if (contentLogicalHeight() > pageLogicalHeight * desiredColumnCount) { // Now that we know the intrinsic height of the columns, we have to rebalance them. columnHeight = max(colInfo->minimumColumnHeight(), (int)ceilf((float)contentLogicalHeight() / desiredColumnCount)); } if (columnHeight && columnHeight != pageLogicalHeight) { statePusher.pop(); m_everHadLayout = true; layoutBlock(false, columnHeight); return true; } } if (pageLogicalHeight) colInfo->setColumnCountAndHeight(ceilf((float)contentLogicalHeight() / pageLogicalHeight), pageLogicalHeight); if (columnCount(colInfo)) { setLogicalHeight(borderBefore() + paddingBefore() + colInfo->columnHeight() + borderAfter() + paddingAfter() + scrollbarLogicalHeight()); m_overflow.clear(); } return false; } void RenderBlock::adjustPointToColumnContents(IntPoint& point) const { // Just bail if we have no columns. if (!hasColumns()) return; ColumnInfo* colInfo = columnInfo(); if (!columnCount(colInfo)) return; // Determine which columns we intersect. int colGap = columnGap(); int halfColGap = colGap / 2; IntPoint columnPoint(columnRectAt(colInfo, 0).location()); int logicalOffset = 0; for (unsigned i = 0; i < colInfo->columnCount(); i++) { // Add in half the column gap to the left and right of the rect. IntRect colRect = columnRectAt(colInfo, i); if (isHorizontalWritingMode()) { IntRect gapAndColumnRect(colRect.x() - halfColGap, colRect.y(), colRect.width() + colGap, colRect.height()); if (point.x() >= gapAndColumnRect.x() && point.x() < gapAndColumnRect.maxX()) { // FIXME: The clamping that follows is not completely right for right-to-left // content. // Clamp everything above the column to its top left. if (point.y() < gapAndColumnRect.y()) point = gapAndColumnRect.location(); // Clamp everything below the column to the next column's top left. If there is // no next column, this still maps to just after this column. else if (point.y() >= gapAndColumnRect.maxY()) { point = gapAndColumnRect.location(); point.move(0, gapAndColumnRect.height()); } // We're inside the column. Translate the x and y into our column coordinate space. point.move(columnPoint.x() - colRect.x(), logicalOffset); return; } // Move to the next position. logicalOffset += colRect.height(); } else { IntRect gapAndColumnRect(colRect.x(), colRect.y() - halfColGap, colRect.width(), colRect.height() + colGap); if (point.y() >= gapAndColumnRect.y() && point.y() < gapAndColumnRect.maxY()) { // FIXME: The clamping that follows is not completely right for right-to-left // content. // Clamp everything above the column to its top left. if (point.x() < gapAndColumnRect.x()) point = gapAndColumnRect.location(); // Clamp everything below the column to the next column's top left. If there is // no next column, this still maps to just after this column. else if (point.x() >= gapAndColumnRect.maxX()) { point = gapAndColumnRect.location(); point.move(gapAndColumnRect.width(), 0); } // We're inside the column. Translate the x and y into our column coordinate space. point.move(logicalOffset, columnPoint.y() - colRect.y()); return; } // Move to the next position. logicalOffset += colRect.width(); } } } void RenderBlock::adjustRectForColumns(IntRect& r) const { // Just bail if we have no columns. if (!hasColumns()) return; ColumnInfo* colInfo = columnInfo(); // Begin with a result rect that is empty. IntRect result; // Determine which columns we intersect. unsigned colCount = columnCount(colInfo); if (!colCount) return; int logicalLeft = logicalLeftOffsetForContent(); int currLogicalOffset = 0; for (unsigned i = 0; i < colCount; i++) { IntRect colRect = columnRectAt(colInfo, i); IntRect repaintRect = r; if (isHorizontalWritingMode()) { int currXOffset = colRect.x() - logicalLeft; repaintRect.move(currXOffset, currLogicalOffset); currLogicalOffset -= colRect.height(); } else { int currYOffset = colRect.y() - logicalLeft; repaintRect.move(currLogicalOffset, currYOffset); currLogicalOffset -= colRect.width(); } repaintRect.intersect(colRect); result.unite(repaintRect); } r = result; } IntPoint RenderBlock::flipForWritingModeIncludingColumns(const IntPoint& point) const { ASSERT(hasColumns()); if (!hasColumns() || !style()->isFlippedBlocksWritingMode()) return point; ColumnInfo* colInfo = columnInfo(); int columnLogicalHeight = colInfo->columnHeight(); int expandedLogicalHeight = borderBefore() + paddingBefore() + columnCount(colInfo) * columnLogicalHeight + borderAfter() + paddingAfter() + scrollbarLogicalHeight(); if (isHorizontalWritingMode()) return IntPoint(point.x(), expandedLogicalHeight - point.y()); return IntPoint(expandedLogicalHeight - point.x(), point.y()); } void RenderBlock::flipForWritingModeIncludingColumns(IntRect& rect) const { ASSERT(hasColumns()); if (!hasColumns() || !style()->isFlippedBlocksWritingMode()) return; ColumnInfo* colInfo = columnInfo(); int columnLogicalHeight = colInfo->columnHeight(); int expandedLogicalHeight = borderBefore() + paddingBefore() + columnCount(colInfo) * columnLogicalHeight + borderAfter() + paddingAfter() + scrollbarLogicalHeight(); if (isHorizontalWritingMode()) rect.setY(expandedLogicalHeight - rect.maxY()); else rect.setX(expandedLogicalHeight - rect.maxX()); } void RenderBlock::adjustForColumns(IntSize& offset, const IntPoint& point) const { if (!hasColumns()) return; ColumnInfo* colInfo = columnInfo(); int logicalLeft = logicalLeftOffsetForContent(); size_t colCount = columnCount(colInfo); int colLogicalWidth = colInfo->desiredColumnWidth(); int colLogicalHeight = colInfo->columnHeight(); for (size_t i = 0; i < colCount; ++i) { // Compute the edges for a given column in the block progression direction. IntRect sliceRect = IntRect(logicalLeft, borderBefore() + paddingBefore() + i * colLogicalHeight, colLogicalWidth, colLogicalHeight); if (!isHorizontalWritingMode()) sliceRect = sliceRect.transposedRect(); // If we have a flipped blocks writing mode, then convert the column so that it's coming from the after edge (either top or left edge). flipForWritingModeIncludingColumns(sliceRect); int logicalOffset = style()->isFlippedBlocksWritingMode() ? (colCount - 1 - i) * colLogicalHeight : i * colLogicalHeight; // Now we're in the same coordinate space as the point. See if it is inside the rectangle. if (isHorizontalWritingMode()) { if (point.y() >= sliceRect.y() && point.y() < sliceRect.maxY()) { offset.expand(columnRectAt(colInfo, i).x() - logicalLeft, -logicalOffset); return; } } else { if (point.x() >= sliceRect.x() && point.x() < sliceRect.maxX()) { offset.expand(-logicalOffset, columnRectAt(colInfo, i).y() - logicalLeft); return; } } } } void RenderBlock::computePreferredLogicalWidths() { ASSERT(preferredLogicalWidthsDirty()); updateFirstLetter(); if (!isTableCell() && style()->logicalWidth().isFixed() && style()->logicalWidth().value() > 0) m_minPreferredLogicalWidth = m_maxPreferredLogicalWidth = computeContentBoxLogicalWidth(style()->logicalWidth().value()); else { m_minPreferredLogicalWidth = 0; m_maxPreferredLogicalWidth = 0; if (childrenInline()) computeInlinePreferredLogicalWidths(); else computeBlockPreferredLogicalWidths(); m_maxPreferredLogicalWidth = max(m_minPreferredLogicalWidth, m_maxPreferredLogicalWidth); if (!style()->autoWrap() && childrenInline()) { m_minPreferredLogicalWidth = m_maxPreferredLogicalWidth; // A horizontal marquee with inline children has no minimum width. if (layer() && layer()->marquee() && layer()->marquee()->isHorizontal()) m_minPreferredLogicalWidth = 0; } int scrollbarWidth = 0; if (hasOverflowClip() && style()->overflowY() == OSCROLL) { layer()->setHasVerticalScrollbar(true); scrollbarWidth = verticalScrollbarWidth(); m_maxPreferredLogicalWidth += scrollbarWidth; } if (isTableCell()) { Length w = toRenderTableCell(this)->styleOrColLogicalWidth(); if (w.isFixed() && w.value() > 0) { m_maxPreferredLogicalWidth = max(m_minPreferredLogicalWidth, computeContentBoxLogicalWidth(w.value())); scrollbarWidth = 0; } } m_minPreferredLogicalWidth += scrollbarWidth; } if (style()->logicalMinWidth().isFixed() && style()->logicalMinWidth().value() > 0) { m_maxPreferredLogicalWidth = max(m_maxPreferredLogicalWidth, computeContentBoxLogicalWidth(style()->logicalMinWidth().value())); m_minPreferredLogicalWidth = max(m_minPreferredLogicalWidth, computeContentBoxLogicalWidth(style()->logicalMinWidth().value())); } if (style()->logicalMaxWidth().isFixed() && style()->logicalMaxWidth().value() != undefinedLength) { m_maxPreferredLogicalWidth = min(m_maxPreferredLogicalWidth, computeContentBoxLogicalWidth(style()->logicalMaxWidth().value())); m_minPreferredLogicalWidth = min(m_minPreferredLogicalWidth, computeContentBoxLogicalWidth(style()->logicalMaxWidth().value())); } int borderAndPadding = borderAndPaddingLogicalWidth(); m_minPreferredLogicalWidth += borderAndPadding; m_maxPreferredLogicalWidth += borderAndPadding; setPreferredLogicalWidthsDirty(false); } struct InlineMinMaxIterator { /* InlineMinMaxIterator is a class that will iterate over all render objects that contribute to inline min/max width calculations. Note the following about the way it walks: (1) Positioned content is skipped (since it does not contribute to min/max width of a block) (2) We do not drill into the children of floats or replaced elements, since you can't break in the middle of such an element. (3) Inline flows (e.g., , , ) are walked twice, since each side can have distinct borders/margin/padding that contribute to the min/max width. */ RenderObject* parent; RenderObject* current; bool endOfInline; InlineMinMaxIterator(RenderObject* p, bool end = false) :parent(p), current(p), endOfInline(end) {} RenderObject* next(); }; RenderObject* InlineMinMaxIterator::next() { RenderObject* result = 0; bool oldEndOfInline = endOfInline; endOfInline = false; while (current || current == parent) { if (!oldEndOfInline && (current == parent || (!current->isFloating() && !current->isReplaced() && !current->isPositioned()))) result = current->firstChild(); if (!result) { // We hit the end of our inline. (It was empty, e.g., .) if (!oldEndOfInline && current->isRenderInline()) { result = current; endOfInline = true; break; } while (current && current != parent) { result = current->nextSibling(); if (result) break; current = current->parent(); if (current && current != parent && current->isRenderInline()) { result = current; endOfInline = true; break; } } } if (!result) break; if (!result->isPositioned() && (result->isText() || result->isFloating() || result->isReplaced() || result->isRenderInline())) break; current = result; result = 0; } // Update our position. current = result; return current; } static int getBPMWidth(int childValue, Length cssUnit) { if (cssUnit.type() != Auto) return (cssUnit.isFixed() ? cssUnit.value() : childValue); return 0; } static int getBorderPaddingMargin(const RenderBoxModelObject* child, bool endOfInline) { RenderStyle* cstyle = child->style(); if (endOfInline) return getBPMWidth(child->marginEnd(), cstyle->marginEnd()) + getBPMWidth(child->paddingEnd(), cstyle->paddingEnd()) + child->borderEnd(); return getBPMWidth(child->marginStart(), cstyle->marginStart()) + getBPMWidth(child->paddingStart(), cstyle->paddingStart()) + child->borderStart(); } static inline void stripTrailingSpace(float& inlineMax, float& inlineMin, RenderObject* trailingSpaceChild) { if (trailingSpaceChild && trailingSpaceChild->isText()) { // Collapse away the trailing space at the end of a block. RenderText* t = toRenderText(trailingSpaceChild); const UChar space = ' '; const Font& font = t->style()->font(); // FIXME: This ignores first-line. float spaceWidth = font.width(TextRun(&space, 1)); inlineMax -= spaceWidth + font.wordSpacing(); if (inlineMin > inlineMax) inlineMin = inlineMax; } } static inline void updatePreferredWidth(int& preferredWidth, float& result) { int snappedResult = ceilf(result); preferredWidth = max(snappedResult, preferredWidth); } void RenderBlock::computeInlinePreferredLogicalWidths() { float inlineMax = 0; float inlineMin = 0; int cw = containingBlock()->contentLogicalWidth(); // If we are at the start of a line, we want to ignore all white-space. // Also strip spaces if we previously had text that ended in a trailing space. bool stripFrontSpaces = true; RenderObject* trailingSpaceChild = 0; // Firefox and Opera will allow a table cell to grow to fit an image inside it under // very specific cirucumstances (in order to match common WinIE renderings). // Not supporting the quirk has caused us to mis-render some real sites. (See Bugzilla 10517.) bool allowImagesToBreak = !document()->inQuirksMode() || !isTableCell() || !style()->logicalWidth().isIntrinsicOrAuto(); bool autoWrap, oldAutoWrap; autoWrap = oldAutoWrap = style()->autoWrap(); InlineMinMaxIterator childIterator(this); bool addedTextIndent = false; // Only gets added in once. RenderObject* prevFloat = 0; while (RenderObject* child = childIterator.next()) { autoWrap = child->isReplaced() ? child->parent()->style()->autoWrap() : child->style()->autoWrap(); if (!child->isBR()) { // Step One: determine whether or not we need to go ahead and // terminate our current line. Each discrete chunk can become // the new min-width, if it is the widest chunk seen so far, and // it can also become the max-width. // Children fall into three categories: // (1) An inline flow object. These objects always have a min/max of 0, // and are included in the iteration solely so that their margins can // be added in. // // (2) An inline non-text non-flow object, e.g., an inline replaced element. // These objects can always be on a line by themselves, so in this situation // we need to go ahead and break the current line, and then add in our own // margins and min/max width on its own line, and then terminate the line. // // (3) A text object. Text runs can have breakable characters at the start, // the middle or the end. They may also lose whitespace off the front if // we're already ignoring whitespace. In order to compute accurate min-width // information, we need three pieces of information. // (a) the min-width of the first non-breakable run. Should be 0 if the text string // starts with whitespace. // (b) the min-width of the last non-breakable run. Should be 0 if the text string // ends with whitespace. // (c) the min/max width of the string (trimmed for whitespace). // // If the text string starts with whitespace, then we need to go ahead and // terminate our current line (unless we're already in a whitespace stripping // mode. // // If the text string has a breakable character in the middle, but didn't start // with whitespace, then we add the width of the first non-breakable run and // then end the current line. We then need to use the intermediate min/max width // values (if any of them are larger than our current min/max). We then look at // the width of the last non-breakable run and use that to start a new line // (unless we end in whitespace). RenderStyle* cstyle = child->style(); float childMin = 0; float childMax = 0; if (!child->isText()) { // Case (1) and (2). Inline replaced and inline flow elements. if (child->isRenderInline()) { // Add in padding/border/margin from the appropriate side of // the element. float bpm = getBorderPaddingMargin(toRenderInline(child), childIterator.endOfInline); childMin += bpm; childMax += bpm; inlineMin += childMin; inlineMax += childMax; child->setPreferredLogicalWidthsDirty(false); } else { // Inline replaced elts add in their margins to their min/max values. float margins = 0; Length startMargin = cstyle->marginStart(); Length endMargin = cstyle->marginEnd(); if (startMargin.isFixed()) margins += startMargin.value(); if (endMargin.isFixed()) margins += endMargin.value(); childMin += margins; childMax += margins; } } if (!child->isRenderInline() && !child->isText()) { // Case (2). Inline replaced elements and floats. // Go ahead and terminate the current line as far as // minwidth is concerned. childMin += child->minPreferredLogicalWidth(); childMax += child->maxPreferredLogicalWidth(); bool clearPreviousFloat; if (child->isFloating()) { clearPreviousFloat = (prevFloat && ((prevFloat->style()->floating() == FLEFT && (child->style()->clear() & CLEFT)) || (prevFloat->style()->floating() == FRIGHT && (child->style()->clear() & CRIGHT)))); prevFloat = child; } else clearPreviousFloat = false; bool canBreakReplacedElement = !child->isImage() || allowImagesToBreak; if ((canBreakReplacedElement && (autoWrap || oldAutoWrap)) || clearPreviousFloat) { updatePreferredWidth(m_minPreferredLogicalWidth, inlineMin); inlineMin = 0; } // If we're supposed to clear the previous float, then terminate maxwidth as well. if (clearPreviousFloat) { updatePreferredWidth(m_maxPreferredLogicalWidth, inlineMax); inlineMax = 0; } // Add in text-indent. This is added in only once. int ti = 0; if (!addedTextIndent) { addedTextIndent = true; ti = style()->textIndent().calcMinValue(cw); childMin += ti; childMax += ti; } // Add our width to the max. inlineMax += childMax; if (!autoWrap || !canBreakReplacedElement) { if (child->isFloating()) updatePreferredWidth(m_minPreferredLogicalWidth, childMin); else inlineMin += childMin; } else { // Now check our line. updatePreferredWidth(m_minPreferredLogicalWidth, childMin); // Now start a new line. inlineMin = 0; } // We are no longer stripping whitespace at the start of // a line. if (!child->isFloating()) { stripFrontSpaces = false; trailingSpaceChild = 0; } } else if (child->isText()) { // Case (3). Text. RenderText* t = toRenderText(child); if (t->isWordBreak()) { updatePreferredWidth(m_minPreferredLogicalWidth, inlineMin); inlineMin = 0; continue; } if (t->style()->hasTextCombine() && t->isCombineText()) toRenderCombineText(t)->combineText(); // Determine if we have a breakable character. Pass in // whether or not we should ignore any spaces at the front // of the string. If those are going to be stripped out, // then they shouldn't be considered in the breakable char // check. bool hasBreakableChar, hasBreak; float beginMin, endMin; bool beginWS, endWS; float beginMax, endMax; t->trimmedPrefWidths(inlineMax, beginMin, beginWS, endMin, endWS, hasBreakableChar, hasBreak, beginMax, endMax, childMin, childMax, stripFrontSpaces); // This text object will not be rendered, but it may still provide a breaking opportunity. if (!hasBreak && childMax == 0) { if (autoWrap && (beginWS || endWS)) { updatePreferredWidth(m_minPreferredLogicalWidth, inlineMin); inlineMin = 0; } continue; } if (stripFrontSpaces) trailingSpaceChild = child; else trailingSpaceChild = 0; // Add in text-indent. This is added in only once. int ti = 0; if (!addedTextIndent) { addedTextIndent = true; ti = style()->textIndent().calcMinValue(cw); childMin+=ti; beginMin += ti; childMax+=ti; beginMax += ti; } // If we have no breakable characters at all, // then this is the easy case. We add ourselves to the current // min and max and continue. if (!hasBreakableChar) { inlineMin += childMin; } else { // We have a breakable character. Now we need to know if // we start and end with whitespace. if (beginWS) // Go ahead and end the current line. updatePreferredWidth(m_minPreferredLogicalWidth, inlineMin); else { inlineMin += beginMin; updatePreferredWidth(m_minPreferredLogicalWidth, inlineMin); childMin -= ti; } inlineMin = childMin; if (endWS) { // We end in whitespace, which means we can go ahead // and end our current line. updatePreferredWidth(m_minPreferredLogicalWidth, inlineMin); inlineMin = 0; } else { updatePreferredWidth(m_minPreferredLogicalWidth, inlineMin); inlineMin = endMin; } } if (hasBreak) { inlineMax += beginMax; updatePreferredWidth(m_maxPreferredLogicalWidth, inlineMax); updatePreferredWidth(m_maxPreferredLogicalWidth, childMax); inlineMax = endMax; } else inlineMax += childMax; } // Ignore spaces after a list marker. if (child->isListMarker()) stripFrontSpaces = true; } else { updatePreferredWidth(m_minPreferredLogicalWidth, inlineMin); updatePreferredWidth(m_maxPreferredLogicalWidth, inlineMax); inlineMin = inlineMax = 0; stripFrontSpaces = true; trailingSpaceChild = 0; } oldAutoWrap = autoWrap; } if (style()->collapseWhiteSpace()) stripTrailingSpace(inlineMax, inlineMin, trailingSpaceChild); updatePreferredWidth(m_minPreferredLogicalWidth, inlineMin); updatePreferredWidth(m_maxPreferredLogicalWidth, inlineMax); } // Use a very large value (in effect infinite). #define BLOCK_MAX_WIDTH 15000 void RenderBlock::computeBlockPreferredLogicalWidths() { bool nowrap = style()->whiteSpace() == NOWRAP; RenderObject *child = firstChild(); int floatLeftWidth = 0, floatRightWidth = 0; while (child) { // Positioned children don't affect the min/max width if (child->isPositioned()) { child = child->nextSibling(); continue; } if (child->isFloating() || (child->isBox() && toRenderBox(child)->avoidsFloats())) { int floatTotalWidth = floatLeftWidth + floatRightWidth; if (child->style()->clear() & CLEFT) { m_maxPreferredLogicalWidth = max(floatTotalWidth, m_maxPreferredLogicalWidth); floatLeftWidth = 0; } if (child->style()->clear() & CRIGHT) { m_maxPreferredLogicalWidth = max(floatTotalWidth, m_maxPreferredLogicalWidth); floatRightWidth = 0; } } // A margin basically has three types: fixed, percentage, and auto (variable). // Auto and percentage margins simply become 0 when computing min/max width. // Fixed margins can be added in as is. Length startMarginLength = child->style()->marginStart(); Length endMarginLength = child->style()->marginEnd(); int margin = 0; int marginStart = 0; int marginEnd = 0; if (startMarginLength.isFixed()) marginStart += startMarginLength.value(); if (endMarginLength.isFixed()) marginEnd += endMarginLength.value(); margin = marginStart + marginEnd; int w = child->minPreferredLogicalWidth() + margin; m_minPreferredLogicalWidth = max(w, m_minPreferredLogicalWidth); // IE ignores tables for calculation of nowrap. Makes some sense. if (nowrap && !child->isTable()) m_maxPreferredLogicalWidth = max(w, m_maxPreferredLogicalWidth); w = child->maxPreferredLogicalWidth() + margin; if (!child->isFloating()) { if (child->isBox() && toRenderBox(child)->avoidsFloats()) { // Determine a left and right max value based off whether or not the floats can fit in the // margins of the object. For negative margins, we will attempt to overlap the float if the negative margin // is smaller than the float width. bool ltr = containingBlock()->style()->isLeftToRightDirection(); int marginLogicalLeft = ltr ? marginStart : marginEnd; int marginLogicalRight = ltr ? marginEnd : marginStart; int maxLeft = marginLogicalLeft > 0 ? max(floatLeftWidth, marginLogicalLeft) : floatLeftWidth + marginLogicalLeft; int maxRight = marginLogicalRight > 0 ? max(floatRightWidth, marginLogicalRight) : floatRightWidth + marginLogicalRight; w = child->maxPreferredLogicalWidth() + maxLeft + maxRight; w = max(w, floatLeftWidth + floatRightWidth); } else m_maxPreferredLogicalWidth = max(floatLeftWidth + floatRightWidth, m_maxPreferredLogicalWidth); floatLeftWidth = floatRightWidth = 0; } if (child->isFloating()) { if (style()->floating() == FLEFT) floatLeftWidth += w; else floatRightWidth += w; } else m_maxPreferredLogicalWidth = max(w, m_maxPreferredLogicalWidth); // A very specific WinIE quirk. // Example: /*

*/ // In the above example, the inner absolute positioned block should have a computed width // of 100px because of the table. // We can achieve this effect by making the maxwidth of blocks that contain tables // with percentage widths be infinite (as long as they are not inside a table cell). if (document()->inQuirksMode() && child->style()->logicalWidth().isPercent() && !isTableCell() && child->isTable() && m_maxPreferredLogicalWidth < BLOCK_MAX_WIDTH) { RenderBlock* cb = containingBlock(); while (!cb->isRenderView() && !cb->isTableCell()) cb = cb->containingBlock(); if (!cb->isTableCell()) m_maxPreferredLogicalWidth = BLOCK_MAX_WIDTH; } child = child->nextSibling(); } // Always make sure these values are non-negative. m_minPreferredLogicalWidth = max(0, m_minPreferredLogicalWidth); m_maxPreferredLogicalWidth = max(0, m_maxPreferredLogicalWidth); m_maxPreferredLogicalWidth = max(floatLeftWidth + floatRightWidth, m_maxPreferredLogicalWidth); } bool RenderBlock::hasLineIfEmpty() const { if (!node()) return false; if (node()->rendererIsEditable() && node()->rootEditableElement() == node()) return true; if (node()->isShadowRoot() && (node()->shadowHost()->hasTagName(inputTag))) return true; return false; } int RenderBlock::lineHeight(bool firstLine, LineDirectionMode direction, LinePositionMode linePositionMode) const { // Inline blocks are replaced elements. Otherwise, just pass off to // the base class. If we're being queried as though we're the root line // box, then the fact that we're an inline-block is irrelevant, and we behave // just like a block. if (isReplaced() && linePositionMode == PositionOnContainingLine) return RenderBox::lineHeight(firstLine, direction, linePositionMode); if (firstLine && document()->usesFirstLineRules()) { RenderStyle* s = style(firstLine); if (s != style()) return s->computedLineHeight(); } if (m_lineHeight == -1) m_lineHeight = style()->computedLineHeight(); return m_lineHeight; } int RenderBlock::baselinePosition(FontBaseline baselineType, bool firstLine, LineDirectionMode direction, LinePositionMode linePositionMode) const { // Inline blocks are replaced elements. Otherwise, just pass off to // the base class. If we're being queried as though we're the root line // box, then the fact that we're an inline-block is irrelevant, and we behave // just like a block. if (isReplaced() && linePositionMode == PositionOnContainingLine) { // For "leaf" theme objects, let the theme decide what the baseline position is. // FIXME: Might be better to have a custom CSS property instead, so that if the theme // is turned off, checkboxes/radios will still have decent baselines. // FIXME: Need to patch form controls to deal with vertical lines. if (style()->hasAppearance() && !theme()->isControlContainer(style()->appearance())) return theme()->baselinePosition(this); // CSS2.1 states that the baseline of an inline block is the baseline of the last line box in // the normal flow. We make an exception for marquees, since their baselines are meaningless // (the content inside them moves). This matches WinIE as well, which just bottom-aligns them. // We also give up on finding a baseline if we have a vertical scrollbar, or if we are scrolled // vertically (e.g., an overflow:hidden block that has had scrollTop moved) or if the baseline is outside // of our content box. bool ignoreBaseline = (layer() && (layer()->marquee() || (direction == HorizontalLine ? (layer()->verticalScrollbar() || layer()->scrollYOffset() != 0) : (layer()->horizontalScrollbar() || layer()->scrollXOffset() != 0)))) || (isWritingModeRoot() && !isRubyRun()); int baselinePos = ignoreBaseline ? -1 : lastLineBoxBaseline(); int bottomOfContent = direction == HorizontalLine ? borderTop() + paddingTop() + contentHeight() : borderRight() + paddingRight() + contentWidth(); if (baselinePos != -1 && baselinePos <= bottomOfContent) return direction == HorizontalLine ? marginTop() + baselinePos : marginRight() + baselinePos; return RenderBox::baselinePosition(baselineType, firstLine, direction, linePositionMode); } const FontMetrics& fontMetrics = style(firstLine)->fontMetrics(); return fontMetrics.ascent(baselineType) + (lineHeight(firstLine, direction, linePositionMode) - fontMetrics.height()) / 2; } int RenderBlock::firstLineBoxBaseline() const { if (!isBlockFlow() || (isWritingModeRoot() && !isRubyRun())) return -1; if (childrenInline()) { if (firstLineBox()) return firstLineBox()->logicalTop() + style(true)->fontMetrics().ascent(firstRootBox()->baselineType()); else return -1; } else { for (RenderBox* curr = firstChildBox(); curr; curr = curr->nextSiblingBox()) { if (!curr->isFloatingOrPositioned()) { int result = curr->firstLineBoxBaseline(); if (result != -1) return curr->logicalTop() + result; // Translate to our coordinate space. } } } return -1; } int RenderBlock::lastLineBoxBaseline() const { if (!isBlockFlow() || (isWritingModeRoot() && !isRubyRun())) return -1; LineDirectionMode lineDirection = isHorizontalWritingMode() ? HorizontalLine : VerticalLine; if (childrenInline()) { if (!firstLineBox() && hasLineIfEmpty()) { const FontMetrics& fontMetrics = firstLineStyle()->fontMetrics(); return fontMetrics.ascent() + (lineHeight(true, lineDirection, PositionOfInteriorLineBoxes) - fontMetrics.height()) / 2 + (lineDirection == HorizontalLine ? borderTop() + paddingTop() : borderRight() + paddingRight()); } if (lastLineBox()) return lastLineBox()->logicalTop() + style(lastLineBox() == firstLineBox())->fontMetrics().ascent(lastRootBox()->baselineType()); return -1; } else { bool haveNormalFlowChild = false; for (RenderBox* curr = lastChildBox(); curr; curr = curr->previousSiblingBox()) { if (!curr->isFloatingOrPositioned()) { haveNormalFlowChild = true; int result = curr->lastLineBoxBaseline(); if (result != -1) return curr->logicalTop() + result; // Translate to our coordinate space. } } if (!haveNormalFlowChild && hasLineIfEmpty()) { const FontMetrics& fontMetrics = firstLineStyle()->fontMetrics(); return fontMetrics.ascent() + (lineHeight(true, lineDirection, PositionOfInteriorLineBoxes) - fontMetrics.height()) / 2 + (lineDirection == HorizontalLine ? borderTop() + paddingTop() : borderRight() + paddingRight()); } } return -1; } bool RenderBlock::containsNonZeroBidiLevel() const { for (RootInlineBox* root = firstRootBox(); root; root = root->nextRootBox()) { for (InlineBox* box = root->firstLeafChild(); box; box = box->nextLeafChild()) { if (box->bidiLevel()) return true; } } return false; } RenderBlock* RenderBlock::firstLineBlock() const { RenderBlock* firstLineBlock = const_cast(this); bool hasPseudo = false; while (true) { hasPseudo = firstLineBlock->style()->hasPseudoStyle(FIRST_LINE); if (hasPseudo) break; RenderObject* parentBlock = firstLineBlock->parent(); if (firstLineBlock->isReplaced() || firstLineBlock->isFloating() || !parentBlock || parentBlock->firstChild() != firstLineBlock || !parentBlock->isBlockFlow()) break; ASSERT(parentBlock->isRenderBlock()); firstLineBlock = toRenderBlock(parentBlock); } if (!hasPseudo) return 0; return firstLineBlock; } static RenderStyle* styleForFirstLetter(RenderObject* firstLetterBlock, RenderObject* firstLetterContainer) { RenderStyle* pseudoStyle = firstLetterBlock->getCachedPseudoStyle(FIRST_LETTER, firstLetterContainer->firstLineStyle()); // Force inline display (except for floating first-letters). pseudoStyle->setDisplay(pseudoStyle->isFloating() ? BLOCK : INLINE); // CSS2 says first-letter can't be positioned. pseudoStyle->setPosition(StaticPosition); return pseudoStyle; } // CSS 2.1 http://www.w3.org/TR/CSS21/selector.html#first-letter // "Punctuation (i.e, characters defined in Unicode [UNICODE] in the "open" (Ps), "close" (Pe), // "initial" (Pi). "final" (Pf) and "other" (Po) punctuation classes), that precedes or follows the first letter should be included" static inline bool isPunctuationForFirstLetter(UChar c) { CharCategory charCategory = category(c); return charCategory == Punctuation_Open || charCategory == Punctuation_Close || charCategory == Punctuation_InitialQuote || charCategory == Punctuation_FinalQuote || charCategory == Punctuation_Other; } static inline bool shouldSkipForFirstLetter(UChar c) { return isSpaceOrNewline(c) || c == noBreakSpace || isPunctuationForFirstLetter(c); } void RenderBlock::updateFirstLetter() { if (!document()->usesFirstLetterRules()) return; // Don't recur if (style()->styleType() == FIRST_LETTER) return; // FIXME: We need to destroy the first-letter object if it is no longer the first child. Need to find // an efficient way to check for that situation though before implementing anything. RenderObject* firstLetterBlock = this; bool hasPseudoStyle = false; while (true) { // We only honor first-letter if the firstLetterBlock can have children in the DOM. This correctly // prevents form controls from honoring first-letter. hasPseudoStyle = firstLetterBlock->style()->hasPseudoStyle(FIRST_LETTER) && firstLetterBlock->canHaveChildren(); if (hasPseudoStyle) break; RenderObject* parentBlock = firstLetterBlock->parent(); if (firstLetterBlock->isReplaced() || !parentBlock || parentBlock->firstChild() != firstLetterBlock || !parentBlock->isBlockFlow()) break; firstLetterBlock = parentBlock; } if (!hasPseudoStyle) return; // Drill into inlines looking for our first text child. RenderObject* currChild = firstLetterBlock->firstChild(); while (currChild) { if (currChild->isText()) break; if (currChild->isListMarker()) currChild = currChild->nextSibling(); else if (currChild->isFloatingOrPositioned()) { if (currChild->style()->styleType() == FIRST_LETTER) { currChild = currChild->firstChild(); break; } currChild = currChild->nextSibling(); } else if (currChild->isReplaced() || currChild->isRenderButton() || currChild->isMenuList()) break; else if (currChild->style()->hasPseudoStyle(FIRST_LETTER) && currChild->canHaveChildren()) { // We found a lower-level node with first-letter, which supersedes the higher-level style firstLetterBlock = currChild; currChild = currChild->firstChild(); } else currChild = currChild->firstChild(); } if (!currChild) return; // If the child already has style, then it has already been created, so we just want // to update it. if (currChild->parent()->style()->styleType() == FIRST_LETTER) { RenderObject* firstLetter = currChild->parent(); RenderObject* firstLetterContainer = firstLetter->parent(); RenderStyle* pseudoStyle = styleForFirstLetter(firstLetterBlock, firstLetterContainer); if (Node::diff(firstLetter->style(), pseudoStyle) == Node::Detach) { // The first-letter renderer needs to be replaced. Create a new renderer of the right type. RenderObject* newFirstLetter; if (pseudoStyle->display() == INLINE) newFirstLetter = new (renderArena()) RenderInline(document()); else newFirstLetter = new (renderArena()) RenderBlock(document()); newFirstLetter->setStyle(pseudoStyle); // Move the first letter into the new renderer. view()->disableLayoutState(); while (RenderObject* child = firstLetter->firstChild()) { if (child->isText()) toRenderText(child)->removeAndDestroyTextBoxes(); firstLetter->removeChild(child); newFirstLetter->addChild(child, 0); } RenderTextFragment* remainingText = 0; RenderObject* nextSibling = firstLetter->nextSibling(); RenderObject* next = nextSibling; while (next) { if (next->isText() && toRenderText(next)->isTextFragment()) { remainingText = toRenderTextFragment(next); break; } next = next->nextSibling(); } if (remainingText) { ASSERT(remainingText->node()->renderer() == remainingText); // Replace the old renderer with the new one. remainingText->setFirstLetter(newFirstLetter); } firstLetter->destroy(); firstLetter = newFirstLetter; firstLetterContainer->addChild(firstLetter, nextSibling); view()->enableLayoutState(); } else firstLetter->setStyle(pseudoStyle); for (RenderObject* genChild = firstLetter->firstChild(); genChild; genChild = genChild->nextSibling()) { if (genChild->isText()) genChild->setStyle(pseudoStyle); } return; } if (!currChild->isText() || currChild->isBR()) return; // If the child does not already have style, we create it here. RenderObject* firstLetterContainer = currChild->parent(); // Our layout state is not valid for the repaints we are going to trigger by // adding and removing children of firstLetterContainer. view()->disableLayoutState(); RenderText* textObj = toRenderText(currChild); // Create our pseudo style now that we have our firstLetterContainer determined. RenderStyle* pseudoStyle = styleForFirstLetter(firstLetterBlock, firstLetterContainer); RenderObject* firstLetter = 0; if (pseudoStyle->display() == INLINE) firstLetter = new (renderArena()) RenderInline(document()); else firstLetter = new (renderArena()) RenderBlock(document()); firstLetter->setStyle(pseudoStyle); firstLetterContainer->addChild(firstLetter, currChild); // The original string is going to be either a generated content string or a DOM node's // string. We want the original string before it got transformed in case first-letter has // no text-transform or a different text-transform applied to it. RefPtr oldText = textObj->originalText(); ASSERT(oldText); if (oldText && oldText->length() > 0) { unsigned length = 0; // Account for leading spaces and punctuation. while (length < oldText->length() && shouldSkipForFirstLetter((*oldText)[length])) length++; // Account for first letter. length++; // Keep looking for whitespace and allowed punctuation, but avoid // accumulating just whitespace into the :first-letter. for (unsigned scanLength = length; scanLength < oldText->length(); ++scanLength) { UChar c = (*oldText)[scanLength]; if (!shouldSkipForFirstLetter(c)) break; if (isPunctuationForFirstLetter(c)) length = scanLength + 1; } // Construct a text fragment for the text after the first letter. // This text fragment might be empty. RenderTextFragment* remainingText = new (renderArena()) RenderTextFragment(textObj->node() ? textObj->node() : textObj->document(), oldText.get(), length, oldText->length() - length); remainingText->setStyle(textObj->style()); if (remainingText->node()) remainingText->node()->setRenderer(remainingText); firstLetterContainer->addChild(remainingText, textObj); firstLetterContainer->removeChild(textObj); remainingText->setFirstLetter(firstLetter); // construct text fragment for the first letter RenderTextFragment* letter = new (renderArena()) RenderTextFragment(remainingText->node() ? remainingText->node() : remainingText->document(), oldText.get(), 0, length); letter->setStyle(pseudoStyle); firstLetter->addChild(letter); textObj->destroy(); } view()->enableLayoutState(); } // Helper methods for obtaining the last line, computing line counts and heights for line counts // (crawling into blocks). static bool shouldCheckLines(RenderObject* obj) { return !obj->isFloatingOrPositioned() && !obj->isRunIn() && obj->isBlockFlow() && obj->style()->height().isAuto() && (!obj->isFlexibleBox() || obj->style()->boxOrient() == VERTICAL); } static RootInlineBox* getLineAtIndex(RenderBlock* block, int i, int& count) { if (block->style()->visibility() == VISIBLE) { if (block->childrenInline()) { for (RootInlineBox* box = block->firstRootBox(); box; box = box->nextRootBox()) { if (count++ == i) return box; } } else { for (RenderObject* obj = block->firstChild(); obj; obj = obj->nextSibling()) { if (shouldCheckLines(obj)) { RootInlineBox *box = getLineAtIndex(toRenderBlock(obj), i, count); if (box) return box; } } } } return 0; } static int getHeightForLineCount(RenderBlock* block, int l, bool includeBottom, int& count) { if (block->style()->visibility() == VISIBLE) { if (block->childrenInline()) { for (RootInlineBox* box = block->firstRootBox(); box; box = box->nextRootBox()) { if (++count == l) return box->lineBottom() + (includeBottom ? (block->borderBottom() + block->paddingBottom()) : 0); } } else { RenderBox* normalFlowChildWithoutLines = 0; for (RenderBox* obj = block->firstChildBox(); obj; obj = obj->nextSiblingBox()) { if (shouldCheckLines(obj)) { int result = getHeightForLineCount(toRenderBlock(obj), l, false, count); if (result != -1) return result + obj->y() + (includeBottom ? (block->borderBottom() + block->paddingBottom()) : 0); } else if (!obj->isFloatingOrPositioned() && !obj->isRunIn()) normalFlowChildWithoutLines = obj; } if (normalFlowChildWithoutLines && l == 0) return normalFlowChildWithoutLines->y() + normalFlowChildWithoutLines->height(); } } return -1; } RootInlineBox* RenderBlock::lineAtIndex(int i) { int count = 0; return getLineAtIndex(this, i, count); } int RenderBlock::lineCount() { int count = 0; if (style()->visibility() == VISIBLE) { if (childrenInline()) for (RootInlineBox* box = firstRootBox(); box; box = box->nextRootBox()) count++; else for (RenderObject* obj = firstChild(); obj; obj = obj->nextSibling()) if (shouldCheckLines(obj)) count += toRenderBlock(obj)->lineCount(); } return count; } int RenderBlock::heightForLineCount(int l) { int count = 0; return getHeightForLineCount(this, l, true, count); } void RenderBlock::adjustForBorderFit(int x, int& left, int& right) const { // We don't deal with relative positioning. Our assumption is that you shrink to fit the lines without accounting // for either overflow or translations via relative positioning. if (style()->visibility() == VISIBLE) { if (childrenInline()) { for (RootInlineBox* box = firstRootBox(); box; box = box->nextRootBox()) { if (box->firstChild()) left = min(left, x + static_cast(box->firstChild()->x())); if (box->lastChild()) right = max(right, x + static_cast(ceilf(box->lastChild()->logicalRight()))); } } else { for (RenderBox* obj = firstChildBox(); obj; obj = obj->nextSiblingBox()) { if (!obj->isFloatingOrPositioned()) { if (obj->isBlockFlow() && !obj->hasOverflowClip()) toRenderBlock(obj)->adjustForBorderFit(x + obj->x(), left, right); else if (obj->style()->visibility() == VISIBLE) { // We are a replaced element or some kind of non-block-flow object. left = min(left, x + obj->x()); right = max(right, x + obj->x() + obj->width()); } } } } if (m_floatingObjects) { FloatingObjectSet& floatingObjectSet = m_floatingObjects->set(); FloatingObjectSetIterator end = floatingObjectSet.end(); for (FloatingObjectSetIterator it = floatingObjectSet.begin(); it != end; ++it) { FloatingObject* r = *it; // Only examine the object if our m_shouldPaint flag is set. if (r->m_shouldPaint) { int floatLeft = xPositionForFloatIncludingMargin(r) - r->m_renderer->x(); int floatRight = floatLeft + r->m_renderer->width(); left = min(left, floatLeft); right = max(right, floatRight); } } } } } void RenderBlock::borderFitAdjust(int& x, int& w) const { if (style()->borderFit() == BorderFitBorder) return; // Walk any normal flow lines to snugly fit. int left = INT_MAX; int right = INT_MIN; int oldWidth = w; adjustForBorderFit(0, left, right); if (left != INT_MAX) { left -= (borderLeft() + paddingLeft()); if (left > 0) { x += left; w -= left; } } if (right != INT_MIN) { right += (borderRight() + paddingRight()); if (right < oldWidth) w -= (oldWidth - right); } } void RenderBlock::clearTruncation() { if (style()->visibility() == VISIBLE) { if (childrenInline() && hasMarkupTruncation()) { setHasMarkupTruncation(false); for (RootInlineBox* box = firstRootBox(); box; box = box->nextRootBox()) box->clearTruncation(); } else for (RenderObject* obj = firstChild(); obj; obj = obj->nextSibling()) if (shouldCheckLines(obj)) toRenderBlock(obj)->clearTruncation(); } } void RenderBlock::setMaxMarginBeforeValues(int pos, int neg) { if (!m_rareData) { if (pos == RenderBlockRareData::positiveMarginBeforeDefault(this) && neg == RenderBlockRareData::negativeMarginBeforeDefault(this)) return; m_rareData = new RenderBlockRareData(this); } m_rareData->m_margins.setPositiveMarginBefore(pos); m_rareData->m_margins.setNegativeMarginBefore(neg); } void RenderBlock::setMaxMarginAfterValues(int pos, int neg) { if (!m_rareData) { if (pos == RenderBlockRareData::positiveMarginAfterDefault(this) && neg == RenderBlockRareData::negativeMarginAfterDefault(this)) return; m_rareData = new RenderBlockRareData(this); } m_rareData->m_margins.setPositiveMarginAfter(pos); m_rareData->m_margins.setNegativeMarginAfter(neg); } void RenderBlock::setPaginationStrut(int strut) { if (!m_rareData) { if (!strut) return; m_rareData = new RenderBlockRareData(this); } m_rareData->m_paginationStrut = strut; } void RenderBlock::setPageLogicalOffset(int logicalOffset) { if (!m_rareData) { if (!logicalOffset) return; m_rareData = new RenderBlockRareData(this); } m_rareData->m_pageLogicalOffset = logicalOffset; } void RenderBlock::absoluteRects(Vector& rects, int tx, int ty) { // For blocks inside inlines, we go ahead and include margins so that we run right up to the // inline boxes above and below us (thus getting merged with them to form a single irregular // shape). if (isAnonymousBlockContinuation()) { // FIXME: This is wrong for block-flows that are horizontal. // https://bugs.webkit.org/show_bug.cgi?id=46781 rects.append(IntRect(tx, ty - collapsedMarginBefore(), width(), height() + collapsedMarginBefore() + collapsedMarginAfter())); continuation()->absoluteRects(rects, tx - x() + inlineElementContinuation()->containingBlock()->x(), ty - y() + inlineElementContinuation()->containingBlock()->y()); } else rects.append(IntRect(tx, ty, width(), height())); } void RenderBlock::absoluteQuads(Vector& quads) { // For blocks inside inlines, we go ahead and include margins so that we run right up to the // inline boxes above and below us (thus getting merged with them to form a single irregular // shape). if (isAnonymousBlockContinuation()) { // FIXME: This is wrong for block-flows that are horizontal. // https://bugs.webkit.org/show_bug.cgi?id=46781 FloatRect localRect(0, -collapsedMarginBefore(), width(), height() + collapsedMarginBefore() + collapsedMarginAfter()); quads.append(localToAbsoluteQuad(localRect)); continuation()->absoluteQuads(quads); } else quads.append(RenderBox::localToAbsoluteQuad(FloatRect(0, 0, width(), height()))); } IntRect RenderBlock::rectWithOutlineForRepaint(RenderBoxModelObject* repaintContainer, int outlineWidth) { IntRect r(RenderBox::rectWithOutlineForRepaint(repaintContainer, outlineWidth)); if (isAnonymousBlockContinuation()) r.inflateY(collapsedMarginBefore()); // FIXME: This is wrong for block-flows that are horizontal. return r; } RenderObject* RenderBlock::hoverAncestor() const { return isAnonymousBlockContinuation() ? continuation() : RenderBox::hoverAncestor(); } void RenderBlock::updateDragState(bool dragOn) { RenderBox::updateDragState(dragOn); if (continuation()) continuation()->updateDragState(dragOn); } RenderStyle* RenderBlock::outlineStyleForRepaint() const { return isAnonymousBlockContinuation() ? continuation()->style() : style(); } void RenderBlock::childBecameNonInline(RenderObject*) { makeChildrenNonInline(); if (isAnonymousBlock() && parent() && parent()->isRenderBlock()) toRenderBlock(parent())->removeLeftoverAnonymousBlock(this); // |this| may be dead here } void RenderBlock::updateHitTestResult(HitTestResult& result, const IntPoint& point) { if (result.innerNode()) return; Node* n = node(); if (isAnonymousBlockContinuation()) // We are in the margins of block elements that are part of a continuation. In // this case we're actually still inside the enclosing element that was // split. Go ahead and set our inner node accordingly. n = continuation()->node(); if (n) { result.setInnerNode(n); if (!result.innerNonSharedNode()) result.setInnerNonSharedNode(n); result.setLocalPoint(point); } } IntRect RenderBlock::localCaretRect(InlineBox* inlineBox, int caretOffset, int* extraWidthToEndOfLine) { // Do the normal calculation in most cases. if (firstChild()) return RenderBox::localCaretRect(inlineBox, caretOffset, extraWidthToEndOfLine); // This is a special case: // The element is not an inline element, and it's empty. So we have to // calculate a fake position to indicate where objects are to be inserted. // FIXME: This does not take into account either :first-line or :first-letter // However, as soon as some content is entered, the line boxes will be // constructed and this kludge is not called any more. So only the caret size // of an empty :first-line'd block is wrong. I think we can live with that. RenderStyle* currentStyle = firstLineStyle(); int height = lineHeight(true, currentStyle->isHorizontalWritingMode() ? HorizontalLine : VerticalLine); enum CaretAlignment { alignLeft, alignRight, alignCenter }; CaretAlignment alignment = alignLeft; switch (currentStyle->textAlign()) { case TAAUTO: case JUSTIFY: if (!currentStyle->isLeftToRightDirection()) alignment = alignRight; break; case LEFT: case WEBKIT_LEFT: break; case CENTER: case WEBKIT_CENTER: alignment = alignCenter; break; case RIGHT: case WEBKIT_RIGHT: alignment = alignRight; break; case TASTART: if (!currentStyle->isLeftToRightDirection()) alignment = alignRight; break; case TAEND: if (currentStyle->isLeftToRightDirection()) alignment = alignRight; break; } int x = borderLeft() + paddingLeft(); int w = width(); switch (alignment) { case alignLeft: break; case alignCenter: x = (x + w - (borderRight() + paddingRight())) / 2; break; case alignRight: x = w - (borderRight() + paddingRight()) - caretWidth; break; } if (extraWidthToEndOfLine) { if (isRenderBlock()) { *extraWidthToEndOfLine = w - (x + caretWidth); } else { // FIXME: This code looks wrong. // myRight and containerRight are set up, but then clobbered. // So *extraWidthToEndOfLine will always be 0 here. int myRight = x + caretWidth; // FIXME: why call localToAbsoluteForContent() twice here, too? FloatPoint absRightPoint = localToAbsolute(FloatPoint(myRight, 0)); int containerRight = containingBlock()->x() + containingBlockLogicalWidthForContent(); FloatPoint absContainerPoint = localToAbsolute(FloatPoint(containerRight, 0)); *extraWidthToEndOfLine = absContainerPoint.x() - absRightPoint.x(); } } int y = paddingTop() + borderTop(); return IntRect(x, y, caretWidth, height); } void RenderBlock::addFocusRingRects(Vector& rects, int tx, int ty) { // For blocks inside inlines, we go ahead and include margins so that we run right up to the // inline boxes above and below us (thus getting merged with them to form a single irregular // shape). if (inlineElementContinuation()) { // FIXME: This check really isn't accurate. bool nextInlineHasLineBox = inlineElementContinuation()->firstLineBox(); // FIXME: This is wrong. The principal renderer may not be the continuation preceding this block. // FIXME: This is wrong for block-flows that are horizontal. // https://bugs.webkit.org/show_bug.cgi?id=46781 bool prevInlineHasLineBox = toRenderInline(inlineElementContinuation()->node()->renderer())->firstLineBox(); int topMargin = prevInlineHasLineBox ? collapsedMarginBefore() : 0; int bottomMargin = nextInlineHasLineBox ? collapsedMarginAfter() : 0; IntRect rect(tx, ty - topMargin, width(), height() + topMargin + bottomMargin); if (!rect.isEmpty()) rects.append(rect); } else if (width() && height()) rects.append(IntRect(tx, ty, width(), height())); if (!hasOverflowClip() && !hasControlClip()) { for (RootInlineBox* curr = firstRootBox(); curr; curr = curr->nextRootBox()) { int top = max(curr->lineTop(), curr->logicalTop()); int bottom = min(curr->lineBottom(), curr->logicalTop() + curr->logicalHeight()); IntRect rect(tx + curr->x(), ty + top, curr->logicalWidth(), bottom - top); if (!rect.isEmpty()) rects.append(rect); } for (RenderObject* curr = firstChild(); curr; curr = curr->nextSibling()) { if (!curr->isText() && !curr->isListMarker() && curr->isBox()) { RenderBox* box = toRenderBox(curr); FloatPoint pos; // FIXME: This doesn't work correctly with transforms. if (box->layer()) pos = curr->localToAbsolute(); else pos = FloatPoint(tx + box->x(), ty + box->y()); box->addFocusRingRects(rects, pos.x(), pos.y()); } } } if (inlineElementContinuation()) inlineElementContinuation()->addFocusRingRects(rects, tx - x() + inlineElementContinuation()->containingBlock()->x(), ty - y() + inlineElementContinuation()->containingBlock()->y()); } RenderBlock* RenderBlock::createAnonymousBlock(bool isFlexibleBox) const { RefPtr newStyle = RenderStyle::createAnonymousStyle(style()); RenderBlock* newBox = 0; if (isFlexibleBox) { newStyle->setDisplay(BOX); newBox = new (renderArena()) RenderFlexibleBox(document() /* anonymous box */); } else { newStyle->setDisplay(BLOCK); newBox = new (renderArena()) RenderBlock(document() /* anonymous box */); } newBox->setStyle(newStyle.release()); return newBox; } RenderBlock* RenderBlock::createAnonymousBlockWithSameTypeAs(RenderBlock* otherAnonymousBlock) const { if (otherAnonymousBlock->isAnonymousColumnsBlock()) return createAnonymousColumnsBlock(); if (otherAnonymousBlock->isAnonymousColumnSpanBlock()) return createAnonymousColumnSpanBlock(); return createAnonymousBlock(otherAnonymousBlock->style()->display() == BOX); } RenderBlock* RenderBlock::createAnonymousColumnsBlock() const { RefPtr newStyle = RenderStyle::createAnonymousStyle(style()); newStyle->inheritColumnPropertiesFrom(style()); newStyle->setDisplay(BLOCK); RenderBlock* newBox = new (renderArena()) RenderBlock(document() /* anonymous box */); newBox->setStyle(newStyle.release()); return newBox; } RenderBlock* RenderBlock::createAnonymousColumnSpanBlock() const { RefPtr newStyle = RenderStyle::createAnonymousStyle(style()); newStyle->setColumnSpan(true); newStyle->setDisplay(BLOCK); RenderBlock* newBox = new (renderArena()) RenderBlock(document() /* anonymous box */); newBox->setStyle(newStyle.release()); return newBox; } int RenderBlock::nextPageLogicalTop(int logicalOffset) const { LayoutState* layoutState = view()->layoutState(); if (!layoutState->m_pageLogicalHeight) return logicalOffset; // The logicalOffset is in our coordinate space. We can add in our pushed offset. int pageLogicalHeight = layoutState->m_pageLogicalHeight; IntSize delta = layoutState->m_layoutOffset - layoutState->m_pageOffset; int offset = isHorizontalWritingMode() ? delta.height() : delta.width(); int remainingLogicalHeight = (pageLogicalHeight - (offset + logicalOffset) % pageLogicalHeight) % pageLogicalHeight; return logicalOffset + remainingLogicalHeight; } static bool inNormalFlow(RenderBox* child) { RenderBlock* curr = child->containingBlock(); RenderBlock* initialBlock = child->view(); while (curr && curr != initialBlock) { if (curr->hasColumns()) return true; if (curr->isFloatingOrPositioned()) return false; curr = curr->containingBlock(); } return true; } int RenderBlock::applyBeforeBreak(RenderBox* child, int logicalOffset) { // FIXME: Add page break checking here when we support printing. bool checkColumnBreaks = view()->layoutState()->isPaginatingColumns(); bool checkPageBreaks = !checkColumnBreaks && view()->layoutState()->m_pageLogicalHeight; // FIXME: Once columns can print we have to check this. bool checkBeforeAlways = (checkColumnBreaks && child->style()->columnBreakBefore() == PBALWAYS) || (checkPageBreaks && child->style()->pageBreakBefore() == PBALWAYS); if (checkBeforeAlways && inNormalFlow(child)) { if (checkColumnBreaks) view()->layoutState()->addForcedColumnBreak(logicalOffset); return nextPageLogicalTop(logicalOffset); } return logicalOffset; } int RenderBlock::applyAfterBreak(RenderBox* child, int logicalOffset, MarginInfo& marginInfo) { // FIXME: Add page break checking here when we support printing. bool checkColumnBreaks = view()->layoutState()->isPaginatingColumns(); bool checkPageBreaks = !checkColumnBreaks && view()->layoutState()->m_pageLogicalHeight; // FIXME: Once columns can print we have to check this. bool checkAfterAlways = (checkColumnBreaks && child->style()->columnBreakAfter() == PBALWAYS) || (checkPageBreaks && child->style()->pageBreakAfter() == PBALWAYS); if (checkAfterAlways && inNormalFlow(child)) { marginInfo.setMarginAfterQuirk(true); // Cause margins to be discarded for any following content. if (checkColumnBreaks) view()->layoutState()->addForcedColumnBreak(logicalOffset); return nextPageLogicalTop(logicalOffset); } return logicalOffset; } int RenderBlock::adjustForUnsplittableChild(RenderBox* child, int logicalOffset, bool includeMargins) { bool isUnsplittable = child->isReplaced() || child->scrollsOverflow(); if (!isUnsplittable) return logicalOffset; int childLogicalHeight = logicalHeightForChild(child) + (includeMargins ? marginBeforeForChild(child) + marginAfterForChild(child) : 0); LayoutState* layoutState = view()->layoutState(); if (layoutState->m_columnInfo) layoutState->m_columnInfo->updateMinimumColumnHeight(childLogicalHeight); int pageLogicalHeight = layoutState->m_pageLogicalHeight; if (!pageLogicalHeight || childLogicalHeight > pageLogicalHeight) return logicalOffset; IntSize delta = layoutState->m_layoutOffset - layoutState->m_pageOffset; int offset = isHorizontalWritingMode() ? delta.height() : delta.width(); int remainingLogicalHeight = (pageLogicalHeight - (offset + logicalOffset) % pageLogicalHeight) % pageLogicalHeight; if (remainingLogicalHeight < childLogicalHeight) return logicalOffset + remainingLogicalHeight; return logicalOffset; } void RenderBlock::adjustLinePositionForPagination(RootInlineBox* lineBox, int& delta) { // FIXME: For now we paginate using line overflow. This ensures that lines don't overlap at all when we // put a strut between them for pagination purposes. However, this really isn't the desired rendering, since // the line on the top of the next page will appear too far down relative to the same kind of line at the top // of the first column. // // The rendering we would like to see is one where the lineTop is at the top of the column, and any line overflow // simply spills out above the top of the column. This effect would match what happens at the top of the first column. // We can't achieve this rendering, however, until we stop columns from clipping to the column bounds (thus allowing // for overflow to occur), and then cache visible overflow for each column rect. // // Furthermore, the paint we have to do when a column has overflow has to be special. We need to exclude // content that paints in a previous column (and content that paints in the following column). // // FIXME: Another problem with simply moving lines is that the available line width may change (because of floats). // Technically if the location we move the line to has a different line width than our old position, then we need to dirty the // line and all following lines. LayoutState* layoutState = view()->layoutState(); int pageLogicalHeight = layoutState->m_pageLogicalHeight; IntRect logicalVisualOverflow = lineBox->logicalVisualOverflowRect(lineBox->lineTop(), lineBox->lineBottom()); int logicalOffset = logicalVisualOverflow.y(); int lineHeight = logicalVisualOverflow.maxY() - logicalOffset; if (layoutState->m_columnInfo) layoutState->m_columnInfo->updateMinimumColumnHeight(lineHeight); logicalOffset += delta; lineBox->setPaginationStrut(0); if (!pageLogicalHeight || lineHeight > pageLogicalHeight) return; IntSize offsetDelta = layoutState->m_layoutOffset - layoutState->m_pageOffset; int offset = isHorizontalWritingMode() ? offsetDelta.height() : offsetDelta.width(); int remainingLogicalHeight = pageLogicalHeight - (offset + logicalOffset) % pageLogicalHeight; if (remainingLogicalHeight < lineHeight) { int totalLogicalHeight = lineHeight + max(0, logicalOffset); if (lineBox == firstRootBox() && totalLogicalHeight < pageLogicalHeight && !isPositioned() && !isTableCell()) setPaginationStrut(remainingLogicalHeight + max(0, logicalOffset)); else { delta += remainingLogicalHeight; lineBox->setPaginationStrut(remainingLogicalHeight); } } } int RenderBlock::collapsedMarginBeforeForChild(RenderBox* child) const { // If the child has the same directionality as we do, then we can just return its // collapsed margin. if (!child->isWritingModeRoot()) return child->collapsedMarginBefore(); // The child has a different directionality. If the child is parallel, then it's just // flipped relative to us. We can use the collapsed margin for the opposite edge. if (child->isHorizontalWritingMode() == isHorizontalWritingMode()) return child->collapsedMarginAfter(); // The child is perpendicular to us, which means its margins don't collapse but are on the // "logical left/right" sides of the child box. We can just return the raw margin in this case. return marginBeforeForChild(child); } int RenderBlock::collapsedMarginAfterForChild(RenderBox* child) const { // If the child has the same directionality as we do, then we can just return its // collapsed margin. if (!child->isWritingModeRoot()) return child->collapsedMarginAfter(); // The child has a different directionality. If the child is parallel, then it's just // flipped relative to us. We can use the collapsed margin for the opposite edge. if (child->isHorizontalWritingMode() == isHorizontalWritingMode()) return child->collapsedMarginBefore(); // The child is perpendicular to us, which means its margins don't collapse but are on the // "logical left/right" side of the child box. We can just return the raw margin in this case. return marginAfterForChild(child); } int RenderBlock::marginBeforeForChild(RenderBoxModelObject* child) const { switch (style()->writingMode()) { case TopToBottomWritingMode: return child->marginTop(); case BottomToTopWritingMode: return child->marginBottom(); case LeftToRightWritingMode: return child->marginLeft(); case RightToLeftWritingMode: return child->marginRight(); } ASSERT_NOT_REACHED(); return child->marginTop(); } int RenderBlock::marginAfterForChild(RenderBoxModelObject* child) const { switch (style()->writingMode()) { case TopToBottomWritingMode: return child->marginBottom(); case BottomToTopWritingMode: return child->marginTop(); case LeftToRightWritingMode: return child->marginRight(); case RightToLeftWritingMode: return child->marginLeft(); } ASSERT_NOT_REACHED(); return child->marginBottom(); } int RenderBlock::marginStartForChild(RenderBoxModelObject* child) const { if (isHorizontalWritingMode()) return style()->isLeftToRightDirection() ? child->marginLeft() : child->marginRight(); return style()->isLeftToRightDirection() ? child->marginTop() : child->marginBottom(); } int RenderBlock::marginEndForChild(RenderBoxModelObject* child) const { if (isHorizontalWritingMode()) return style()->isLeftToRightDirection() ? child->marginRight() : child->marginLeft(); return style()->isLeftToRightDirection() ? child->marginBottom() : child->marginTop(); } void RenderBlock::setMarginStartForChild(RenderBox* child, int margin) { if (isHorizontalWritingMode()) { if (style()->isLeftToRightDirection()) child->setMarginLeft(margin); else child->setMarginRight(margin); } else { if (style()->isLeftToRightDirection()) child->setMarginTop(margin); else child->setMarginBottom(margin); } } void RenderBlock::setMarginEndForChild(RenderBox* child, int margin) { if (isHorizontalWritingMode()) { if (style()->isLeftToRightDirection()) child->setMarginRight(margin); else child->setMarginLeft(margin); } else { if (style()->isLeftToRightDirection()) child->setMarginBottom(margin); else child->setMarginTop(margin); } } void RenderBlock::setMarginBeforeForChild(RenderBox* child, int margin) { switch (style()->writingMode()) { case TopToBottomWritingMode: child->setMarginTop(margin); break; case BottomToTopWritingMode: child->setMarginBottom(margin); break; case LeftToRightWritingMode: child->setMarginLeft(margin); break; case RightToLeftWritingMode: child->setMarginRight(margin); break; } } void RenderBlock::setMarginAfterForChild(RenderBox* child, int margin) { switch (style()->writingMode()) { case TopToBottomWritingMode: child->setMarginBottom(margin); break; case BottomToTopWritingMode: child->setMarginTop(margin); break; case LeftToRightWritingMode: child->setMarginRight(margin); break; case RightToLeftWritingMode: child->setMarginLeft(margin); break; } } RenderBlock::MarginValues RenderBlock::marginValuesForChild(RenderBox* child) { int childBeforePositive = 0; int childBeforeNegative = 0; int childAfterPositive = 0; int childAfterNegative = 0; int beforeMargin = 0; int afterMargin = 0; RenderBlock* childRenderBlock = child->isRenderBlock() ? toRenderBlock(child) : 0; // If the child has the same directionality as we do, then we can just return its // margins in the same direction. if (!child->isWritingModeRoot()) { if (childRenderBlock) { childBeforePositive = childRenderBlock->maxPositiveMarginBefore(); childBeforeNegative = childRenderBlock->maxNegativeMarginBefore(); childAfterPositive = childRenderBlock->maxPositiveMarginAfter(); childAfterNegative = childRenderBlock->maxNegativeMarginAfter(); } else { beforeMargin = child->marginBefore(); afterMargin = child->marginAfter(); } } else if (child->isHorizontalWritingMode() == isHorizontalWritingMode()) { // The child has a different directionality. If the child is parallel, then it's just // flipped relative to us. We can use the margins for the opposite edges. if (childRenderBlock) { childBeforePositive = childRenderBlock->maxPositiveMarginAfter(); childBeforeNegative = childRenderBlock->maxNegativeMarginAfter(); childAfterPositive = childRenderBlock->maxPositiveMarginBefore(); childAfterNegative = childRenderBlock->maxNegativeMarginBefore(); } else { beforeMargin = child->marginAfter(); afterMargin = child->marginBefore(); } } else { // The child is perpendicular to us, which means its margins don't collapse but are on the // "logical left/right" sides of the child box. We can just return the raw margin in this case. beforeMargin = marginBeforeForChild(child); afterMargin = marginAfterForChild(child); } // Resolve uncollapsing margins into their positive/negative buckets. if (beforeMargin) { if (beforeMargin > 0) childBeforePositive = beforeMargin; else childBeforeNegative = -beforeMargin; } if (afterMargin) { if (afterMargin > 0) childAfterPositive = afterMargin; else childAfterNegative = -afterMargin; } return MarginValues(childBeforePositive, childBeforeNegative, childAfterPositive, childAfterNegative); } const char* RenderBlock::renderName() const { if (isBody()) return "RenderBody"; // FIXME: Temporary hack until we know that the regression tests pass. if (isFloating()) return "RenderBlock (floating)"; if (isPositioned()) return "RenderBlock (positioned)"; if (isAnonymousColumnsBlock()) return "RenderBlock (anonymous multi-column)"; if (isAnonymousColumnSpanBlock()) return "RenderBlock (anonymous multi-column span)"; if (isAnonymousBlock()) return "RenderBlock (anonymous)"; else if (isAnonymous()) return "RenderBlock (generated)"; if (isRelPositioned()) return "RenderBlock (relative positioned)"; if (isRunIn()) return "RenderBlock (run-in)"; return "RenderBlock"; } inline void RenderBlock::FloatingObjects::clear() { m_set.clear(); m_leftObjectsCount = 0; m_rightObjectsCount = 0; } inline void RenderBlock::FloatingObjects::increaseObjectsCount(FloatingObject::Type type) { if (type == FloatingObject::FloatLeft) m_leftObjectsCount++; else m_rightObjectsCount++; } inline void RenderBlock::FloatingObjects::decreaseObjectsCount(FloatingObject::Type type) { if (type == FloatingObject::FloatLeft) m_leftObjectsCount--; else m_rightObjectsCount--; } } // namespace WebCore